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Hyperbolicity

Definition

Let n be a positive integer. A homogenous polynomial p ∈ R[x1, . . . , xn] is
called hyperbolic with respect to e ∈ R

n, if p(e) 6= 0 and for any v ∈ R
n the

univariate polynomial g(S) := p(v − Se) ∈ R[S ] only has real roots.

Example

Consider p(x , y , z) := x2 − y2 − z2 ∈ R[x , y , z]. Then p is hyperbolic with
respect to e := (1, 0, 0) ∈ R

3.
Indeed, p(e) := p(1, 0, 0) = 1 6= 0. For any v := (v1, v2, v3) ∈ R

3 we have

g(S) := p(v − Se) := (v1 − S)2 − v
2
2 − v

2
3 = v

2
1 − 2v1S + S

2 − v
2
2 − v

2
3

has a non negative discriminant

∆ = (−2v1)
2 − 4(v2

1 − v
2
2 − v

2
3 ) = 4 (v2

2 + v
2
3 )

︸ ︷︷ ︸

≥0

≥ 0.

So all roots of g are real. �
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The Lax Conjecture

The Lax Conjecture was posed in 1958 by P. D. Lax in [7].

Lax Conjecture

Let d be a positive integer and p ∈ R[x , y , z], then p is hyperbolic of degree d

with respect to e := (1, 0, 0) ∈ R
3 such that p(e) = 1 if and only if there exist

two Hermitian complex matrices Y ,Z ∈ C
d×d such that

p(x , y , z) = det(xId + yY + zZ ).

The trivial direction of the Lax Conjecture

Let p ∈ R[x , y , z] be of the form

p(x , y , z) = det(xId + yY + zZ )

with two complex Hermitian matrices Y ,Z ∈ C
d×d . Then p is hyperbolic of

degree d with respect to e := (1, 0, 0) ∈ R
3 and p(e) = 1.
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The Lax Conjecture

Proof.

Indeed, p(e) := p(1, 0, 0) = det(1 ∗ Id + 0 ∗ Y + 0 ∗ Z ) = det(Id) = 1.
Moreover, for v := (v1, v2, v3) ∈ R

3 consider the univariate polynomial
g(S) := p(v − Se) ∈ R[S ]. Let s ∈ C be a root of g i.e.

0 = g(s) := p(v − se) = det((v1 − s)Id + v2Y + v3Z )

= det((v1Id + v2Y + v3Z )− sId ) = χv1Id+v2Y+v3Z (s).

Clearly, v1Id + v2Y + v3Z is a Hermitian matrix and so any Eigenvalue of
v1Id + v2Y + v3Z is real. Thence, s ∈ R. �
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Real zero polynomials

Definition

A bivariate polynomial q ∈ R[y , z] is called a real zero polynomial, if for any
w := (w2,w3) ∈ R

2 the univariate polynomial

f (T ) := q(Tw2,Tw3) ∈ R[T ]

only has real roots.

Example

Consider q(y , z) := 1− y2 − z2 ∈ R[y , z]. Let w := (w2,w3) ∈ R
2 and observe

that

f (T ) := q(Tw2Tw3) := 1− T
2
w

2
2 − T

2
w

2
3 = T

2(−w
2
2 − w

2
3 ) + 1,

which has a non negative discriminant

∆ = 4(w2
2 + w

2
3 ) ≥ 0.

So f only has real roots. �
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Motivation of real zero polynomials

1 If p ∈ R[x , y , z] is hyperbolic of degree d ∈ Z≥0 with respect to
e := (1, 0, 0) ∈ R

3, then we can reduce p to a bivariate polynomial
q ∈ R[y , z] by setting

q(y , z) := p
D(y , z) := p(1, y , z).

