A constructive proof of the Helton-Vinnikov THEOREM

Sarah-Tanja Hess
University of Konstanz
July 10, 2020

Outline

(1) The Lax Conjecture: The homogeneous case
(2) Homogenization: A two-sided medal
(3) The Helton-Vinnikov Theorem: The dehomogeneous case

44 A constructive proof of the Helton-Vinnikov Theorem

Hyperbolicity

Definition

Let n be a positive integer. A homogenous polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called hyperbolic with respect to $e \in \mathbb{R}^{n}$, if $p(e) \neq 0$ and for any $v \in \mathbb{R}^{n}$ the univariate polynomial $g(S):=p(v-S e) \in \mathbb{R}[S]$ only has real roots.

Example

Consider $p(x, y, z):=x^{2}-y^{2}-z^{2} \in \mathbb{R}[x, y, z]$. Then p is hyperbolic with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$.
Indeed, $p(e):=p(1,0,0)=1 \neq 0$. For any $v:=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ we have

$$
g(S):=p(v-S e):=\left(v_{1}-S\right)^{2}-v_{2}^{2}-v_{3}^{2}=v_{1}^{2}-2 v_{1} S+S^{2}-v_{2}^{2}-v_{3}^{2}
$$

has a non negative discriminant

$$
\Delta=\left(-2 v_{1}\right)^{2}-4\left(v_{1}^{2}-v_{2}^{2}-v_{3}^{2}\right)=4 \underbrace{\left(v_{2}^{2}+v_{3}^{2}\right)}_{\geq 0} \geq 0 .
$$

So all roots of g are real.

The Lax Conjecture

The Lax Conjecture was posed in 1958 by P. D. Lax in [7].

Lax Conjecture

Let d be a positive integer and $p \in \mathbb{R}[x, y, z]$, then p is hyperbolic of degree d with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$ such that $p(e)=1$ if and only if there exist two Hermitian complex matrices $Y, Z \in \mathbb{C}^{d \times d}$ such that

$$
p(x, y, z)=\operatorname{det}\left(x I_{d}+y Y+z Z\right)
$$

The trivial direction of the Lax Conjecture

Let $p \in \mathbb{R}[x, y, z]$ be of the form

$$
p(x, y, z)=\operatorname{det}\left(x I_{d}+y Y+z Z\right)
$$

with two complex Hermitian matrices $Y, Z \in \mathbb{C}^{d \times d}$. Then p is hyperbolic of degree d with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$ and $p(e)=1$.

The Lax Conjecture

Proof.

Indeed, $p(e):=p(1,0,0)=\operatorname{det}\left(1 * I_{d}+0 * Y+0 * Z\right)=\operatorname{det}\left(I_{d}\right)=1$.
Moreover, for $v:=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ consider the univariate polynomial $g(S):=p(v-S e) \in \mathbb{R}[S]$. Let $s \in \mathbb{C}$ be a root of g i.e.

$$
\begin{aligned}
0 & =g(s):=p(v-s e)=\operatorname{det}\left(\left(v_{1}-s\right) I_{d}+v_{2} Y+v_{3} Z\right) \\
& =\operatorname{det}\left(\left(v_{1} l_{d}+v_{2} Y+v_{3} Z\right)-s l_{d}\right)=\chi_{v_{1} l_{d}+v_{2} Y+v_{3} Z}(s)
\end{aligned}
$$

Clearly, $v_{1} l_{d}+v_{2} Y+v_{3} Z$ is a Hermitian matrix and so any Eigenvalue of $v_{1} l_{d}+v_{2} Y+v_{3} Z$ is real. Thence, $s \in \mathbb{R}$.

Real zero polynomials

Definition

A bivariate polynomial $q \in \mathbb{R}[y, z]$ is called a real zero polynomial, if for any $w:=\left(w_{2}, w_{3}\right) \in \mathbb{R}^{2}$ the univariate polynomial

$$
f(T):=q\left(T w_{2}, T w_{3}\right) \in \mathbb{R}[T]
$$

only has real roots.

Example

Consider $q(y, z):=1-y^{2}-z^{2} \in \mathbb{R}[y, z]$. Let $w:=\left(w_{2}, w_{3}\right) \in \mathbb{R}^{2}$ and observe that

$$
f(T):=q\left(T w_{2} T w_{3}\right):=1-T^{2} w_{2}^{2}-T^{2} w_{3}^{2}=T^{2}\left(-w_{2}^{2}-w_{3}^{2}\right)+1,
$$

which has a non negative discriminant

$$
\Delta=4\left(w_{2}^{2}+w_{3}^{2}\right) \geq 0 .
$$

So f only has real roots.

Motivation of real zero polynomials

(1) If $p \in \mathbb{R}[x, y, z]$ is hyperbolic of degree $d \in \mathbb{Z}_{\geq 0}$ with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$, then we can reduce p to a bivariate polynomial $q \in \mathbb{R}[y, z]$ by setting

$$
q(y, z):=p^{D}(y, z):=p(1, y, z)
$$

(2) Since p is hyperbolic of degree $d \in \mathbb{Z}_{\geq 0}$ with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$ we know for any $v \in \mathbb{R}^{3}$ the univariate polynomial $g(S):=p(v-S e) \in \mathbb{R}[S]$ only has real roots. Under dehomogenization this translates as follows:
For any $w:=\left(w_{2}, w_{3}\right) \in \mathbb{R}^{2}$.

$$
\begin{aligned}
f(T) & :=q\left(T w_{2}, T w_{3}\right):=p\left(1, T w_{2}, T w_{3}\right) \\
& =p\left(T\left(0, w_{2}, w_{3}\right)+(1,0,0)\right) \\
& =p\left(T\left(\left(0, w_{2}, w_{3}\right)+\frac{1}{T}(1,0,0)\right)\right. \\
& =T^{d} p(\underbrace{\left(0, w_{2}, w_{3}\right.}_{"=v^{\prime \prime}}) \underbrace{+\frac{1}{T}}_{"=-S^{\prime \prime}}(1,0,0)) \in \mathbb{R}[T]
\end{aligned}
$$

only has real roots.

