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The Lax Conjecture: The homogeneous case

Hyperbolicity

Definition

Let n be a positive integer. A homogenous polynomial p € R[xi, ..., x| is
called hyperbolic with respect to e € R”, if p(e) # 0 and for any v € R" the
univariate polynomial g(S) := p(v — Se) € R[S] only has real roots.

| A\

Example

Consider p(x, y, z) := x* y — z2 € R[x, y, z]. Then p is hyperbolic with
respect to e := (1,0,0) € R,
Indeed, p(e) := p(1,0,0) =1 # 0. For any v := (v1, v, v3) € R® we have

g(S)=p(v—Se) =-S5\’ -vi—-vi=vi —2uS+ S - -3
has a non negative discriminant

A= (—2v1)2—4(v12 — v22— v32) :4(v22+v32) > 0.

So all roots of g are real. B

A\
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The Lax Conjecture: The homogeneous case

The Lax Conjecture

The Lax Conjecture was posed in 1958 by P. D. Lax in [7].

Lax Conjecture

Let d be a positive integer and p € R[x, y, z], then p is hyperbolic of degree d
with respect to e := (1,0,0) € R® such that p(e) = 1 if and only if there exist
two Hermitian complex matrices Y, Z € C¥*9 such that

p(x,y,z) = det(xly + yY + 2Z).

The trivial direction of the Lax Conjecture

| A\

Let p € R[x, y, z] be of the form
p(x,y,z) =det(xly + yY + zZ)

with two complex Hermitian matrices Y, Z € C?*9. Then p is hyperbolic of
degree d with respect to e := (1,0,0) € R® and p(e) = 1.

A\
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The Lax Conjecture: The homogeneous case

The Lax Conjecture

Proof.

Indeed, p(e) := p(1,0,0) =det(1* Iy +0x Y +0x Z) = det(ly) = 1.
Moreover, for v := (v1, w2, v3) € R® consider the univariate polynomial
g(S) := p(v — Se) € R[S]. Let s € C be a root of g i.e.

0 = g(s):=p(v—-se)=det((vi —s)lg +wvnY + v32)
= det((vlld +wY + V3Z) — S/d) = leld+.,2y+v3z(5).

Clearly, vily + wY + v3Z is a Hermitian matrix and so any Eigenvalue of
vily + vY + wv3sZ is real. Thence, se R. B
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Homogenization: A two-sided medal

Real zero polynomials

A bivariate polynomial g € R[y, z] is called a real zero polynomial, if for any
w := (w2, w3) € R? the univariate polynomial

f(T) = q(Twz, Tws) € R[T]

only has real roots.

Example

Consider g(y,z) :=1— y?> — 22 € Ry, z]. Let w := (w2, w3) € R? and observe
that

F(T):=q(TwaTws) :=1—T?w5 — T°wj = T (—wj —w3) +1,
which has a non negative discriminant

A =4(w; +wi)>0.

So f only has real roots. B
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Homogenization: A two-sided medal

Motivation of real zero polynomials

Q If p € R[x,y, z] is hyperbolic of degree d € Z>( with respect to
e :=(1,0,0) € R, then we can reduce p to a bivariate polynomial
q € R]y, z] by setting
a(y,2) == p°(v,2) = p(L,y, 2).
@ Since p is hyperbolic of degree d € Z>o with respect to e := (1,0,0) € R®

we know for any v € R? the univariate polynomial
g(S) := p(v — Se) € R[S] only has real roots. Under dehomogenization

this translates as follows:
For any w := (w», ws) € R?,
f(T) = q(Twe, Tws) := p(1, Twa, Tws)
= p(T(O7 W23W3)+(17030))

= p(T((O7 W27W3)+ %(17070))

= T9p((0, wa, w3) +% (1,0,0)) € R[T]
N——_——

~—~
n__gn

[

only has real roots.
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Homogenization: A two-sided medal

The two-sided medal

Q Let p € R[x, y, z] be a hyperbolic polynomial with respect to
e:=(1,0,0) € R® such that p(e) = 1. Then the bivariate polynomial

qly,z) == p°(y,2) = p(1,y,2) € Rly, 7]
is a real zero polynomial of degree no more than the degree of p and
q(0,0) = 1.