2 Since p is hyperbolic of degree d ∈ Z≥0 with respect to e := (1, 0, 0) ∈ R
3

we know for any v ∈ R
3 the univariate polynomial

g(S) := p(v − Se) ∈ R[S ] only has real roots. Under dehomogenization
this translates as follows:
For any w := (w2,w3) ∈ R

2.

f (T ) := q(Tw2,Tw3) := p(1,Tw2,Tw3)

= p(T (0,w2,w3) + (1, 0, 0))

= p(T ((0,w2,w3) +
1

T
(1, 0, 0))

= T
d
p((0,w2,w3)
︸ ︷︷ ︸

”=v”

+
1

T
︸︷︷︸

”=−S”

(1, 0, 0)) ∈ R[T ]

only has real roots.
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The two-sided medal

Lemma

1 Let p ∈ R[x , y , z] be a hyperbolic polynomial with respect to

e := (1, 0, 0) ∈ R
3 such that p(e) = 1. Then the bivariate polynomial

q(y , z) := p
D(y , z) := p(1, y , z) ∈ R[y , z]

is a real zero polynomial of degree no more than the degree of p and

q(0, 0) = 1.

2 Vice versa, let q ∈ R[y , z] be a real zero polynomial of degree d ∈ Z≥0

such that q(0, 0) = 1. Then the homogeneous polynomial

p(x , y , z) := q
H(x , y , z) := x

d
q
(
y

x
,
z

x

)

∈ R[x , y , z]

is hyperbolic with respect to e := (1, 0, 0) ∈ R
3 and p(e) = 1. Moreover,

deg(p) = deg(q) =: d.
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The two-sided medal

Example

Recall
p(x , y , z) := x

2 − y
2 − z

2 ∈ R[x , y , z]

is hyperbolic with respect to e := (1, 0, 0) ∈ R
3 and

q(y , z) := 1− y
2 − z

2 ∈ R[y , z]

is a real zero polynomial. Obviously

p
D(y , z) := p(1, y , z) := 1− y

2 − z
2 =: q(y , z)

and
q
H(x , y , z) := x

2
q
(y

x
,
z

x

)

:= x
2 − y

2 − z
2 =: p(x , y , z).

So they are the homogeneous respectively dehomogeneous version of one
another.
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The Helton-Vinnikov Theorem

Theorem (Helton-Vinnikov)

Let d be a positive integer, then a bivariate polynomial q ∈ R[y , z] of degree d

is a real zero polynomial with q(0, 0) = 1 if and only if there exist two

Hermitian complex matrices Y ,Z ∈ C
d×d such that

q(y , z) = det(Id + yY + zZ ).

This was first proven in [4, 2002, J. W. Helton and V. Vinnikov].

Theorem

Lax Conjecture ⇔ Helton-Vinnikov Theorem

This was observed in [8, 2005, A. S. Lewis et al.].

The trivial direction of the Helton-Vinnikov

Let d be a positive integer, q ∈ R[y , z] of degree d such that there exist two
Hermitian complex matrices Y ,Z ∈ C

d×d with q(y , z) = det(Id + yY + zZ ),
then q is a real zero polynomial with q(0, 0) = 1.
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The Helton-Vinnikov Theorem

Proof.

Clearly, q(0, 0) = det(Id + 0 ∗ Y + 0 ∗ Z ) = det(Id ) = 1.
Fix w := (w2,w3) ∈ R

2 and let t ∈ C\{0} be a root of
f (T ) := q(Tw2,Tw3) ∈ R[T ]. Then

0 = f (t) := q(tw2, tw3) = det(Id + t(w2Y ) + t(w3Z ))

= det(Id + t(w2Y + w3Z ))

= det

(

t

(
1

t
Id + (w2Y + w3Z )

))

= t
d det

(
1

t
Id + (w2Y + w3Z )

)

= t
d

︸︷︷︸

6=0

χw2Y+w3Z

(

−1

t

)

.

Hence, we have − 1
t
∈ R\{0}, since w2Y + w3Z is Hermitian.

Therefore, t ∈ R. �
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The Proof

We will now give a constructive proof of the Helton-Vinnikov Theorem
following [3, 2016, Grinshpan et al.].

The non-trivial direction.

Clearly, q is of the form

q(y , z) =

d∑

i=0

d−i∑

j=0

aijy
i
z
j
,

where aij ∈ R. For any s ∈ R fix

q̃s(T ) := T
d
q

(
1

T
,
s

T

)

∈ R[T ].