The two-sided medal

Lemma

(1) Let $p \in \mathbb{R}[x, y, z]$ be a hyperbolic polynomial with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$ such that $p(e)=1$. Then the bivariate polynomial

$$
q(y, z):=p^{D}(y, z):=p(1, y, z) \in \mathbb{R}[y, z]
$$

is a real zero polynomial of degree no more than the degree of p and $q(0,0)=1$.
(2) Vice versa, let $q \in \mathbb{R}[y, z]$ be a real zero polynomial of degree $d \in \mathbb{Z}_{\geq 0}$ such that $q(0,0)=1$. Then the homogeneous polynomial

$$
p(x, y, z):=q^{H}(x, y, z):=x^{d} q\left(\frac{y}{x}, \frac{z}{x}\right) \in \mathbb{R}[x, y, z]
$$

is hyperbolic with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$ and $p(e)=1$. Moreover, $\operatorname{deg}(p)=\operatorname{deg}(q)=: d$.

The two-sided medal

Example

Recall

$$
p(x, y, z):=x^{2}-y^{2}-z^{2} \in \mathbb{R}[x, y, z]
$$

is hyperbolic with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$ and

$$
q(y, z):=1-y^{2}-z^{2} \in \mathbb{R}[y, z]
$$

is a real zero polynomial. Obviously

$$
p^{D}(y, z):=p(1, y, z):=1-y^{2}-z^{2}=: q(y, z)
$$

and

$$
q^{H}(x, y, z):=x^{2} q\left(\frac{y}{x}, \frac{z}{x}\right):=x^{2}-y^{2}-z^{2}=: p(x, y, z)
$$

So they are the homogeneous respectively dehomogeneous version of one another.

The Helton-Vinnikov Theorem

Theorem (Helton-Vinnikov)

Let d be a positive integer, then a bivariate polynomial $q \in \mathbb{R}[y, z]$ of degree d is a real zero polynomial with $q(0,0)=1$ if and only if there exist two Hermitian complex matrices $Y, Z \in \mathbb{C}^{d \times d}$ such that

$$
q(y, z)=\operatorname{det}\left(I_{d}+y Y+z Z\right)
$$

This was first proven in [4, 2002, J. W. Helton and V. Vinnikov].

Theorem

Lax Conjecture \Leftrightarrow Helton-Vinnikov Theorem

This was observed in [8, 2005, A. S. Lewis et al.].

The trivial direction of the Helton-Vinnikov

Let d be a positive integer, $q \in \mathbb{R}[y, z]$ of degree d such that there exist two Hermitian complex matrices $Y, Z \in \mathbb{C}^{d \times d}$ with $q(y, z)=\operatorname{det}\left(I_{d}+y Y+z Z\right)$, then q is a real zero polynomial with $q(0,0)=1$.

The Helton-Vinnikov Theorem

Proof.

Clearly, $q(0,0)=\operatorname{det}\left(I_{d}+0 * Y+0 * Z\right)=\operatorname{det}\left(I_{d}\right)=1$.
Fix $w:=\left(w_{2}, w_{3}\right) \in \mathbb{R}^{2}$ and let $t \in \mathbb{C} \backslash\{0\}$ be a root of
$f(T):=q\left(T w_{2}, T w_{3}\right) \in \mathbb{R}[T]$. Then

$$
\begin{aligned}
0 & =f(t):=q\left(t w_{2}, t w_{3}\right)=\operatorname{det}\left(I_{d}+t\left(w_{2} Y\right)+t\left(w_{3} Z\right)\right) \\
& =\operatorname{det}\left(I_{d}+t\left(w_{2} Y+w_{3} Z\right)\right) \\
& =\operatorname{det}\left(t\left(\frac{1}{t} I_{d}+\left(w_{2} Y+w_{3} Z\right)\right)\right) \\
& =t^{d} \operatorname{det}\left(\frac{1}{t} I_{d}+\left(w_{2} Y+w_{3} Z\right)\right)=\underbrace{t^{d}}_{\neq 0} \chi_{w_{2}} Y+w_{3} Z\left(-\frac{1}{t}\right) .
\end{aligned}
$$

Hence, we have $-\frac{1}{t} \in \mathbb{R} \backslash\{0\}$, since $w_{2} Y+w_{3} Z$ is Hermitian.
Therefore, $t \in \mathbb{R}$.

The Proof

We will now give a constructive proof of the Helton-Vinnikov Theorem following [3, 2016, Grinshpan et al.].

The non-trivial direction.

Clearly, q is of the form

$$
q(y, z)=\sum_{i=0}^{d} \sum_{j=0}^{d-i} a_{i j} y^{i} z^{j}
$$

where $a_{i j} \in \mathbb{R}$. For any $s \in \mathbb{R}$ fix

$$
\tilde{q}_{s}(T):=T^{d} q\left(\frac{1}{T}, \frac{s}{T}\right) \in \mathbb{R}[T] .
$$

Note

$$
y^{d} \tilde{q}_{\frac{z}{y}}\left(\frac{1}{y}\right)=q(y, z) .
$$

Example

Let us consider

$$
q(y, z):=1-y^{2}-z^{2} \in \mathbb{R}[y, z] .
$$

For any $s \in \mathbb{R}$ set

$$
\begin{aligned}
\tilde{q}_{s}(T) & :=T^{2} q\left(\frac{1}{T}, \frac{s}{T}\right) \\
& =T^{2}\left(1-\frac{1}{T^{2}}-\frac{s^{2}}{T^{2}}\right) \\
& =T^{2}-1-s^{2}
\end{aligned}
$$

The Proof

The non-trivial direction.

With the given polynomial representation of q observe

$$
\tilde{q}_{s}(T)=\sum_{m=0}^{d} q_{d-m}(s) T^{m}
$$

for some $q_{d-m} \in \mathbb{R}[S]_{\leq d-m}$ and

$$
q_{d-d}(s)=q(0,0)=1
$$

Therefore, \tilde{q}_{s} is a monic univariate polynomial of degree d.