Q Vice versa, let q € Ry, z] be a real zero polynomial of degree d € Z>g
such that g(0,0) = 1. Then the homogeneous polynomial

 H A (X2
p(Xay7Z) =4q (X,y,Z) =Xxq (X’ X) € R[Xayaz]
is hyperbolic with respect to e := (1,0,0) € R® and p(e) = 1. Moreover,
deg(p) = deg(q) =: d.
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Homogenization: A two-sided medal

The two-sided medal

Recall

p(x,y,z) =x*—y’ -2 ¢ R[x,y, Z]
is hyperbolic with respect to e := (1,0,0) € R® and
q(y,2) :=1-y* - 2" €Rly, 7]
is a real zero polynomial. Obviously
PPy 2) = p(Ly.2) :=1-y* = 2 = q(y,2)

and v =
H
q"(x,y,2) == x q(— ;) =x" —y’ — 22 = p(x,y,2).

So they are the homogeneous respectively dehomogeneous version of one
another.
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The Helton-Vinnikov Theorem: The dehomogeneous case

The Helton-Vinnikov Theorem

Theorem (Helton-Vinnikov)

Let d be a positive integer, then a bivariate polynomial q € Ry, z] of degree d
is a real zero polynomial with q(0,0) = 1 if and only if there exist two
Hermitian complex matrices Y, Z € C/*9 such that

q(y, z) = det(ly + yY + zZ).

This was first proven in [4, 2002, J. W. Helton and V. Vinnikov].

Lax Conjecture < Helton-Vinnikov Theorem

This was observed in [8, 2005, A. S. Lewis et al.].

The trivial direction of the Helton-Vinnikov

Let d be a positive integer, g € R[y, z] of degree d such that there exist two
Hermitian complex matrices Y, Z € C?*? with g(y, z) = det(ls + yY + zZ),
then g is a real zero polynomial with g(0,0) = 1.
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The Helton-Vinnikov Theorem: The dehomogeneous case

The Helton-Vinnikov Theorem

Proof.
Clearly, (0,0) = det(ly + 0% Y + 0 Z) = det(la) = 1.
Fix w := (w2, w3) € R? and let t € C\{0} be a root of
f(T) := q(Twa, Tws) € R[T]. Then
0 = £(t) = q(tws, tws) = det(ly + t(w2 Y) + t(wsZ))
= det(ls + t(n2Y + ws2))

= det( ( i+ ( W2Y+W32)))
1

= td det (?Id =+ (WQY + W3Z)) = td XwoY+ws Z <—?) .
#0

Hence, we have —1 € R\{0}, since woY + wsZ is Hermitian.
Therefore, tc R. B
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

We will now give a constructive proof of the Helton-Vinnikov Theorem
following [3, 2016, Grinshpan et al.].

Clearly, g is of the form Let us consider
d d—i 2 2
75 qly,z) :=1-y -z € R[y,2].
ay,2) =Y aiy'z,
i=0 j=0 For any s € R set
where a; € R. For any s € R fix . 1 s
WT) = Ta (?’ T)
o= d 1 S RIT
s(T):=T == .
a(1)i= T (3. %) € RIT] 12
_ T2 T2
Note
= T?’-1-5°

yd% (}%) =q(y,2).
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

The non-trivial direction.

With the given polynomial repre-
sentation of g observe

d
Gs(T) =D _ qa-m(s)T"
m=0

for some qg—m € R[S]<d—m and
qd,d(s) = q(0,0) =1

Therefore, §s is a monic univari-
ate polynomial of degree d.