Note

y
d
q̃ z

y

(
1

y

)

= q(y , z).

Example

Let us consider

q(y , z) := 1− y
2 − z

2 ∈ R[y , z].

For any s ∈ R set

q̃s(T ) := T
2
q

(
1

T
,
s

T

)

= T
2

(

1− 1

T 2
− s2

T 2

)

= T
2 − 1− s

2
.
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The Proof

The non-trivial direction.

With the given polynomial repre-
sentation of q observe

q̃s(T ) =
d∑

m=0

qd−m(s)T
m

for some qd−m ∈ R[S ]≤d−m and

qd−d(s) = q(0, 0) = 1.

Therefore, q̃s is a monic univari-
ate polynomial of degree d .

Example

As for any s ∈ R we have

q̃s(T ) := T
2
q

(
1

T
,
s

T

)

= T
2

(

1− 1

T 2
− s2

T 2

)

= T
2 − 1− s

2
,

with

q0 :≡ 1 ∈ R[S ]≤0

q1 :≡ 0 ∈ R[S ]≤1

q2(S) := −1− S
2 ∈ R[S ]≤2.

Sarah-Tanja Hess A constructive proof of the Helton-Vinnikov Theorem



The Lax Conjecture: The homogeneous case
Homogenization: A two-sided medal

The Helton-Vinnikov Theorem: The dehomogeneous case
A constructive proof of the Helton-Vinnikov Theorem

The Proof

The non-trivial direction.

Let a ∈ C\{0} be a root of q̃s .
Hence,

0 = q̃s(a) := a
d ∗ q

(
1

a
,
s

a

)

= a
d

︸︷︷︸

6=0

∗q
(
1

a
∗ 1, 1

a
∗ s
)

gives 1
a
∈ R respectively a ∈ R,

due to q being a real zero poly-
nomial.

Let us for now assume that
any root of q̃s is simple. De-
note these distinct roots of q̃s by
λ1(s), . . . , λd(s) ∈ R.

Example

Furthermore, we have to deter-
mine the roots of q̃s . Clearly, for
any a ∈ C we have

0 = q̃s(a) = a
2 − 1− s

2

if and only if

a
2 = 1 + s

2
> 0.

So immediately a ∈ R and we set

λ1(s) :=
√

1 + s2 ∈ R

and

λ2(s) := −
√

1 + s2 ∈ R.

Sarah-Tanja Hess A constructive proof of the Helton-Vinnikov Theorem



The Lax Conjecture: The homogeneous case
Homogenization: A two-sided medal

The Helton-Vinnikov Theorem: The dehomogeneous case
A constructive proof of the Helton-Vinnikov Theorem

The Proof

The non-trivial direction.

Let us now consider the compan-
ion matrix C(s) of q̃s given by











0 · · · · · · 0 −qd(s)
1 0 · · · 0 −qd−1(s)

0
. . .

. . .
...

...
...

. . .
. . . 0 −q2(s)

0 · · · 0 1 −q1(s)











.

Claim 1 For any positive integer d
and any s ∈ R we have

q̃s(T ) = det(TId − C(s)).

Example

We can easily give the companion
matrix of q̃s namely

C(s) :=

(
0 1 + s2

1 0

)

and clearly

q̃s(T ) = T
2 − 1− s

2

= det

(
T −1− s2

−1 T

)

= det(TI2 − C(s)).
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The Proof

The non-trivial direction.

For j ∈ {0, . . . , 2(d − 1)} set

sj (S) :=
d∑

k=1

λk(S)
j
.

Clearly, for any
j ∈ {0, . . . , 2(d − 1)} we have
deg(sj ) ≤ j .
For any s ∈ R the Hermite matrix
of q̃s is given by

H(s) := (si+j (s))i,j=0,...,d−1.