Example

As for any $s \in \mathbb{R}$ we have

$$
\begin{aligned}
\tilde{q}_{s}(T) & :=T^{2} q\left(\frac{1}{T}, \frac{s}{T}\right) \\
& =T^{2}\left(1-\frac{1}{T^{2}}-\frac{s^{2}}{T^{2}}\right) \\
& =T^{2}-1-s^{2}
\end{aligned}
$$

with

$$
\begin{aligned}
q_{0} & : \equiv 1 \in \mathbb{R}[S]_{\leq 0} \\
q_{1} & : \equiv 0 \in \mathbb{R}[S]_{\leq 1} \\
q_{2}(S) & :=-1-S^{2} \in \mathbb{R}[S]_{\leq 2} .
\end{aligned}
$$

The Proof

The non-trivial direction.

Let $a \in \mathbb{C} \backslash\{0\}$ be a root of \tilde{q}_{s}. Hence,

$$
\begin{aligned}
0 & =\tilde{q}_{s}(a):=a^{d} * q\left(\frac{1}{a}, \frac{s}{a}\right) \\
& =\underbrace{a^{d}}_{\neq 0} * q\left(\frac{1}{a} * 1, \frac{1}{a} * s\right)
\end{aligned}
$$

gives $\frac{1}{a} \in \mathbb{R}$ respectively $a \in \mathbb{R}$, due to q being a real zero polynomial.

Let us for now assume that any root of \tilde{q}_{s} is simple. Denote these distinct roots of \tilde{q}_{s} by $\lambda_{1}(s), \ldots, \lambda_{d}(s) \in \mathbb{R}$.

Example

Furthermore, we have to determine the roots of \tilde{q}_{s}. Clearly, for any $a \in \mathbb{C}$ we have

$$
0=\tilde{q}_{s}(a)=a^{2}-1-s^{2}
$$

if and only if

$$
a^{2}=1+s^{2}>0 .
$$

So immediately $a \in \mathbb{R}$ and we set

$$
\lambda_{1}(s):=\sqrt{1+s^{2}} \in \mathbb{R}
$$

and

$$
\lambda_{2}(s):=-\sqrt{1+s^{2}} \in \mathbb{R}
$$

The Proof

The non-trivial direction.

Let us now consider the companion matrix $C(s)$ of \tilde{q}_{s} given by

$$
\left(\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & -q_{d}(s) \\
1 & 0 & \cdots & 0 & -q_{d-1}(s) \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & -q_{2}(s) \\
0 & \cdots & 0 & 1 & -q_{1}(s)
\end{array}\right)
$$

Claim 1 For any positive integer d and any $s \in \mathbb{R}$ we have

$$
\tilde{q}_{s}(T)=\operatorname{det}\left(T I_{d}-C(s)\right)
$$

Example

We can easily give the companion matrix of \tilde{q}_{s} namely

$$
C(s):=\left(\begin{array}{cc}
0 & 1+s^{2} \\
1 & 0
\end{array}\right)
$$

and clearly

$$
\begin{aligned}
\tilde{q}_{s}(T) & =T^{2}-1-s^{2} \\
& =\operatorname{det}\left(\begin{array}{cc}
T & -1-s^{2} \\
-1 & T
\end{array}\right) \\
& =\operatorname{det}\left(T l_{2}-C(s)\right) .
\end{aligned}
$$

The Proof

The non-trivial direction.

For $j \in\{0, \ldots, 2(d-1)\}$ set

$$
s_{j}(S):=\sum_{k=1}^{d} \lambda_{k}(S)^{j}
$$

Clearly, for any
$j \in\{0, \ldots, 2(d-1)\}$ we have $\operatorname{deg}\left(s_{j}\right) \leq j$.
For any $s \in \mathbb{R}$ the Hermite matrix of \tilde{q}_{s} is given by

$$
H(s):=\left(s_{i+j}(s)\right)_{i, j=0, \ldots, d-1}
$$

Clearly, $H \in \mathbb{R}^{d \times d}[S]$ is a matrix of polynomials of degree $2(d-1)$

Example

For the newton sums we get

$$
\begin{aligned}
s_{0} & : \equiv 2 \in \mathbb{R}[S]_{\leq 0} \\
s_{1} & : \equiv 0 \in \mathbb{R}[S]_{\leq 1} \\
s_{2}(S) & :=2\left(1+S^{2}\right) \in \mathbb{R}[S]_{\leq 2} .
\end{aligned}
$$

and so

$$
\begin{aligned}
H(S) & :=\left(\begin{array}{ll}
s_{0}(S) & s_{1}(S) \\
s_{1}(S) & s_{2}(S)
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 & 0 \\
0 & 2\left(1+S^{2}\right)
\end{array}\right) .
\end{aligned}
$$

The Proof

The non-trivial direction.

Let

$$
V(S):=\left(\lambda_{i+1}(S)^{j}\right)_{i, j=0, \ldots, d-1}
$$

Obviously

$$
\begin{aligned}
V(S)^{T} V(S) & =\left(\sum_{k=0}^{d-1} \lambda_{k+1}(S)^{i} \lambda_{k+1}(S)^{j}\right)_{i, j \in\{0, \ldots, d-1\}} \\
& =\left(\sum_{k=1}^{d} \lambda_{k}(S)^{i+j}\right)_{i, j \in\{0, \ldots, d-1\}} \\
& =\left(s_{i+j}(S)\right)_{i, j \in\{0, \ldots, d-1\}}=H(S) .
\end{aligned}
$$

The Proof

The non-trivial direction.