SARAH-TANIA HEss

As for any s € R we have

s = T2 (L
G(T) = Tq<T,T)
2 1 52
=T (“ﬁ‘ﬁ)
= T?-1-4%,
with
g = 1eR[S]<o
q = 0€eR[S]«:
@(S) = —1-5°€eR[S]<>.
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

The non-trivial direction.

Let a € C\{0} be a root of §s.
Hence,

#0

gives % € R respectively a € R,

due to g being a real zero poly-
nomial.

Let us for now assume that
any root of §s is simple. De-
note these distinct roots of §s by
)\1(5), ey )\d(S) € R.

SARAH-TANIA HEss

Furthermore, we have to deter-
mine the roots of §s. Clearly, for
any a € C we have

0:65(3):3271752
if and only if
a?=1+5s">0.
So immediately a € R and we set

Ai(s) = vV1+s2eR

and

X2(s) i=—v1+s2€R.
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A constructive proof of the Helton-Vinnikov Theorem

The Proof
Let us now consider the compan- We can easily give the companion
ion matrix C(s) of §s given by matrix of §s namely
0 0 —a(s) 0 145
1 0 -+ 0 —gs(s) C(s) == ( 1 .
o . T . and clearly
: . 0 —qas) G(T) = T2—1-¢
0 -« 0 1 —qfs) ( T —1—s2>
: o = det
Claim 1 For any positive integer d -1 T

and any s € R we have

det(Th — C(s)).
Gs(T) = det(Tly — C(s)).
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A constructive proof of the Helton-Vinnikov Theorem

The Proof
Forj € {0,...,2(d — 1)} set For the newton sums we get
d —
. s = 2€R[S]<o
si(S) = A(SY. -
(5):= o M(S) S e
= 2(1+ 5% €R[S]<.
Clearly, for any =(3) (1+57) € RlS]<2
j € {07 .o 72(d - 1)} we have and so
deg(sj) <J. c c
For any s € R the Hermite matrix H(S) = ( s0(S)  s(S) )
of gs is given by s1(5)  =(S)

2 0
H(s) := (si+j(s))ij=o,....d-1- - ( 0 2(1+$?) ) '

Clearly, H € R?*9[S] is a matrix
of polynomials of degree 2(d —1)
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

The non-trivial direction.

Let .
V(S) := (Ni+1(S))ij=o,....d—1-

Obviously

v(S)'v(s) = (z—j Ak+1(5)"Ak+1(5)f>
i,je{0,...,d—1}

k=0

d . .
(Z Ak(sw)
k=1 i,j€{0,...,d—1}

= (si1(9))ijeqo,...d—13 = H(S).
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

For any s € R the matrix H(s) is

Recall for any s € R

Hermitian. ) 0
Indeed, H(s) = (0 214 ) )
H(s)" = (V(s)"V(s))"
= V(s)"(V(s)")"
voSens VOV
= V(s)"V(s)
= H(s)
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

Furthermore, for any s € R the For v i= (vi,v) € (Cz\{O} -
matrix H(s) is positive definite. 7
Indeed, for v € C?\{0} observe
VH(s)y = vI(V(s)TV(s))

"(V(s)"V(s))
V(s)v)"(V(s)v)

s € R we have

VIH(s)v = 2w 4+ 2(1 + 5°) |w|?

v v N——
40

v v > 0.

o —~ <

>

)

where we exploit all roots of §s
being distinct.
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A constructive proof of the Helton-Vinnikov Theorem

The Proof
Therefore, there exists some ma- An appropriate factorization of H
trix of polynomials is given by Q with

Q € C¥*9[S] such that for any /s
€R _ 2 0
5 . @ = (% i)
H(s) = Q(s)"Q(s),

e C¥[s].
where @ is a matrix of polynomial
of degree d—1 and Q(s) is invert-
ible for any s € C with Im(s) > 0
(see [10] and [1]).
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

Now for any s € R we set

For any s € R set

M(s) == Q(s)C(s)Q(s) . :
Observe = (18 1—|6i5).
det(Tly — M(s)) Moreover, for any s € R

=det(Tly — (Q(s)C(s)Q(s) ™)) ’ ’

— det(Tly — C(s)) C(s)"H(s)

_a(T). B 0 2(1+s%)

G(T) ( 2(1+ 5?) 0 )
= H(s)C(s).

