Algebra Beritseminar
A proof that every convex quartemary quartic is a sum of squares

Notations: Let aiken.
\checkmark The polynomial ring over R in a variables:

$$
\mathbb{R}[x]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] .
$$

\checkmark The vector space of hanocenous polynomials or forms in n variables of degree k

$$
H_{h_{k}}=\left\{p=\sum_{v \in N_{0}},|\alpha|=k \text { p } x^{\alpha} \in \mathbb{R}[x]\right\}
$$

\rightarrow The set of positive semidetinie (POD) forms

$$
P_{n, k}=\left\{p e t_{n, k}=p \geq 0 \delta\right.
$$

If $k=2 d$ is even
\checkmark The set of call forms, which are a (finite) sum of squares(SOS)

$$
\Sigma_{n, 2 d}=\left\{p \in H_{n, 2 d}: p=\sum_{i=1}^{\infty} \sigma_{i}^{2}, \sigma_{i} \in H_{n, d)}\right\}
$$

Since squares are nonnegative it is clear that every $S O S$ form is already PSD, i.e. for n, dE IN it holds

$$
\sum_{n, 2 d} \subseteq P_{n, 2 d}
$$

The obvious question that arises whether or not the converse is true as well. This was answered by Hilbert in the following Theorem.

Thy. (1888 Hilbert): Let NidE be arbitrary. Then it holds

$$
\Sigma_{n, 22}=P_{n, 2 d} \Leftrightarrow n=1 \text { or } d=1 \text { or }(n, 2 d)=(3,4) \text {. }
$$

Hence, we have the following picture:

Else:

Now that the relation between PSD ard SOS forms is fully characterized, one could ask what happens, it we consider additional propertics. One could bor example ask what hoppers in the picture if we consicler in addition convex forms, since convexity plays an important role eg. in optimization.

Def.: Let ned. A multivariate function $\mathbb{R}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex

$$
\Leftrightarrow \quad \forall x, y \in R^{n} \quad \forall \lambda \in[0,1]: \quad f(\lambda x+(1-\lambda)(y) \leq \lambda H(x)+((-\lambda)) f(y)
$$

There is colso an equivabat characterization when the function is twice differentiable (see $[7$, Sa $\leqslant z 6.4]$)

Prop. Let $\mathcal{A}: R \rightarrow \mathbb{R}$ be twice differentiable. Then $\&$ is convex $\Leftrightarrow \forall x \in R^{n}: J^{2}+(x) \pm 0$.

This motivates the following oletinition

Dot.: The set of convex forms in a variables of degree k is

$$
\left.C_{n k}:=h \text { pethik: } \forall x \in R n: \nabla^{2} p(x) \leq 0\right\} \text {. }
$$

Find Results

It burns out that it can be seen rather easily that for a degree $k>1$, indeed every convex form ic PSD.

Prop:: Let $n \in \mathbb{N}$ and $k \in \mathbb{N}_{,}$. Then it holds $C_{n, k} \subseteq P_{n, k}$. prot Lat $p \in C$ Bk be arbitrary. Clearly, it holds $p(0)=0$. Hence, it suffices to show that p has a global minimum at 0 . Assume not. Then there is some $x \in R$ sit. $p(x)<0$.

Take $\lambda \in(0,1)$ arbitrary. It holds

$$
\lambda^{k} p(x) \stackrel{p \text { ham. }}{=} p(\lambda x)=p(\lambda x+(1-\lambda) 0)^{p} \stackrel{\text { convex }}{\leq} \lambda p(x)+\underbrace{(1-\lambda) p(0)}_{=0}=\lambda p(x) \text {. }
$$

Hence, dividing by $p(x) \neq 0$ shows

$$
\lambda^{k} \geq \lambda_{1}
$$

which is a contradiction since $\lambda \in(0,1)$. This thous the claim.

On the other hand, not every PSD form is convex, as one can see in the following.