For any $s \in \mathbb{R}$ the matrix $H(s)$ is Hermitian.
Indeed,

$$
\begin{array}{rlrl}
H(s)^{H} \quad & = & \left(V(s)^{T} V(s)\right)^{H} \\
& = & V(s)^{H}\left(V(s)^{T}\right)^{H} \\
& = & V(s)^{T}\left(V(s)^{T}\right)^{T} \\
V(s) \in \mathbb{R}^{d \times d} \\
& = & & V(s)^{T} V(s) \\
& = & H(s) .
\end{array}
$$

The Proof

The non-trivial direction.
Furthermore, for any $s \in \mathbb{R}$ the matrix $H(s)$ is positive definite. Indeed, for $v \in \mathbb{C}^{d} \backslash\{0\}$ observe

$$
\begin{aligned}
v^{H} H(s) v & =v^{H}\left(V(s)^{T} V(s)\right) v \\
& =v^{H}\left(V(s)^{H} V(s)\right) v \\
& =(V(s) v)^{H}(V(s) v) \\
& >0
\end{aligned}
$$

where we exploit all roots of \tilde{q}_{s} being distinct.

Example

For $v:=\left(v_{1}, v_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}$ and $s \in \mathbb{R}$ we have

$$
v^{H} H(s) v=2\left|v_{1}\right|^{2}+2 \underbrace{\left(1+s^{2}\right)}_{\neq 0}\left|v_{2}\right|^{2}
$$

>0.

The Proof

The non-trivial direction.

Therefore, there exists some matrix of polynomials
$Q \in \mathbb{C}^{d \times d}[S]$ such that for any $s \in \mathbb{R}$

$$
H(s)=Q(s)^{H} Q(s)
$$

where Q is a matrix of polynomial of degree $d-1$ and $Q(s)$ is invertible for any $s \in \mathbb{C}$ with $\operatorname{Im}(s) \geq 0$ (see [10] and [1]).

Example

An appropriate factorization of H is given by Q with

$$
\begin{aligned}
Q(S) & :=\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}(1-i S)
\end{array}\right) \\
& \in \mathbb{C}^{2 \times 2}[S] .
\end{aligned}
$$

The Proof

The non-trivial direction.

For any $s \in \mathbb{R}$ set

$$
M(s):=Q(s) C(s) Q(s)^{-1}
$$

Observe

$$
\begin{aligned}
& \operatorname{det}\left(T I_{d}-M(s)\right) \\
& \quad:=\operatorname{det}\left(T I_{d}-\left(Q(s) C(s) Q(s)^{-1}\right)\right) \\
& \quad=\operatorname{det}\left(T I_{d}-C(s)\right) \\
& \quad=\tilde{q}_{s}(T)
\end{aligned}
$$

Claim 2 For any $s \in \mathbb{R}$ it holds

$$
C(s)^{H} H(s)=H(s) C(s) .
$$

Example

Now for any $s \in \mathbb{R}$ we set

$$
\begin{aligned}
M(s) & :=Q(s) C(s) Q(s)^{-1} \\
& =\left(\begin{array}{cc}
0 & 1+i s \\
1-i s & 0
\end{array}\right) .
\end{aligned}
$$

Moreover, for any $s \in \mathbb{R}$

$$
\begin{array}{rl}
C(s)^{H} & H(s) \\
& =\left(\begin{array}{cc}
0 & 2\left(1+s^{2}\right) \\
2\left(1+s^{2}\right) & 0
\end{array}\right) \\
& =H(s) C(s) .
\end{array}
$$

The Proof

The non-trivial direction.

Now for any $s \in \mathbb{R}$ observe

$$
\begin{aligned}
M(s)^{H}= & \left(Q(s)^{-1}\right)^{H} C(s)^{H} Q(s)^{H} \\
& * \underbrace{Q(s) Q(s)^{-1}}_{=l_{d}} \\
= & \left(Q(s)^{-1}\right)^{H}\left(C(s)^{H} H(s)\right) \\
& * Q(s)^{-1} \\
= & Q(s) C(s) Q(s)^{-1} \\
= & M(s)
\end{aligned}
$$

i.e. $M(s)$ is Hermitian.

Claim $3 M$ is a matrix of polynomials over \mathbb{C} of degree at most 1.

Example

Recall, for any $s \in \mathbb{R}$
$M(s) \quad:=\left(\begin{array}{cc}0 & 1+i s \\ 1-i s & 0\end{array}\right)$.
and so $M(s)$ is clearly Hermitian. Moreover, M is clearly a matrix of polynomials over \mathbb{C} of degree 1 when considered in the variable S.

The Proof

The non-trivial direction.

Therefore, there exist two Hermitian matrices $Y, Z \in \mathbb{C}^{d \times d}$ such that

$$
M(S)=-Y-Z S
$$

Thus for any $s \in \mathbb{R}$

$$
\begin{aligned}
\tilde{q}_{s}(T) & =\operatorname{det}\left(T I_{d}-M(s)\right) \\
& =\operatorname{det}\left(T I_{d}+Y+Z s\right)
\end{aligned}
$$

Example

Moreover,

$$
\begin{aligned}
M(S): & \left(\begin{array}{cc}
0 & 1+i S \\
1-i S & 0
\end{array}\right) \\
= & -\underbrace{\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)}_{=: Y} \\
& -\underbrace{\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)}_{=: Z} S \\
= & -Y-Z S .
\end{aligned}
$$

Obviously, $Y, Z \in \mathbb{C}^{2 \times 2}$ are Hermitian matrices.

The Proof

The non-trivial direction.
Altogether

$$
\begin{aligned}
& q(y, z)=y^{d} \tilde{q}_{\frac{z}{y}}\left(\frac{1}{y}\right) \\
& \quad=y^{d} \operatorname{det}\left(\frac{1}{y} I_{d}+Y+\frac{z}{y} Z\right) \\
& \quad=\operatorname{det}\left(y\left(\frac{1}{y} I_{d}+Y+\frac{z}{y} z\right)\right) \\
& \quad=\operatorname{det}\left(I_{d}+y Y+z Z\right) .
\end{aligned}
$$

Example

Obviously,

$$
\begin{aligned}
& \operatorname{det}\left(I_{2}+y Y+z Z\right) \\
= & \operatorname{det}\left(\begin{array}{cc}
1 & -y-i z \\
-y+i z & 1
\end{array}\right) \\
= & 1-(-y+i z)(-y-i z) \\
= & 1-\left((-y)^{2}+z^{2}\right) \\
= & 1-y^{2}-z^{2}=: q(y, z) .
\end{aligned}
$$

Altogether, we found an appropriate representation of q via Hermitian matrices.