Clearly, H ∈ R
d×d [S ] is a matrix

of polynomials of degree 2(d −1)

Example

For the newton sums we get

s0 :≡ 2 ∈ R[S ]≤0

s1 :≡ 0 ∈ R[S ]≤1

s2(S) := 2(1 + S
2) ∈ R[S ]≤2.

and so

H(S) :=

(
s0(S) s1(S)
s1(S) s2(S)

)

=

(
2 0
0 2(1 + S2)

)

.
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The Proof

The non-trivial direction.

Let
V (S) := (λi+1(S)

j)i,j=0,...,d−1.

Obviously

V (S)TV (S) =

(
d−1∑

k=0

λk+1(S)
i
λk+1(S)

j

)

i,j∈{0,...,d−1}

=

(
d∑

k=1

λk(S)
i+j

)

i,j∈{0,...,d−1}

= (si+j (S))i,j∈{0,...,d−1} = H(S).
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The Proof

The non-trivial direction.

For any s ∈ R the matrix H(s) is
Hermitian.
Indeed,

H(s)H = (V (s)TV (s))H

= V (s)H(V (s)T )H

=
V (s)∈Rd×d

V (s)T (V (s)T )T

= V (s)TV (s)

= H(s).

Example

Recall for any s ∈ R

H(s) :=

(
2 0
0 2(1 + s2)

)

.
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The Proof

The non-trivial direction.

Furthermore, for any s ∈ R the
matrix H(s) is positive definite.
Indeed, for v ∈ C

d\{0} observe

v
H
H(s)v = v

H(V (s)TV (s))v

= v
H(V (s)HV (s))v

= (V (s)v)H(V (s)v)

> 0,

where we exploit all roots of q̃s
being distinct.

Example

For v := (v1, v2) ∈ C
2\{0} and

s ∈ R we have

v
H
H(s)v = 2|v1|2 + 2 (1 + s

2)
︸ ︷︷ ︸

6=0

|v2|2

> 0.
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The Proof

The non-trivial direction.

Therefore, there exists some ma-
trix of polynomials
Q ∈ C

d×d [S ] such that for any
s ∈ R

H(s) = Q(s)HQ(s),

where Q is a matrix of polynomial
of degree d−1 and Q(s) is invert-
ible for any s ∈ C with Im(s) ≥ 0
(see [10] and [1]).

Example

An appropriate factorization of H
is given by Q with

Q(S) :=

( √
2 0

0
√
2(1− iS)

)

∈ C
2×2[S ].
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The Proof

The non-trivial direction.

For any s ∈ R set

M(s) := Q(s)C(s)Q(s)−1
.

Observe

det(TId −M(s))

:=det(TId − (Q(s)C(s)Q(s)−1))

= det(TId − C(s))

= q̃s(T ).

Claim 2 For any s ∈ R it holds

C(s)HH(s) = H(s)C(s).

Example

Now for any s ∈ R we set

M(s) := Q(s)C(s)Q(s)−1

=

(
0 1 + is

1− is 0

)

.

Moreover, for any s ∈ R

C(s)HH(s)

=

(
0 2(1 + s2)

2(1 + s2) 0

)

= H(s)C(s).
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The Proof

The non-trivial direction.

Now for any s ∈ R observe

M(s)H = (Q(s)−1)HC(s)HQ(s)H

∗Q(s)Q(s)−1

︸ ︷︷ ︸

=Id

= (Q(s)−1)H(C(s)HH(s))

∗Q(s)−1

= Q(s)C(s)Q(s)−1

= M(s)

i.e. M(s) is Hermitian.
Claim 3 M is a matrix of poly-
nomials over C of degree at most
1.

Example

Recall, for any s ∈ R

M(s) :=

(
0 1 + is

1− is 0

)

.

and so M(s) is clearly Hermitian.
Moreover, M is clearly a matrix
of polynomials over C of degree
1 when considered in the variable
S .

Sarah-Tanja Hess A constructive proof of the Helton-Vinnikov Theorem



The Lax Conjecture: The homogeneous case
Homogenization: A two-sided medal

The Helton-Vinnikov Theorem: The dehomogeneous case
A constructive proof of the Helton-Vinnikov Theorem

The Proof

The non-trivial direction.