Example: (a) Consider $p(x, y)=x^{2} y^{2} \in \sum_{2,4} \leq P_{2,4}$. Then it holds

$$
\nabla p(x, y)=\binom{2 x y^{2}}{2 y x^{2}}, \quad \nabla^{2} p(x, y)=\left(\begin{array}{cc}
2 y^{2} & 4 x y \\
4 x y & 2 x^{2}
\end{array}\right)
$$

Hence we have $\nabla^{2} p(1,1)=\left(\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right) \nsucceq 0$, since $\operatorname{det}\left(\nabla^{2} p(1,1)\right)=4-16=-12<0$. This show is that $p \in \Sigma_{2,4} \backslash C_{2,4}$. In particular, not even every 508 form is convex. More general, it can be seen that $x^{2 d-2} y^{2} \in \sum_{2,2 d}$ for arbitrary dEN.
(b) Neither the Motzkin nor the Robinson form is convex, The Robinson form for example is given by

$$
\rho_{\Omega}=\omega^{4}+x^{2} y^{2}+y^{2} z^{2}+x^{2} z^{2}-4 x y z \omega \in P_{4 i t} \backslash \Sigma_{t i t}
$$

The following values are computed using some MATMAB code which can be found in my thesis. Take

$$
x=(0.2788,0.5468,0.9575,0.96 * 9) \in \mathbb{R}
$$

Then $\nabla^{2} p_{M}(x)$ not a strictly negative eigenvalue, more precisely
its eigenvalues are

$$
-2.0291,-0.6403,3.2654,8.9224 .
$$

This shows that the Robinson form P_{R} is not convex

So for, we have the following picture for n,dsl and $(n, 2 d) \neq(3,4)$:

The question which arises is whether or not every convex form is SOS. This was stared by Parillo in 2007. Two years laker, Bletherman answered in [2] the question to the negative. by wing some volume arguments. However, no explicit example of a convex but not SOS form is known until today. The easiest cases where such on example could exist are for $(n, 2 d) \in\{(4,4),(3,6)\}$. In 2019,

El Khadir pround in [4] that for $(r, 22)=(\psi, 4)$ undead every convex quorternary quartic is a SOS.

For understanding the proof, we ned some more definitions (for more details consider e.g. [5, Section 6.4] and [Y, Section 2])

Tensors
In the following, lot $K \in K R \mathbb{C}$, be arbitrary.
Definition: Let $n, k \in \mathbb{N}$. The set of all n-dimensional (real or complex) tensors of order k is defined as

$$
T^{k} \equiv T^{\prime \prime}\left(k^{n}\right)=\left\langle\left(x^{j,-j k}\right)_{j, \cdots, j k=1, \ldots, n}\right| x^{j i-j k} \in k J .
$$

Example: (a) For $\operatorname{neN}, k=1$. $T^{\prime}\left(K^{N}\right)$ is the set of all vectors in \mathbb{K}^{n}.
(b) For $N \in N, K=2: T^{2}\left(K^{n}\right)$ is the set of all (real or complex) ana matrices.

2mk.: $\operatorname{let} T=\left(T^{j i-j k}\right)_{j \ldots \ldots j k=1 \ldots, n} \in T^{k}\left(K^{n}\right)$ be arbitrary. Then
is multilinear. Further. $T \mapsto Q_{T}$ is a bijection between the set of tensor and the set of omstilinear mappings $f: \underbrace{\mathbb{K}^{n} k \cdots x \mathbb{K}^{n}}_{k x} \rightarrow \mathbb{K}$.

Def. A tensor TET (RP) is symmetric

$$
\Leftrightarrow \quad \forall \pi \in S_{k} \quad \forall j, \cdots j_{k}=1, \cdots, \quad \quad T^{j \cdots j_{k}}=T^{i_{a}(1)} \cdots j_{z}(k) .
$$

Equivdently, $f_{T}=\mathbb{K}^{n} \times \ldots \times \mathbb{K}^{n} \rightarrow \mathbb{K}$ is invariant under permutation of its arguments. Further, the set of symmetric tensors of order K is denoted by $\delta_{K}(K N) \geqslant S^{K}$.