Claim 2 For any s € R it holds
C(s)"H(s) = H(s)C(s).
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A constructive proof of the Helton-Vinnikov Theorem

The Proof
Now for any s € R observe Recall, for any s € R
M(s)" = (Q(s) H)"C(s)"Q(s)" = ( 0 1+is )
£ Q(5)Q(s) ~ li-is 0 )
———
=ly and so M(s) is clearly Hermitian.
= ( (s) ™M) (C(s)"H(s)) Moreover, M is clearly a matrix
«Q(s)” 1 of polynomials over C of degree
1 when considered in the variable
= Q(s)C(s)Q(s)™" S.
= M(s)

i.e. M(s) is Hermitian.

Claim 3 M is a matrix of poly-
nomials over C of degree at most
1.
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A constructive proof of the Helton-Vinnikov Theorem

The Proof
Therefore, there exist two Hermi- Moreover,
tian matrices Y,Z € C9*9 such c
that — 0 T+
M(S) = ( 1-iS 0
M(S) = —Y — ZS. S >
Thus for any s € R ; < -1 0
—_———
G(T) = det(Tly — M(s)) . :fi
= det(Tly+ Y + Zs). —< i 0 >5
—_————
=Z
= -Y-Z5.

Obviously, Y,Z € C**? are Her-
mitian matrices.
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

Altogether Obviously,
. 1

aly,2) = y'gz <—) det(h +yY + 2Z)

y 1 —y—iz
1 z i g + iz 1
= yddet<—ld+Y+—Z> y

Y Y = 1—(—y+iz)(~y —iz)

= det (y (1/d+ Y + 52)) = 1-((-9)+2)
¢ 4 = 1-y’—Z =q(y,2)
= det(ly +yY + zZ).
Altogether, we found an appro-
priate representation of g via Her-
mitian matrices.
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

The non-trivial direction.

Claim 4 For any £ > 0 there exists a real zero polynomial g- € R[y, z] of degree
d with g-(0,0) = 1 such that any coefficient of g. is within an Euclidean
distance of € from the corresponding coefficient of g and for any s € R

o ra (1 s
Ges(T) = T4 (T, T)

only has simple real roots (see [9]).

Hence, in the general case of g € R[y, z], for any € > 0 we can fix such
corresponding g with two Hermitian matrices Yz, Z. € C?*? such that
q:(y, z) = det(lys + yY: + zZ.).

Clearly, (ge)->0 converges to g as ¢ tends to zero and the sequence
(Ye, Z-)eso0 € (C9*9)? converges to a tuple (Y, Z) € (C/*?)? of Hermitian
matrices.
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A constructive proof of the Helton-Vinnikov Theorem

The Proof

The non-trivial direction.

Altogether,
qly,z) = I@O g:(y,z) = Ii\m0 det(ly + yYe + zZ.) = det(ly + yY + zZ)

and so g has an appropriate representation via Hermitian matrices as claimed.
|




A constructive proof of the Helton-Vinnikov Theorem

Outlook

@ The Lax Conjecture fails in more than 3 variables (see [8]).

Q In more than 3 variables, there exists a generalized counterpart to the Lax
Conjecture, called the generalized Lax Conjecture, and it is still open up
to today.

Q In my master thesis | relate the Lax Conjecture to the (multiplicative)
Horn's Problem.
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END

- QUESTIONS? -
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A constructive proof of the Helton-Vinnikov Theorem
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A constructive proof of the Helton-Vinnikov Theorem

The two-sided medal

It is clear that g cannot be of a degree larger than the degree d € Z>¢ of p.
Moreover,

q(0,0) :=p(1,0,0) = p(e) = 1.