Therefore, there exist two Hermi-
tian matrices Y ,Z ∈ C

d×d such
that

M(S) = −Y − ZS .

Thus for any s ∈ R

q̃s(T ) = det(TId −M(s))

= det(TId + Y + Zs).

Example

Moreover,

M(S) :=

(
0 1 + iS

1− iS 0

)

= −
(

0 −1
−1 0

)

︸ ︷︷ ︸

=:Y

−
(

0 −i

i 0

)

︸ ︷︷ ︸

=:Z

S

= −Y − ZS .

Obviously, Y ,Z ∈ C
2×2 are Her-

mitian matrices.
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The Proof

The non-trivial direction.

Altogether

q(y , z) = y
d
q̃ z

y

(
1

y

)

= y
d det

(
1

y
Id + Y +

z

y
Z

)

= det

(

y

(
1

y
Id + Y +

z

y
Z

))

= det(Id + yY + zZ ).

Example

Obviously,

det(I2 + yY + zZ )

= det

(
1 −y − iz

−y + iz 1

)

= 1− (−y + iz)(−y − iz)

= 1− ((−y)2 + z
2)

= 1− y
2 − z

2 =: q(y , z).

Altogether, we found an appro-
priate representation of q via Her-
mitian matrices.
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The Proof

The non-trivial direction.

Claim 4 For any ε > 0 there exists a real zero polynomial qε ∈ R[y , z] of degree
d with qε(0, 0) = 1 such that any coefficient of qε is within an Euclidean
distance of ε from the corresponding coefficient of q and for any s ∈ R

q̃ε,s(T ) := T
d
qε

(
1

T
,
s

T

)

only has simple real roots (see [9]).

Hence, in the general case of q ∈ R[y , z], for any ε > 0 we can fix such
corresponding qε with two Hermitian matrices Yε,Zε ∈ C

d×d such that
qε(y , z) = det(Id + yYε + zZε).

Clearly, (qε)ε>0 converges to q as ε tends to zero and the sequence
(Yε,Zε)ε>0 ⊆ (Cd×d)2 converges to a tuple (Y ,Z ) ∈ (Cd×d)2 of Hermitian
matrices.
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The Proof

The non-trivial direction.

Altogether,

q(y , z) = lim
εց0

qε(y , z) = lim
εց0

det(Id + yYε + zZε) = det(Id + yY + zZ )

and so q has an appropriate representation via Hermitian matrices as claimed.
�
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Outlook

1 The Lax Conjecture fails in more than 3 variables (see [8]).

2 In more than 3 variables, there exists a generalized counterpart to the Lax
Conjecture, called the generalized Lax Conjecture, and it is still open up
to today.

3 In my master thesis I relate the Lax Conjecture to the (multiplicative)
Horn’s Problem.
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- Questions? -
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The two-sided medal

⇒.

It is clear that q cannot be of a degree larger than the degree d ∈ Z≥0 of p.
Moreover,

q(0, 0) := p(1, 0, 0) = p(e) = 1.

Fix w := (w2,w3) ∈ R
2 and consider the univariate polynomial

f (T ) := q(Tw2,Tw3) ∈ R[T ]. Let t ∈ C\{0} be a root of f . Then

0 = f (t) := q(tw2, tw3) := p(1, tw2, tw3) = p
( t

t
, tw2, tw3

)

= t
d
p

(
1

t
,w2,w3

)

.

Since p is hyperbolic with respect to e := (1, 0, 0) ∈ R
3, we have − 1

t
∈ R\{0}

respectively t ∈ R\{0}. �
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The two-sided medal

⇐.

Clearly p is of the same degree d ∈ Z≥0 as q and

p(e) = p(1, 0, 0) := 1dq

(
0

1
,
0

1

)

= 1dq(0, 0) = 1d ∗ 1 = 1.

Fix v := (v1, v2, v3) ∈ R
3 and consider g(S) := p(v − Se) ∈ R[S ]. Let

s ∈ C\{v1} be a root of g i.e.

