Universität Konstanz Fachbereich Mathematik und Statistik Vorkurs Mathematik 2019

Blatt 13

Aufgabe 60. Es seien $f: A \to B$ und $g: C \to D$ Funktionen mit $f[A] \subset C$. Wir erklären die **Verkettung von** f **mit** g, abgekürzt mit $g \circ f$, durch

$$g \circ f : A \to D, a \mapsto g(f(a)).$$

Es seien nun $f: \mathbb{Z} \to \mathbb{Z}, x \mapsto x+2$ und $g: \mathbb{Z} \to \mathbb{Z}, x \mapsto x^3$. Geben Sie die Zuordnungsvorschrift für $g \circ f$ und $f \circ g$ an.

Aufgabe 61. Es sei $f: X \to Y$ eine Funktion mit $A_1, A_2 \in \mathcal{P}(X)$.

(i) Zeigen Sie

$$A_1 \subset A_2 \Rightarrow f[A_1] \subset f[A_2].$$

(ii) Zeigen Sie

$$f[A_1 \cap A_2] \subset f[A_1] \cap f[A_2].$$

(iii) Geben Sie eine Funktion $f: X \to Y$ mit $A_1, A_2 \in \mathcal{P}(X)$ an, so dass gilt

$$f[A_1 \cap A_2] \subseteq f[A_1] \cap f[A_2].$$

Aufgabe 62. Es sei $f: X \to Y$ eine Funktion mit $B_1, B_2 \in \mathcal{P}(Y)$. Zeigen Sie

$$f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2].$$

Aufgabe 63. Wir geben zunächst die folgende **Definition**: f ist genau dann **injektiv**, wenn gilt

•
$$\forall x_1 \in \text{Def}(f) : \forall x_2 \in \text{Def}(f) : (f(x_1) = f(x_2)) \Rightarrow (x_1 = x_2).$$

Entscheiden Sie, ob die folgenden Funktionen injektiv sind. Beweisen Sie jeweils die Richtigkeit Ihrer Antworten.

(i) $f: \mathbb{N} \to \mathbb{N}, n \mapsto 3n+2$

(ii)
$$g: \mathbb{Z} \to \mathbb{Z}, x \mapsto \begin{cases} x, \text{ falls } x < 0 \\ x - 1, \text{ falls } x \ge 0. \end{cases}$$

Zusatzaufgabe 13. Wir geben zunächst die folgende **Definition**: Eine Funktion $f: X \to Y$ ist genau dann **sparsam**, wenn gilt

$$\bullet \ \forall y \in Y: |f^{-1}[\{y\}]| \leq 1.$$

Zur Erinnerung: Mit |A| ist die Anzahl der Elemente der (endlichen) Menge A bezeichnet. Ist jede injektive Funktion $f: X \to Y$ auch sparsam? Ist jede sparsame Funktion $f: X \to Y$ auch injektiv? Beweisen Sie die Richtigkeit Ihrer Antworten.