The Proof

The non-trivial direction.

Claim 4 For any $\varepsilon>0$ there exists a real zero polynomial $q_{\varepsilon} \in \mathbb{R}[y, z]$ of degree d with $q_{\varepsilon}(0,0)=1$ such that any coefficient of q_{ε} is within an Euclidean distance of ε from the corresponding coefficient of q and for any $s \in \mathbb{R}$

$$
\tilde{q}_{\varepsilon, s}(T):=T^{d} q_{\varepsilon}\left(\frac{1}{T}, \frac{s}{T}\right)
$$

only has simple real roots (see [9]).
Hence, in the general case of $q \in \mathbb{R}[y, z]$, for any $\varepsilon>0$ we can fix such corresponding q_{ε} with two Hermitian matrices $Y_{\varepsilon}, Z_{\varepsilon} \in \mathbb{C}^{d \times d}$ such that $q_{\varepsilon}(y, z)=\operatorname{det}\left(I_{d}+y Y_{\varepsilon}+z Z_{\varepsilon}\right)$.

Clearly, $\left(q_{\varepsilon}\right)_{\varepsilon>0}$ converges to q as ε tends to zero and the sequence $\left(Y_{\varepsilon}, Z_{\varepsilon}\right)_{\varepsilon>0} \subseteq\left(\mathbb{C}^{d \times d}\right)^{2}$ converges to a tuple $(Y, Z) \in\left(\mathbb{C}^{d \times d}\right)^{2}$ of Hermitian matrices.

The Proof

The non-trivial direction.

Altogether,

$$
q(y, z)=\lim _{\varepsilon \searrow 0} q_{\varepsilon}(y, z)=\lim _{\varepsilon \searrow 0} \operatorname{det}\left(I_{d}+y Y_{\varepsilon}+z Z_{\varepsilon}\right)=\operatorname{det}\left(I_{d}+y Y+z Z\right)
$$

and so q has an appropriate representation via Hermitian matrices as claimed.

Outlook

(1) The Lax Conjecture fails in more than 3 variables (see [8]).
(3) In more than 3 variables, there exists a generalized counterpart to the Lax Conjecture, called the generalized Lax Conjecture, and it is still open up to today.

- In my master thesis I relate the Lax Conjecture to the (multiplicative) Horn's Problem.

End

- Questions? -

References I

[1] L. Ephremidze, An elementary proof of the polynomial matrix spectral factorization theorem, Proc. Roy. Soc. Edingburgh Sect. A 144 (2014), no. 4, 747-751
[2] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhuser Boston, Inc., Boston, MA, 2008. x+523 pp
[3] A. Grinshpan, D. S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov, H. J. Woerdeman, Stable and Real-Stable Polynomials in two Variables, Multidimensional Systems and Signal Processing 27 (2016), no.1, 1-26.
[4] J. W. Helton, V. Vinnikov, Linear Matrix Inequalities Representation of Sets,Communications on Pure and Applied Mathematics, 60 (2007), no. 5, 654-674
[5] S. Kuhlmann, Algorithmisch Algebraische Geometrie, Mitschrieb, Konstanz, WS 2017/18
[6] S. Kuhlmann, Lineare Algebra II, Mitschrieb, Konstanz, WS 2018/19

References II

[7] P. D. Lax,Differential equations, difference equations and matrix theory, Communications on Pure and Applied Mathematics 11 (1958), 175-194
[8] A. S. Lewis, P. A. Parillo, M. V. Ramana, The Lax Conjecture is True,Proceedings of the American Mathematical Society, 133 (2005), no. 9, 2495-2499
[9] W. Nuij, A note on hyperbolic polynomials,Mathematica Scandinavica, 23 (1968), 69-72 (1969)
[10] M. Rosenblum, J. Rovnyak, Hardy classes and Operator Theory, Dover Publications, Inc., Mineola, NY, 1997. xiv+161 pp
[11] C. Scheiderer, Konvexitt, Mitschrieb, Konstanz, WS 2019/20
[12] V. Vinnikov, Complete description of determinantal representations of smooth irreducible curves,Linear Algebra Appl. 125 (1989), 103-140
[13] V. Vinnikov, Selfadjoint determinantal representation of real plane curves, Math. Ann. 296 (1993), no. 3, 453-479

The two-sided medal

\Rightarrow.

It is clear that q cannot be of a degree larger than the degree $d \in \mathbb{Z}_{\geq 0}$ of p. Moreover,

$$
q(0,0):=p(1,0,0)=p(e)=1
$$

Fix $w:=\left(w_{2}, w_{3}\right) \in \mathbb{R}^{2}$ and consider the univariate polynomial $f(T):=q\left(T w_{2}, T w_{3}\right) \in \mathbb{R}[T]$. Let $t \in \mathbb{C} \backslash\{0\}$ be a root of f. Then $0=f(t):=q\left(t w_{2}, t w_{3}\right):=p\left(1, t w_{2}, t w_{3}\right)=p\left(\frac{t}{t}, t w_{2}, t w_{3}\right)=t^{d} p\left(\frac{1}{t}, w_{2}, w_{3}\right)$.

Since p is hyperbolic with respect to $e:=(1,0,0) \in \mathbb{R}^{3}$, we have $-\frac{1}{t} \in \mathbb{R} \backslash\{0\}$ respectively $t \in \mathbb{R} \backslash\{0\}$.