0 = g(s) := p(v − se) := (v1 − s
︸ ︷︷ ︸

6=0

)dq

(
v2

v1 − s
,

v3

v1 − s

)

.

So we have 1
w1−s

∈ R, since q is a real zero polynomial. Therefore, s ∈ R. �

The two-sided medal
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The equivalence

Lax Conjecture ⇒ Helton-Vinnikov theorem.

Set
p(x , y , z) := q

H(x , y , z) := x
d
q
(y

x
,
z

x

)

∈ R[x , y , z]

and so p is hyperbolic with respect to e := (1, 0, 0) and p(e) = 1.
Moreover, deg(p) = deg(q). Thus by the Lax Conjecture there exist two
Hermitian complex matrices Y ,Z ∈ C

d×d such that

p(x , y , z) = det(xId + yY + zZ ).

So

q(y , z) = (qH)D(y , z) =: pD(y , z) := p(1, y , z) = det(Id + yY + zZ )

i.e. there exist two Hermitian complex matrices Y ,Z ∈ C
d×d such that

q(x , y) = det(Id + yY + zZ ).

The other direction is the trivial direction of the Helton-Vinnikov Theorem. �
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The equivalence

Helton-Vinnikov Theorem ⇒ Lax Conjecture.

Set q(y , z) := pD(y , z) := p(1, y , z) ∈ R[y , z]. So q is a real zero polynomial
with q(0, 0) = 1 and set d := deg(q) ∈ Z≥0.
Hence, by the Helton-Vinnikov Theorem there exist two Hermitian complex
matrices Y ,Z ∈ C

d×d such that

q(y , z) = det(Id + yY + zZ ).

W.l.o.g we can assume d = deg(p) by completing Y ,Z to matrices of
dimension deg(p) via trivial block matrices i.e. we could consider
diag(Y , 0

Cd−deg(p))×(d−deg(p))) and diag(Z , 0
Cd−deg(p))×(d−deg(p))) instead of Y and

Z . Then

p(x , y , z) = (pD)H(x , y , z) := q
H(x , y , z) := x

d
q
(y

x
,
z

x

)

= x
d det

(

Id +
y

x
Y +

z

x
Z
)

= det
(

x
(

Id +
y

x
Y +

z

x
Z
))

= det(xId + yY + zZ ).

The other direction is the trivial direction of the Lax Conjecture. �
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Claim 1

For any positive integer d and any s ∈ R we have q̃s(T ) = det(TId − C(s)).

We will prove this by induction on d .
Fix s ∈ R and clearly the base case holds.
Now assume that for any t < d we have det(TIt − C(s)) = q̃s(T ). For d , using
Laplace formula for determinants on the first row of TId − C(s), we conclude

det(TId − C(s)) = det















T 0 · · · · · · 0 qd(s)
−1 T 0 · · · 0 qd−1(s)

0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

...
...

. . .
. . . T q2(s)

0 · · · · · · 0 −1 T + q1(s)
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Claim 1

For any positive integer d and any s ∈ R we have q̃s(T ) = det(TId − C(s)).

= T det















T 0 · · · 0 qd−1(s)

−1
. . .

. . .
...

...

0
. . .

. . . 0
...

...
. . .

. . . T q2(s)
0 · · · 0 −1 T + q1(s)















+ (−1)d+1
qd(s) det













−1 T 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . T

0 · · · · · · 0 −1













.
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For any positive integer d and any s ∈ R we have q̃s(T ) = det(TId − C(s)).

According to the hypothesis of induction we have

det















T 0 · · · 0 qd−1(s)

−1
. . .

. . .
...

...

0
. . .

. . . 0
...

...
. . .

. . . T q2(s)
0 · · · 0 −1 T + q1(s)















=

d−1∑

m=0

qd−1−m(s)T
m

and

det













−1 T 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . T

0 · · · · · · 0 −1













= (−1)d−1
.
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For any positive integer d and any s ∈ R we have q̃s(T ) = det(TId − C(s)).