Fix w := (w2, w3) € R? and consider the univariate polynomial
f(T):= q(Tw,, Tws) € R[T]. Let t € C\{0} be a root of f. Then

t 1
0 = f(t) := q(twe, tws) := p(1, tw, tws) = p (;, twa, tW3) =tp (? wa, W3) .

Since p is hyperbolic with respect to e := (1,0, 0) € R?, we have —% € R\{0}
respectively t € R\{0}. W
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A constructive proof of the Helton-Vinnikov Theorem

The two-sided medal

Clearly p is of the same degree d € Z>¢ as q and

p(e) = p(1,0,0) :=1%g (2 %) =1g(0,0) =17 x1=1.
Fix v := (v1, 2, v3) € R® and consider g(S) := p(v — Se) € R[S]. Let

s € C\{v1} be a root of g i.e.
Vo V3

0 = g(s)::p(v—se)::(&—Fs)dq(w_s,w_s).

#0

So we have —1— € R, since q is a real zero polynomial. Therefore, s € R. W
wy—s

v
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A constructive proof of the Helton-Vinnikov Theorem

The equivalence

Lax Conjecture = Helton-Vinnikov theorem.

Set

y4
p(x,y,z) =q"(x,y,2) == x%q (% ;) € R[x,y, 2]

and so p is hyperbolic with respect to e := (1,0,0) and p(e) = 1.
Moreover, deg(p) = deg(q). Thus by the Lax Conjecture there exist two
Hermitian complex matrices Y, Z € C¥*9 such that

p(x,y,z) = det(xly + yY + zZ).
So
a(y,2) = (6")°(y,2) = p°(y, 2) := p(L,y, 2) = det(la + yY + 22)
i.e. there exist two Hermitian complex matrices Y, Z € C?*? such that

q(x,y) =det(ls + yY + zZ).

The other direction is the trivial direction of the Helton-Vinnikov Theorem. H
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A constructive proof of the Helton-Vinnikov Theorem

The equivalence

Helton-Vinnikov Theorem = Lax Conjecture.

Set q(y,z) := p°(y,2) := p(1,y,2) €R[y, z]. So q is a real zero polynomial
with g(0,0) = 1 and set d := deg(q) € Z>o.

Hence, by the Helton-Vinnikov Theorem there exist two Hermitian complex
matrices Y, Z € C?*9 such that

q(y, z) = det(ly + yY + zZ).

W.l.o.g we can assume d = deg(p) by completing Y, Z to matrices of
dimension deg(p) via trivial block matrices i.e. we could consider
diag( Y, Ocd—des(p) x (¢—dea(e)) ) and diag(Z, Oca—des(o) x (a—cee(s)) ) instead of Y and
Z. Then
_ D\H . H L .d y z
Pioy,z) = (P (y2) = q"(xy.2) = xq (£, 2)
= xdet (b+2Y+27) =det(x (b +2v+22))
X X X X
det(xly + yY + zZ).

The other direction is the trivial direction of the Lax Conjecture. l
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A constructive proof of the Helton-Vinnikov Theorem

Claim 1

For any positive integer d and any s € R we have §s(T) = det(Tly — C(s)).

We will prove this by induction on d.

Fix s € R and clearly the base case holds.

Now assume that for any t < d we have det(T/; — C(s)) = §s(T). For d, using
Laplace formula for determinants on the first row of Tly — C(s), we conclude

T 0 -+ --- 0 qa(s)
-1 T 0 - 0 qgls)
0 . .
det(Tly — C(s)) = det
0
: - T q2(s)
0 - -+ 0 -1 T+aqfs)
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Claim 1

For any positive integer d and any s € R we have Gs(T) = det(Tly — C(s)).

A constructive proof of the Helton-Vinnikov Theorem

+ (=1)""qu(s) det

SARAH-TANIA HEss

0
=1l
0

0

T
=1l

T

A CONSTRUCTIVE PROOF OF THE HELTON-VINNIKOV THEOREM

Qd71(5)
q2(s)
T + qi(s)
0 --- 0
S
0 —1




A constructive proof of the Helton-Vinnikov Theorem

For any positive integer d and any s € R we have Gs(T) = det(Tly — C(s)).

