Proof of Hilbert's 1888 Theorem for ternary quartics

Charu Goel
Master Seminar on Real Algebraic Geometry
University of Konstanz

Abstract

In 1888, Hilbert proved that $\mathcal{P}_{n, 2 d}=\Sigma_{n, 2 d}$ if and only if $n=2$ or $d=1$ or $(n, 2 d)=(3,4)$, where $\mathcal{P}_{n, 2 d}$ and $\Sigma_{n, 2 d}$ denote the (closed, convex) cones of the positive semidefinite (psd) and sums of squares (sos) n-ary $2 d$-ic forms respectively. We will discuss the original proof due to Hilbert of the fact that every psd ternary quartic is a sum of not more than three squares of quadratic forms. The central idea of this proof is to associate to any ternary quartic a curve in the complex projective plane and then use the classical theory of algebraic curves. We will present a modern simplified version of Hilbert's proof due to Cassels, which was given by Rajwade in 1993. Moreover, we will point out modern expositions of Hilbert's proof by Rudin and Swan.