Def. For $n, k \in \mathbb{N}, x^{\prime}, \ldots, x^{k} \in \mathbb{K}^{n}$, we detine the outer produce

$$
x^{\prime}(\otimes) \cdots \otimes x^{k}=\left(x_{j 1}^{\prime} \cdots x_{j k}^{k}\right)_{j_{1} \ldots j_{k}=1, \ldots, n} \in T^{k}\left(k^{n}\right) .
$$

Further, the symmetric outer product is detinad as

$$
x^{\prime}\left(\cdot \cdots \odot x^{k}=\frac{1}{x!} \sum_{\pi \in S x} x^{\pi(1)}\left(x \cdots(x) x^{\pi(k)} \in S^{k}\left(k^{n}\right)\right.\right.
$$

Remark: (a) For $x \in K^{n}$, it holds $x \otimes x=x<x$. We wild Purer write $x^{k}=\underbrace{x \odot \cdots \sigma x}_{k x}=\underbrace{x \beta \cdots(x) x}_{k<x}$ (KAN)
(b) It holds $x \circ y=x \cdot y$ for all $x y \in \mathbb{K}$?

We will also write $x y \equiv x$ goy.
 generalized binomial coefficient $\binom{n}{j 1 \cdots i j l}=\frac{n!}{j!\cdots j!}$

Now we can pros be following Theorem.

Thu.: There is a bijection $\varphi: t_{n, k} \rightarrow S^{k}(\mathbb{R N})$ between the set of homogeneous polynomials in n variables of degree K and the
set $\delta^{k}\left(\mathbb{R}^{n}\right)$ of realisymmetric n－dim．tensors of outer k ．
proof．
Let $p=\varlimsup_{\alpha \in N_{0}, l a l=k} p a x \in H_{n, k}$ be arbitrary．Waiting each monomial
of degree k as the product of K single variables leads to

$$
p=\tau_{j i-j k} \tilde{p}^{j i j k} x_{j i}-x_{j k} .
$$

Goal：choose the coetticients $\tilde{p}^{j} \cdots j x \in \mathbb{R}$ in such a way that they are invariant urdar permutation of indices．

Therefore，let ju－jjkehliang be arbitrary．For iehlmin\} , ~ t e e . ~

$$
\begin{aligned}
& \left.=\# ん l \in ん \cdots \ldots, x_{j l}=x_{i}\right\}
\end{aligned}
$$

and cline

$$
p^{j} \cdots \dot{j}=\binom{n}{\alpha_{1}, \ldots, \alpha_{n}}^{-1} \quad p_{\alpha}=\binom{n}{\alpha}^{-1} p \alpha .
$$

Then，it coolly holds $p^{\dot{1} \dot{J} k}=p^{j \pi(1) \cdots j \pi(k)} \quad f r a l l \pi S_{k}$ and the coeftiderts $p^{j i v i k}$ are uniquely determined by this propart，since it most hold

$$
p_{\alpha}=\sum_{\dot{j} \cdots, j_{k} e q l \ldots, a y, x^{\alpha}=x_{j} \cdot x_{j k}} \tilde{p}^{j}-j_{j k}
$$

for all α ．Therchore，the mapping

$$
\varphi: H_{n, k} \rightarrow s^{k}\left(\pi R^{N}\right)_{(p \rightarrow} \rightarrow\left(\tilde{p}^{j-j k}\right)_{j_{n} \cdots j k=1, \cdots, n}
$$

with $\tilde{p}^{j i-j k} \in R$ as above is welldelined and injection.
Clearly, it is also subjective since for $\left(T^{j} i_{i k}\right)_{j, \ldots, j k=1, \ldots, n} \in \delta^{k}$, it holds $\sum_{j,-j k=1, \ldots n}^{j \ldots j k} x_{j, \cdots} j_{k} \in H_{n k}$. This shows the claims.

Deft. For pe thank, we say that $T_{p:}=\varphi(p)$ is the tensor associated to p. Further, if $k=2 d \in \mathbb{N}$ is even, we define

$$
Q_{p}: \mathbb{R}^{n} \mathbb{R} \cap \rightarrow \mathbb{R}, Q_{p}(x, y)=T_{p}(\underbrace{x_{1}, \cdots, x}_{d x} \underbrace{y, \cdots y}_{\partial x})
$$

as the biform associated to p.

These notions are crucial in the next section.

The Genorulizeol Cauchy Schverz Inequalities

Let us start by giving the regular Cauchy Schwartz Inequalities.
Thu (CSI): Let QERNM be ped. Then, it holds:

$$
\begin{array}{ll}
\forall x y \in R: & x^{\top} Q y \leq \sqrt{x^{\top} Q_{x} \cdot y^{\top} Q y} \\
\forall z \in \mathbb{C}: & z^{T} Q \bar{z} \geq \sqrt{z^{\top} Q z \cdot \bar{z}^{\top} Q \bar{z}}
\end{array}
$$

El Khadir managed to prove the following generalization for convex forms.