The two-sided medal

Clearly p is of the same degree $d \in \mathbb{Z}_{\geq 0}$ as q and

$$
p(e)=p(1,0,0):=1^{d} q\left(\frac{0}{1}, \frac{0}{1}\right)=1^{d} q(0,0)=1^{d} * 1=1 .
$$

Fix $v:=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ and consider $g(S):=p(v-S e) \in \mathbb{R}[S]$. Let $s \in \mathbb{C} \backslash\left\{v_{1}\right\}$ be a root of g i.e.

$$
0=g(s):=p(v-s e):=(\underbrace{v_{1}-s}_{\neq 0})^{d} q\left(\frac{v_{2}}{v_{1}-s}, \frac{v_{3}}{v_{1}-s}\right) .
$$

So we have $\frac{1}{w_{1}-s} \in \mathbb{R}$, since q is a real zero polynomial. Therefore, $s \in \mathbb{R}$.

4 The two-sided medal

The equivalence

Lax Conjecture \Rightarrow Helton-Vinnikov theorem.

Set

$$
p(x, y, z):=q^{H}(x, y, z):=x^{d} q\left(\frac{y}{x}, \frac{z}{x}\right) \in \mathbb{R}[x, y, z]
$$

and so p is hyperbolic with respect to $e:=(1,0,0)$ and $p(e)=1$.
Moreover, $\operatorname{deg}(p)=\operatorname{deg}(q)$. Thus by the Lax Conjecture there exist two Hermitian complex matrices $Y, Z \in \mathbb{C}^{d \times d}$ such that

$$
p(x, y, z)=\operatorname{det}\left(x l_{d}+y Y+z Z\right)
$$

So

$$
q(y, z)=\left(q^{H}\right)^{D}(y, z)=: p^{D}(y, z):=p(1, y, z)=\operatorname{det}\left(I_{d}+y Y+z Z\right)
$$

i.e. there exist two Hermitian complex matrices $Y, Z \in \mathbb{C}^{d \times d}$ such that

$$
q(x, y)=\operatorname{det}\left(I_{d}+y Y+z Z\right) .
$$

The other direction is the trivial direction of the Helton-Vinnikov Theorem.

The equivalence

Helton-Vinnikov Theorem \Rightarrow Lax Conjecture.

Set $q(y, z):=p^{D}(y, z):=p(1, y, z) \in \mathbb{R}[y, z]$. So q is a real zero polynomial with $q(0,0)=1$ and set $d:=\operatorname{deg}(q) \in \mathbb{Z}_{\geq 0}$.
Hence, by the Helton-Vinnikov Theorem there exist two Hermitian complex matrices $Y, Z \in \mathbb{C}^{d \times d}$ such that

$$
q(y, z)=\operatorname{det}\left(I_{d}+y Y+z Z\right) .
$$

W.l.o.g we can assume $d=\operatorname{deg}(p)$ by completing Y, Z to matrices of dimension $\operatorname{deg}(p)$ via trivial block matrices i.e. we could consider $\operatorname{diag}\left(Y, 0_{\left.\mathbb{C}^{d-\operatorname{deg}}(\rho)\right) \times(d-\operatorname{deg}(\rho))}\right)$ and $\operatorname{diag}\left(Z, 0_{\left.\mathbb{C}^{d-\operatorname{deg}}(\rho)\right) \times(d-\operatorname{deg}(\rho))}\right)$ instead of Y and Z. Then

$$
\begin{aligned}
p(x, y, z) & =\left(p^{D}\right)^{H}(x, y, z):=q^{H}(x, y, z):=x^{d} q\left(\frac{y}{x}, \frac{z}{x}\right) \\
& =x^{d} \operatorname{det}\left(I_{d}+\frac{y}{x} Y+\frac{z}{x} Z\right)=\operatorname{det}\left(x\left(I_{d}+\frac{y}{x} Y+\frac{z}{x} Z\right)\right) \\
& =\operatorname{det}\left(x I_{d}+y Y+z Z\right)
\end{aligned}
$$

The other direction is the trivial direction of the Lax Conjecture.

Claim 1

For any positive integer d and any $s \in \mathbb{R}$ we have $\tilde{q}_{s}(T)=\operatorname{det}\left(T l_{d}-C(s)\right)$.
We will prove this by induction on d.
Fix $s \in \mathbb{R}$ and clearly the base case holds.
Now assume that for any $t<d$ we have $\operatorname{det}\left(T I_{t}-C(s)\right)=\tilde{q}_{s}(T)$. For d, using Laplace formula for determinants on the first row of $T I_{d}-C(s)$, we conclude

$$
\operatorname{det}\left(T I_{d}-C(s)\right)=\operatorname{det}\left(\begin{array}{cccccc}
T & 0 & \cdots & \cdots & 0 & q_{d}(s) \\
-1 & T & 0 & \cdots & 0 & q_{d-1}(s) \\
0 & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 & \vdots \\
\vdots & & \ddots & \ddots & T & q_{2}(s) \\
0 & \cdots & \cdots & 0 & -1 & T+q_{1}(s)
\end{array}\right)
$$

Claim 1

For any positive integer d and any $s \in \mathbb{R}$ we have $\tilde{q}_{s}(T)=\operatorname{det}\left(T l_{d}-C(s)\right)$.

$$
\begin{gathered}
=T \operatorname{det}\left(\begin{array}{cccccc}
T & 0 & \cdots & 0 & q_{d-1}(s) \\
-1 & \ddots & \ddots & \vdots & \vdots \\
0 & \ddots & \ddots & 0 & \vdots \\
\vdots & \ddots & \ddots & T & q_{2}(s) \\
0 & \cdots & 0 & -1 & T+q_{1}(s)
\end{array}\right) \\
+(-1)^{d+1} q_{d}(s) \operatorname{det}\left(\begin{array}{ccccc}
-1 & T & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & T \\
0 & \cdots & \cdots & 0 & -1
\end{array}\right)
\end{gathered}
$$

For any positive integer d and any $s \in \mathbb{R}$ we have $\tilde{q}_{s}(T)=\operatorname{det}\left(T l_{d}-C(s)\right)$.
According to the hypothesis of induction we have

$$
\operatorname{det}\left(\begin{array}{ccccc}
T & 0 & \cdots & 0 & q_{d-1}(s) \\
-1 & \ddots & \ddots & \vdots & \vdots \\
0 & \ddots & \ddots & 0 & \vdots \\
\vdots & \ddots & \ddots & T & q_{2}(s) \\
0 & \cdots & 0 & -1 & T+q_{1}(s)
\end{array}\right)=\sum_{m=0}^{d-1} q_{d-1-m}(s) T^{m}
$$

and

$$
\operatorname{det}\left(\begin{array}{ccccc}
-1 & T & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & T \\
0 & \cdots & \cdots & 0 & -1
\end{array}\right)=(-1)^{d-1}
$$