According to the hypothesis of induction we have
T 0 coo 0 qd_l(s)
1 : : d—1
det = Gd—1-m(s)T™
0 m=0
T q2(s)
0 0 -1 T+aq(s)
and
-1 T 0 0
0 :
det Lo = (—1)""
B
0 0o -1
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A constructive proof of the Helton-Vinnikov Theorem

For any positive integer d and any s € R we have Gs(T) = det(Tly — C(s)).

Putting both together we have

det(Tly — C(s)) = T=x Z Gi-1-m(S) T+ (1) (=1)T" xqu(s)
—_———

m=0
=(—1)d+1+d—1—=(_1)2d=]

=3 dd—1-m(s)TMH
m=0

d—1
= q4(2) +qu 1-m(s) T

= qd(s)T —|—qu m(s)T

= Y a ()T =5(T). .
m=0
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A constructive proof of the Helton-Vinnikov Theorem

Claim 2

For any s € R it holds C(s)"H(s) = H(s)C(s).

Recall, for any s € R, H(s) = V(s)" V(s) = V(s)"V(s) is the product of two
matrices of Vandermonde type with entries being the zeros of the univariate
polynomial §s, which were all proven to be real and assumed to be distinct.
Since C(s) is the companion matrix of §s we thus have

V(s)C(s)V(s)_1 = diag(Ai(s),.-.,Ad(s)) = diag(Ai(s), - .,Ad(s))H

(V(s)C(s)V(s) )" = (V7H(s)"C(s)" V(s)"
= (V(s)") ' C(9)"V(s)".

Now multiplying V/(s)" from the left and V/(s) from the right yields

H(s)C(s) = V(s)"V(s)C(s) = C(s)"V(s)"V(s) = C(s)"H(s). B
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A constructive proof of the Helton-Vinnikov Theorem

Claim 3

M is a matrix of polynomials over C of degree at most 1.

Clearly, poles can only arise in roots of @ € RY*?[S].
Hence, let a € C be a root of Q and with that necessarily Im(a) < 0 (see [1]).
We thus have

C(a)"(Q"(3)Q(a) = C(3)"H(a) = C(a)"H(a) = H(a)C(a)
= (Q"(3)Q(a)C(a)

respectively

(Q"(@)'C(@"(Q"(a)) = M(a),
as Q(3) is invertible, due to Im(3@) > 0 (see [1]). So M(a) is the product of
three invertible matrices i.e. M(a) is regular. Hence, a was proven to not be a

pole of M.
Altogether, M € C9*?[S] is a matrix of polynomials.
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A constructive proof of the Helton-Vinnikov Theorem

M(S) is a matrix of polynomials over C of degree at most 1.

Let k denote the degree of the matrix of polynomials M. Hence there exists
some B, ..., Bi € C?*? such that

—M(S) : Z B:S'.
Observe for any s € R
k
det(Tly + Y Bis") = det(Tly — M(s)) = Z qa—m(s)T
j=0

Therefore, for any j € {0,...,d — 1} the sum of all principal j X j minors of
—M(s) gives exactly p;(s) and so the coefficient for 5% in p; is given by the
sum of all j x j principal minors of Bk.

Furthermore, By # Ogdxa and M is Hermitian. So Bx must be Hermitian as
well. Hence, not for all j € {1,...,d — 1} the sum of all j X j principal minors
of Bk can be zero, as else Bx would be nilpotent. 4
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A constructive proof of the Helton-Vinnikov Theorem

M(S) is a matrix of polynomials over C of degree at most 1.