The (Generalized CSI): Let pecni2d be an arbitrary convex form in n variables of degree 2d, Qp. $\mathbb{R}^{n} \wedge \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the associated biform. Then there are $A_{d}, B_{d}>0$ that depend only on the degree $2 d$ st.

$$
\begin{aligned}
\forall x, y \in \mathbb{R}: & Q_{p}(x, y) & =A_{d} \sqrt{p(x) \cdot p(y)} \\
\forall z \in C: & |p(z)| & \leq B_{d} \cdot Q_{p}(z, \bar{z})
\end{aligned}
$$

Prop: Let $Q \in \mathbb{R}^{n n}$ be symmetric and define the quadratic form $p Q(x)=x^{\top} Q x$, where $k=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ is the vector of voridales. Then:
$P Q$ is convex $\Leftrightarrow Q \geq 0$.
prof. This is clear, since $\nabla_{P Q}(x)=2 Q x$ and hence $\nabla^{2} P(x)=2 Q$.
Hence, $p a$ being convex coincides with Q being psd.

Remark: Turther, the biform associated to $P Q$ is given by

$$
Q_{P Q}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}, Q_{P Q}(x, y)=x^{\top} Q y
$$

This shows that the Generalized CSI's are indeed a generalization of the regular ores, where $2 d=2, p=p Q \in C_{n, 2}$ (Q psst) and constants $A_{d}=B_{d}=1$.

Optimal Constants
DQ:- For $d \in \mathbb{N}$, the optimal constants of the GCSI's are determined by

$$
\begin{aligned}
& A_{d}^{*}=\operatorname{int}_{A>0} A \text { st. } \text { Hell } \forall p \in C_{n, 2 d} \forall x, y \in \mathbb{R}^{n}: Q_{p}(x, y) \leq A \sqrt{p(x) p(y)} \\
& B_{d}^{*}=\operatorname{int}_{B>0} B \text { s.t. } \forall \text { MeAN } \forall p \in C_{n, 2 d} \forall z e C^{n}:|p(z)| \leq B Q_{p}(z, \bar{z})
\end{aligned}
$$

Remark: Using the primal and dual structure of the optimization problems in the detrition of A^{*} and B_{α}^{*}, one con prove the following results:
$\rightarrow \forall d E N$. $A_{d}^{*}, B_{d}^{*} \geq 1$.
$\Rightarrow A_{1}^{*}=A_{2}^{*}=A_{3}^{*}=1$.
Δ For all evian $d \in \mathbb{N}_{2_{2}}$: $A_{d}^{*} z_{7} 1$.
\checkmark VdEN: $\left.B_{d}^{*}=\frac{(2(d-1)}{d-1}\right) \quad($ Catalo numbers $(s a[6]))$.

Further, there is the following conjecture formulated by Eq ikhodir.
Conjecture: For all odd dEN, it holds $A_{d}^{*}=1$.

Ramork: In particular, we know that for $d=$, it holds

$$
A_{2}^{*}=1, \quad B_{2}^{*}=\frac{\binom{2 \cdot(2-1)}{2-1}}{2}=1 .
$$

This will be used in the prop of the inclusion $C_{\text {tit }} S \sum_{\text {xii. }}$

What separates the $\delta 08$ farms Lxix from the non sos forms inside $P_{y, y}$

The following result is loosed on the work of Blekherman, which uses the socalled Cayley Bacharach relations.
El Khadir managed to further simplify those results under the usage of classical tools from optimization such as the Karat Kuhn Tucker (KXT) conditions. This whey, he obtained the following conditions on a PSD form pePpy to be SOS.