Putting both together we have

det(TId − C(s)) = T ∗
d−1∑

m=0

qd−1−m(s)T
m

︸ ︷︷ ︸

=
d−1∑

m=0
qd−1−m(s)Tm+1

+ (−1)d+1(−1)d−1

︸ ︷︷ ︸

=(−1)d+1+d−1=(−1)2d=1

∗qd(s)

= qd(z) +

d−1∑

m=0

qd−1−m(s)T
m+1

= qd(s)T
0 +

d∑

m=1

qd−m(s)T
m

=

d∑

m=0

qd−m(s)T
m = q̃s(T ). �

The Proof
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Claim 2

For any s ∈ R it holds C(s)HH(s) = H(s)C(s).

Recall, for any s ∈ R, H(s) = V (s)TV (s) = V (s)HV (s) is the product of two
matrices of Vandermonde type with entries being the zeros of the univariate
polynomial q̃s , which were all proven to be real and assumed to be distinct.
Since C(s) is the companion matrix of q̃s we thus have

V (s)C(s)V (s)−1 = diag(λ1(s), . . . , λd(s)) = diag(λ1(s), . . . , λd(s))
H

= (V (s)C(s)V (s)−1)H = (V−1(s))HC(s)HV (s)H

= (V (s)H)−1
C(s)HV (s)H .

Now multiplying V (s)H from the left and V (s) from the right yields

H(s)C(s) = V (s)HV (s)C(s) = C(s)HV (s)HV (s) = C(s)HH(s). �

The Proof
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Claim 3

M is a matrix of polynomials over C of degree at most 1.

Clearly, poles can only arise in roots of Q ∈ R
d×d [S ].

Hence, let a ∈ C be a root of Q and with that necessarily Im(a) < 0 (see [1]).
We thus have

C(a)T (QH(a))Q(a) = C(a)TH(a) = C(a)HH(a) = H(a)C(a)

= (QH(a))Q(a)C(a)

respectively
(QH(a))−1

C(a)T (QH(a)) = M(a),

as Q(a) is invertible, due to Im(a) > 0 (see [1]). So M(a) is the product of
three invertible matrices i.e. M(a) is regular. Hence, a was proven to not be a
pole of M.
Altogether, M ∈ C

d×d [S ] is a matrix of polynomials.
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M(S) is a matrix of polynomials over C of degree at most 1.

Let k denote the degree of the matrix of polynomials M. Hence there exists
some B1, . . . ,Bk ∈ C

d×d such that

−M(S) :=
k∑

i=0

BiS
i
.

Observe for any s ∈ R

det(TId +

k∑

j=0

Bks
k) = det(TId −M(s)) = q̃s(T ) =

d∑

m=0

qd−m(s)T
m
.

Therefore, for any j ∈ {0, . . . , d − 1} the sum of all principal j × j minors of
−M(s) gives exactly pj(s) and so the coefficient for skj in pj is given by the
sum of all j × j principal minors of Bk .

Furthermore, Bk 6= 0Cd×d and M is Hermitian. So Bk must be Hermitian as
well. Hence, not for all j ∈ {1, . . . , d − 1} the sum of all j × j principal minors
of Bk can be zero, as else Bk would be nilpotent. �
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M(S) is a matrix of polynomials over C of degree at most 1.

So for some j ∈ {1, . . . , d − 1} the coefficient of skj cannot vanish and thence
kj ≤ deg(pj) on the one hand.
Recalling, deg(pj ) ≤ j on the other hand, yields k ≤ 1. �

The Proof
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The density argument

The sequence (Yε,Zε)ε>0 ⊆ (Cd×d)2 converges to a tuple (Y ,Z ) ∈ (Cd×d)2.

Set
µ := min{|t| | q(t, 0)q(0, t) = 0} ≥ 0.

Since, q(0, 0) = 1, we have q(0, 0)q(0, 0) = 1 and so µ > 0 necessarily.
Moreover,

µ := min{|t| | q(t, 0)q(0, t) = 0} = min({|t| | q(t, 0) = 0} ∪ {|t| | q(0, t) = 0}).