For any positive integer d and any $s \in \mathbb{R}$ we have $\tilde{q}_{s}(T)=\operatorname{det}\left(T I_{d}-C(s)\right)$.
Putting both together we have

$$
\begin{aligned}
\operatorname{det}\left(T I_{d}-C(s)\right) & =\underbrace{T * \sum_{m=0}^{d-1} q_{d-1-m}(s) T^{m}}_{=\sum_{m=0}^{d-1} q_{d-1-m}(s) T^{m+1}}+\underbrace{(-1)^{d+1}(-1)^{d-1}}_{=(-1)^{d+1+d-1}=(-1)^{2 d}=1} * q_{d}(s) \\
& =q_{d}(z)+\sum_{m=0}^{d-1} q_{d-1-m}(s) T^{m+1} \\
& =q_{d}(s) T^{0}+\sum_{m=1}^{d} q_{d-m}(s) T^{m} \\
& =\sum_{m=0}^{d} q_{d-m}(s) T^{m}=\tilde{q}_{s}(T)
\end{aligned}
$$

Claim 2

For any $s \in \mathbb{R}$ it holds $C(s)^{H} H(s)=H(s) C(s)$.
Recall, for any $s \in \mathbb{R}, H(s)=V(s)^{T} V(s)=V(s)^{H} V(s)$ is the product of two matrices of Vandermonde type with entries being the zeros of the univariate polynomial \tilde{q}_{s}, which were all proven to be real and assumed to be distinct. Since $C(s)$ is the companion matrix of \tilde{q}_{s} we thus have

$$
\begin{aligned}
V(s) C(s) V(s)^{-1} & =\operatorname{diag}\left(\lambda_{1}(s), \ldots, \lambda_{d}(s)\right)=\operatorname{diag}\left(\lambda_{1}(s), \ldots, \lambda_{d}(s)\right)^{H} \\
& =\left(V(s) C(s) V(s)^{-1}\right)^{H}=\left(V^{-1}(s)\right)^{H} C(s)^{H} V(s)^{H} \\
& =\left(V(s)^{H}\right)^{-1} C(s)^{H} V(s)^{H} .
\end{aligned}
$$

Now multiplying $V(s)^{H}$ from the left and $V(s)$ from the right yields

$$
H(s) C(s)=V(s)^{H} V(s) C(s)=C(s)^{H} V(s)^{H} V(s)=C(s)^{H} H(s)
$$

Claim 3

M is a matrix of polynomials over \mathbb{C} of degree at most 1 .

Clearly, poles can only arise in roots of $Q \in \mathbb{R}^{d \times d}[S]$.
Hence, let $a \in \mathbb{C}$ be a root of Q and with that necessarily $\operatorname{Im}(a)<0$ (see [1]). We thus have

$$
\begin{aligned}
C(\bar{a})^{T}\left(Q^{H}(\bar{a})\right) Q(a) & =C(\bar{a})^{T} H(a)=C(a)^{H} H(a)=H(a) C(a) \\
& =\left(Q^{H}(\bar{a})\right) Q(a) C(a)
\end{aligned}
$$

respectively

$$
\left(Q^{H}(\bar{a})\right)^{-1} C(\bar{a})^{T}\left(Q^{H}(\bar{a})\right)=M(a),
$$

as $Q(\bar{a})$ is invertible, due to $\operatorname{Im}(\bar{a})>0$ (see [1]). So $M(a)$ is the product of three invertible matrices i.e. $M(a)$ is regular. Hence, a was proven to not be a pole of M.
Altogether, $M \in \mathbb{C}^{d \times d}[S]$ is a matrix of polynomials.

$M(S)$ is a matrix of polynomials over \mathbb{C} of degree at most 1.

Let k denote the degree of the matrix of polynomials M. Hence there exists some $B_{1}, \ldots, B_{k} \in \mathbb{C}^{d \times d}$ such that

$$
-M(S):=\sum_{i=0}^{k} B_{i} S^{i}
$$

Observe for any $s \in \mathbb{R}$

$$
\operatorname{det}\left(T I_{d}+\sum_{j=0}^{k} B_{k} s^{k}\right)=\operatorname{det}\left(T I_{d}-M(s)\right)=\tilde{q}_{s}(T)=\sum_{m=0}^{d} q_{d-m}(s) T^{m} .
$$

Therefore, for any $j \in\{0, \ldots, d-1\}$ the sum of all principal $j \times j$ minors of $-M(s)$ gives exactly $p_{j}(s)$ and so the coefficient for $s^{k j}$ in p_{j} is given by the sum of all $j \times j$ principal minors of B_{k}.

Furthermore, $B_{k} \neq 0_{\mathbb{C}^{d \times d}}$ and M is Hermitian. So B_{k} must be Hermitian as well. Hence, not for all $j \in\{1, \ldots, d-1\}$ the sum of all $j \times j$ principal minors of B_{k} can be zero, as else B_{k} would be nilpotent. \&

$M(S)$ is a matrix of polynomials over \mathbb{C} of degree at most 1 .

So for some $j \in\{1, \ldots, d-1\}$ the coefficient of $s^{k j}$ cannot vanish and thence $k j \leq \operatorname{deg}\left(p_{j}\right)$ on the one hand.
Recalling, $\operatorname{deg}\left(p_{j}\right) \leq j$ on the other hand, yields $k \leq 1$.

The density argument

The sequence $\left(Y_{\varepsilon}, Z_{\varepsilon}\right)_{\varepsilon>0} \subseteq\left(\mathbb{C}^{d \times d}\right)^{2}$ converges to a tuple $(Y, Z) \in\left(\mathbb{C}^{d \times d}\right)^{2}$.