Thu.: A nonnegative quarternery quartic pePsin is $\delta O S_{\text {, ie. pe }} \sum_{4,4}$ if and only if the bellowing two conditions hold:
(1.) $\forall r_{1}^{\prime}, \ldots, r^{8} \in \mathbb{R}^{*} \quad \forall a_{21}, a_{8} \in\left\langle-1,1 y\right.$ sit. \quad Uv. $+\sum_{i=2}^{8} a_{i}$ evri $=0$:

$$
p\left(r^{\prime}\right) \leq\left(\sum_{i=2}^{8} \sqrt{p\left(r^{i}\right)}\right)^{2}
$$

(2.) $\forall r^{3}, \ldots, r^{8} \in \mathbb{R}^{H} \quad \forall z \in C^{\dagger}$ sit. $\bar{z} \neq z \quad \forall a_{3}, \ldots, a_{8} \in ん \rightarrow, ~ प$ st. $\quad z z^{\top}+\bar{z} \bar{z}^{\top}=\sum_{i=3}^{\infty} a_{i} r^{i}\left(r^{i}\right)^{T}$:

$$
2\left(|p(z)|+\operatorname{Re}(p(z)) \leq\left(\sum_{i=3}^{8} \sqrt{p\left(r^{i}\right)}\right)^{2} .\right.
$$

Main Theorem
In this Section we use the GCSI's to prove that every convex quartemary quartic Rultills the two conditions from the previous Theorean, which yields that $C_{4,4} \leq \sum_{4,4}$

Theorem: It hells $C_{x i t} \leq \sum_{y i x}$.
prop. Let $p \in C_{Y, 4}$ be arbitrary. We want too show that p satisfies the conditions (1.) \& (2.) of the previous Theorem. First of all, we know that ρ satisfies th GCSI's with optimal constants equal to one ,ie.

$$
\begin{array}{ll}
\forall x, y \in \mathbb{R}^{4}: & Q_{p}(x, y) \leq \sqrt{p(x) \cdot p(y)} \\
\forall z \in \mathbb{C}^{4}: & |p(z)| \leq Q_{p}(z \bar{z}) . \tag{2}
\end{array}
$$

Now, cake a look at the conditions (1.) \& (2).
(1.) Let $r^{\prime} \ldots, r^{\gamma} \in \mathbb{R} t$ and $a_{2} 1, a_{8} \in\left\langle-1,1 y\right.$ be st $r^{\prime}(r)^{\top}=\sum_{i=2}^{8} a_{i} r^{\prime}\left(r^{i}\right)^{\top}$. T.S.: $\rho\left(r^{\prime}\right) \leq\left(\sum_{i=2}^{8} \sqrt{\rho\left(r^{i}\right)}\right)^{2}$

Remeober that the matrix product of a vector or with its trincpase is the some as the (symmetric) outer product of x with itself, ie. $x x^{\top}=x 0 x=x^{2}$. Hence, we have

$$
\left(r^{\prime}\right)^{2}=\sum_{i=2}^{8} a_{i}\left(r_{i}\right)^{2}
$$

Squaring both sides, i.e. taking again the symnotoric outer product of each side with itself shows

$$
\begin{equation*}
\left(r^{\prime}\right)^{4}=\sum_{i, j=2 \ldots 8} a_{i} a_{j}\left(r^{i}\right)^{2}\left(r^{j}\right)^{2} \tag{3}
\end{equation*}
$$

Now, write $p=\sum_{j_{1} \cdots, j y=1 \ldots, 4} \tilde{p}^{j i j u} x_{j} \cdots x_{j y}$ sit. He conpticents $\tilde{p}^{j-j} \in \mathbb{j}$ are invariant under permutation of irelices.

This shows for ayeR':

$$
\begin{align*}
Q_{p}(x, y) & =\sum_{j, \ldots, j x=1, \ldots, 4} \tilde{p}^{j 1-j 4} x_{j,} x_{j}, y_{j 2} y_{j 2} \tag{4}\\
& =\sum_{j 1 \cdots j_{4}=1, \ldots, 4} \tilde{p}^{j \cdots j+}\left(x^{2} y^{2}\right)_{j \cdots \cdots j 4}
\end{align*}
$$

Hence, we have

$$
\begin{aligned}
& p\left(r^{\prime}\right)=\sum_{j_{11 \ldots, j 4}=1 \ldots, 4} \tilde{\tilde{\rho} j \cdots j 4}\left(\left(r^{\prime}\right)^{4}\right) j \ldots j u t \\
& \left.\stackrel{(3)}{=} \sum_{i j=2}^{8} a_{i} \dot{\sum_{j} \cdots i j=1, \ldots, i} \tilde{p}^{\dot{v}-i^{4}}\left(\left(r^{i}\right)^{2}\left(r^{j}\right)^{2}\right)\right)^{j-j x} \\
& \text { (k) } \sum_{i, j=2}^{8} a_{i} a_{j} Q_{p}\left(r^{i}, r^{j}\right) \\
& \leq \sum_{i, j=2}^{8} \underbrace{\left|a_{i} g_{y}\right|}_{=1}\left|Q_{p}\left(r^{i}, r^{j}\right)\right| \\
& \operatorname{\operatorname {GCSI}} \sum_{i, j=2}^{8} \sqrt{p\left(r^{i}\right) p(r j)}=\left(\sum_{i=1}^{8} \sqrt{p(r i)}\right)^{2} \text {. }
\end{aligned}
$$