So for some j € {1,...,d — 1} the coefficient of 5% cannot vanish and thence
kj < deg(p;j) on the one hand.
Recalling, deg(p;) < j on the other hand, yields k < 1. &
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A constructive proof of the Helton-Vinnikov Theorem

The density argument

The sequence ( Yz, Z:)es0 C (C9*9)? converges to a tuple (Y, Z) € (C¥*9)2.
Set

p = min{|t| | q(t,0)q(0, t) = 0} > 0.
Since, g(0,0) = 1, we have ¢(0,0)g(0,0) =1 and so x > 0 necessarily.

Moreover,
p = min{|t| | q(t,0)q(0, t) = 0} = min({|¢| | q(t,0) = 0} U {[t[ [ q(0, t) = 0}).
So for £ > 0 sufficiently small we have Ay, Az €] — %, % .

Since Y: and Z. are Hermitian by choice, their spectral radii coincide with their
spectral norms i.e. the norms || Yz||2 of Y: and ||Z:||> of Z. are bounded by %
for sufficiently small €.

Therefore, the sequence (Yz, Z:)es0 € (C?*9)? converges to a tuple
(Y,Z)e (C™)2. m
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A constructive proof of the Helton-Vinnikov Theorem

Homogeneity

Let n be a positive integer.
Q Let g € R[xi, ..., xa] be of degree d € Z>q. Then

qH(Xo,Xl,...,Xn) =x{p (—,...,—) € R[xo, - . -, Xn]
X0 X0

is called the homogenization of q.
Q Let p € R[xo, ..., xs] be a homogeneous polynomial of degree d € Z>o,
then
PP (xt, ..y xa) i= p(L, X1, .., xa) € R[x1, ..., xn]

is called the dehomogenization of p.
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A constructive proof of the Helton-Vinnikov Theorem

Homogeneity

Q For any q € R[x, ..., x| of degree d € Z>o we have (g"? = p.

Q@ The degree of the dehomogenization p® of any homogeneous polynomial p
of degree d € Z>¢ can never outreach the degree of p
i.e. deg(p®) < d := deg(p).

Q Vice versa, for any polynomial q of degree d, the homogenization g of q
is exactly of degree d i.e. deg(q") = d := deg(q).
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A constructive proof of the Helton-Vinnikov Theorem

The Lax Conjecture fails in more than 3 variables

Let n € Z~3 be a positive integer greater than 3. Set

p(xy ..., Xn =X — ZX,GR[Xl,..., ll

Clearly, p is homogeneous of degree d := 2. Set e := (1, 0,...,0) € R", then
——
(n—1)many

obviously p(e) = 1.
For v :=(vi,...,va) € R" consider
m(S) = p(v—Se)=p((vi—S,va...,vn)) = (w1 — S)* — Z v
i=2
= S?-_2uS+vi— Z v} € R[S].

i=2
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A constructive proof of the Helton-Vinnikov Theorem

The Lax Conjecture fails in more than 3 variables

Proof.

Clearly m has a non negative discriminant

A

(—2v1)2—4*(v12— ) v,-2):4Z

Let Xo := (X{?)ije1,nps- - Xn = (X{)ijeq1,....np € C™*" be Hermitian

matrices. Consider,

n
n(x2,...,xn) = ZX,'(X:l(j))j:1,...,n-
i=2

Clearly, we can find v2, ..., v, € R not all equal 0 such that n(vs,...,v,) =
Fix such (v2,...,v,) € R™* and consider v := (0, v, ...,

vn) € R".




A constructive proof of the Helton-Vinnikov Theorem

The Lax Conjecture fails in more than 3 variables

Then on the one hand

p(v) :=p(0,va,...,vn) ZOZ—ZV,-Z :—ZV,-Z <0,
i=2 i=2

——
>0

because at least for one i € {2,...,n} we have v; # 0. But on the other hand

det(0 %+ > viXi) =det(d> _viXj) =0,
i=2

i=2
as the first row of > viX; equals n(v,. .., v,) = Orn by the choice of v, ..., v,.
i=2
n
Therefore, clearly p(xi, ..., xn) # det(xil + > x.X;). R
=)
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