Set

$$
\mu:=\min \{|t| \mid q(t, 0) q(0, t)=0\} \geq 0 .
$$

Since, $q(0,0)=1$, we have $q(0,0) q(0,0)=1$ and so $\mu>0$ necessarily. Moreover,
$\mu:=\min \{|t| \mid q(t, 0) q(0, t)=0\}=\min (\{|t| \mid q(t, 0)=0\} \cup\{|t| \mid q(0, t)=0\})$.
So for $\varepsilon>0$ sufficiently small we have $\left.\lambda_{Y}, \lambda_{Z} \in\right]-\frac{2}{\mu}, \frac{2}{\mu}[$.
Since Y_{ε} and Z_{ε} are Hermitian by choice, their spectral radii coincide with their spectral norms i.e. the norms $\left\|Y_{\varepsilon}\right\|_{2}$ of Y_{ε} and $\left\|Z_{\varepsilon}\right\|_{2}$ of Z_{ε} are bounded by $\frac{2}{\mu}$ for sufficiently small ε.

Therefore, the sequence $\left(Y_{\varepsilon}, Z_{\varepsilon}\right)_{\varepsilon>0} \subseteq\left(\mathbb{C}^{d \times d}\right)^{2}$ converges to a tuple $(Y, Z) \in\left(\mathbb{C}^{d \times d}\right)^{2}$.

Homogeneity

Definition

Let n be a positive integer.
(3) Let $q \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be of degree $d \in \mathbb{Z}_{\geq 0}$. Then

$$
q^{H}\left(x_{0}, x_{1}, \ldots, x_{n}\right):=x_{0}^{d} p\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]
$$

is called the homogenization of q.
(3) Let $p \in \mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree $d \in \mathbb{Z}_{\geq 0}$, then

$$
p^{D}\left(x_{1}, \ldots, x_{n}\right):=p\left(1, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
$$

is called the dehomogenization of p.

Homogeneity

Fact

(3) For any $q \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree $d \in \mathbb{Z}_{\geq 0}$ we have $\left(q^{H}\right)^{D}=p$.
(2) The degree of the dehomogenization p^{D} of any homogeneous polynomial p of degree $d \in \mathbb{Z}_{\geq 0}$ can never outreach the degree of p i.e. $\operatorname{deg}\left(p^{D}\right) \leq d:=\operatorname{deg}(p)$.
(3) Vice versa, for any polynomial q of degree d, the homogenization q^{H} of q is exactly of degree d i.e. $\operatorname{deg}\left(q^{H}\right)=d:=\operatorname{deg}(q)$.

4 Motivation of real zero polynomials

The Lax Conjecture fails in more than 3 variables

Proof.

Let $n \in \mathbb{Z}_{>3}$ be a positive integer greater than 3 . Set

$$
p\left(x_{1}, \ldots, x_{n}\right):=x_{1}^{2}-\sum_{i=2}^{n} x_{i}^{2} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
$$

Clearly, p is homogeneous of degree $d:=2$. Set $e:=(1, \underbrace{0, \ldots, 0}_{(n-1) \text { many }}) \in \mathbb{R}^{n}$, then obviously $p(e)=1$.

For $v:=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ consider

$$
\begin{aligned}
m(S) & :=p(v-S e)=p\left(\left(v_{1}-S, v_{2}, \ldots, v_{n}\right)\right):=\left(v_{1}-S\right)^{2}-\sum_{i=2}^{n} v_{i}^{2} \\
& =S^{2}-2 v_{1} S+v_{1}^{2}-\sum_{i=2}^{n} v_{i}^{2} \in \mathbb{R}[S]
\end{aligned}
$$

The Lax Conjecture fails in more than 3 variables

Proof.

Clearly m has a non negative discriminant

$$
\Delta:=\left(-2 v_{1}\right)^{2}-4 *\left(v_{1}^{2}-\sum_{i=2}^{n} v_{i}^{2}\right)=4 \sum_{i=2}^{n} v_{i}^{2} \geq 0
$$

Let $X_{2}:=\left(X_{i j}^{(2)}\right)_{i, j \in\{1, \ldots, n\}}, \ldots, X_{n}:=\left(X_{i j}^{(n)}\right)_{i, j \in\{1, \ldots, n\}} \in \mathbb{C}^{n \times n}$ be Hermitian matrices. Consider,

$$
n\left(x_{2}, \ldots, x_{n}\right):=\sum_{i=2}^{n} x_{i}\left(X_{1 j}^{(i)}\right)_{j=1, \ldots, n}
$$

Clearly, we can find $v_{2}, \ldots, v_{n} \in \mathbb{R}$ not all equal 0 such that $n\left(v_{2}, \ldots, v_{n}\right)=0_{\mathbb{R}^{n}}$. Fix such $\left(v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n-1}$ and consider $v:=\left(0, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$.

The Lax Conjecture fails in more than 3 variables

Proof.

Then on the one hand

$$
p(v):=p\left(0, v_{2}, \ldots, v_{n}\right)=0^{2}-\sum_{i=2}^{n} v_{i}^{2}=-\underbrace{\sum_{i=2}^{n} v_{i}^{2}}_{>0}<0,
$$

because at least for one $i \in\{2, \ldots, n\}$ we have $v_{i} \neq 0$. But on the other hand

$$
\operatorname{det}\left(0 * I_{n}+\sum_{i=2}^{n} v_{i} X_{i}\right)=\operatorname{det}\left(\sum_{i=2}^{n} v_{i} X_{i}\right)=0,
$$

as the first row of $\sum_{i=2}^{n} v_{i} X_{i}$ equals $n\left(v_{2}, \ldots, v_{n}\right)=0_{\mathbb{R}^{n}}$ by the choice of v_{2}, \ldots, v_{n}.
Therefore, clearly $p\left(x_{1}, \ldots, x_{n}\right) \neq \operatorname{det}\left(x_{1} I_{n}+\sum_{i=2}^{n} x_{i} X_{i}\right)$.