This shows that (1.) holds.
(2.) Let $r^{3}, \ldots, r^{8} \in \mathbb{R}^{t}, z \in \mathbb{C}^{4}$ sit. $z \neq \bar{z}$ and $a_{3}, \ldots, a_{8} \in h-1,1 y$ be arbitrary such that $z z^{\top}+\bar{z} \bar{z}^{\top}=\sum_{i=3}^{8} a_{i} r_{i} r_{i}^{\top}$. As in (1.), ore can see that

$$
\begin{equation*}
z^{4}+2 z^{2} \bar{z}^{2}+\bar{z}^{4}=\sum_{i j=3}^{8} a_{i} a_{j}\left(r^{j}\right)^{2}\left(r^{j}\right)^{2} \tag{5}
\end{equation*}
$$

Furcthen we have

$$
\begin{aligned}
& p(z)+2 Q_{p}(z \bar{z} \bar{z})+p(\bar{z}) \\
& \frac{\text { date }}{k(4)} \sum_{(j-j x=1 \ldots, y} \tilde{p}^{j \cdots j 4}\left(z^{4}+2 z^{2} \bar{z}^{2}+z^{4}\right) j-j y \\
& \stackrel{(5)}{=} \sum_{i, j=3}^{x} a_{i} a_{j} \sum_{j \times j k=1 \ldots, k} \tilde{p}^{j \cdots j+\left(\left(r^{2}\right)^{2}(j)^{2}\right)^{j \cdots j x}} \\
& \stackrel{(4)}{=} \sum_{i j=3}^{8} a_{i} a_{j} a_{p}(r i, i) \text {. }
\end{aligned}
$$

This yields

$$
\begin{aligned}
&2(\mid p(z))+\operatorname{Re}(p(z))) \stackrel{(2)}{\leq} 2\left(Q_{p}(z, \bar{z})+2 e(p(z))\right) \\
&= p(z)+2 Q_{p}(z \bar{z})+p(\bar{z}) \\
&(6) \sum_{i j=3}^{8} a_{i} a_{j} Q_{p}\left(r_{i}, r^{j}\right) \\
& \leq \sum_{i, j=3}^{8} \underbrace{\left(a_{i} Q_{j}\right)\left(Q_{p}\left(r^{i}, r j\right) \mid\right.}_{=1} \\
&(1) \quad \sum_{i, j=3}^{8}\left(\sqrt{p\left(r^{i}\right) p(r j)}\right)^{2}=\left(\sum_{i=3}^{8} \sqrt{p\left(r^{i}\right)}\right)^{2} .
\end{aligned}
$$

This shows the claim.

Reterences
[1] A. A. Armedi P. A. Pariflo: A complete characterization of the gap between convexity and sos-convexity, SIAM Journal on Optimization, 23 (2013), pp. $8(1-833$
[2] G. Blekherman: Convex forms that are not sum of squares, arkiv preprint, ar Xiv: 0910.0686 (2009)
[3] G. Blekherman: Nornegative polynomials and sam of squares, J. Amer. Math. Soc., 2s (2012), pp. 617-63s
[4] B. El Khadir: On Sum of Squares Representations of Convex Forms and Generalized Caashy Schware Inequalities, ar Kiv: 1909.075×641 (2019)
[S] G.Fischer: Lineare Algefora. Eine Eintūrung für Studienantanger, Springer Spektrim, 18. Autlage (2013)
[6] P. Itliton, J. Pedersen: Catalan numbers, their generalization and their uses. The Mastumatical Intelligencer, 13 (1991), pp,64-7s
[7] M. Wbrich, S. Mbrich: Nichtlineare Optimierung, Birkhā̀ser, Springer Basel (2011)