So for ε > 0 sufficiently small we have λY , λZ ∈]− 2
µ
, 2
µ
[.

Since Yε and Zε are Hermitian by choice, their spectral radii coincide with their
spectral norms i.e. the norms ||Yε||2 of Yε and ||Zε||2 of Zε are bounded by 2

µ

for sufficiently small ε.

Therefore, the sequence (Yε,Zε)ε>0 ⊆ (Cd×d)2 converges to a tuple
(Y ,Z ) ∈ (Cd×d)2. �

The Proof
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Homogeneity

Definition

Let n be a positive integer.

1 Let q ∈ R[x1, . . . , xn] be of degree d ∈ Z≥0. Then

q
H(x0, x1, . . . , xn) := x

d
0 p

(
x1

x0
, . . . ,

xn

x0

)

∈ R[x0, . . . , xn]

is called the homogenization of q.

2 Let p ∈ R[x0, . . . , xn] be a homogeneous polynomial of degree d ∈ Z≥0,
then

p
D(x1, . . . , xn) := p(1, x1, . . . , xn) ∈ R[x1, . . . , xn]

is called the dehomogenization of p.
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Homogeneity

Fact

1 For any q ∈ R[x1, . . . , xn] of degree d ∈ Z≥0 we have (qH)D = p.

2 The degree of the dehomogenization pD of any homogeneous polynomial p

of degree d ∈ Z≥0 can never outreach the degree of p

i.e. deg(pD) ≤ d := deg(p).

3 Vice versa, for any polynomial q of degree d, the homogenization qH of q

is exactly of degree d i.e. deg(qH) = d := deg(q).

Motivation of real zero polynomials
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The Lax Conjecture fails in more than 3 variables

Proof.

Let n ∈ Z>3 be a positive integer greater than 3. Set

p(x1, . . . , xn) := x
2
1 −

n∑

i=2

x
2
i ∈ R[x1, . . . , xn].

Clearly, p is homogeneous of degree d := 2. Set e := (1, 0, . . . , 0
︸ ︷︷ ︸

(n−1)many

) ∈ R
n, then

obviously p(e) = 1.

For v := (v1, . . . , vn) ∈ R
n consider

m(S) := p(v − Se) = p((v1 − S , v2, . . . , vn)) := (v1 − S)2 −
n∑

i=2

v
2
i

= S
2 − 2v1S + v

2
1 −

n∑

i=2

v
2
i ∈ R[S ].
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The Lax Conjecture fails in more than 3 variables

Proof.

Clearly m has a non negative discriminant

∆ := (−2v1)
2 − 4 ∗ (v2

1 −
n∑

i=2

v
2
i ) = 4

n∑

i=2

v
2
i ≥ 0.

Let X2 := (X
(2)
ij )i,j∈{1,...,n}, . . . ,Xn := (X

(n)
ij )i,j∈{1,...,n} ∈ C

n×n be Hermitian
matrices. Consider,

n(x2, . . . , xn) :=
n∑

i=2

xi (X
(i)
1j )j=1,...,n.

Clearly, we can find v2, . . . , vn ∈ R not all equal 0 such that n(v2, . . . , vn) = 0Rn .
Fix such (v2, . . . , vn) ∈ R

n−1 and consider v := (0, v2, . . . , vn) ∈ R
n.
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The Lax Conjecture fails in more than 3 variables

Proof.

Then on the one hand

p(v) := p(0, v2, . . . , vn) = 02 −
n∑

i=2

v
2
i = −

n∑

i=2

v
2
i

︸ ︷︷ ︸

>0

< 0,

because at least for one i ∈ {2, . . . , n} we have vi 6= 0. But on the other hand

det(0 ∗ In +
n∑

i=2

viXi ) = det(

n∑

i=2

viXi ) = 0,

as the first row of
n∑

i=2

viXi equals n(v2, . . . , vn) = 0Rn by the choice of v2, . . . , vn.

Therefore, clearly p(x1, . . . , xn) 6= det(x1In +
n∑

i=2

xiXi ). �

Outlook
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