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Description

The aim of this cycle of seminars is to develop in more details some topics that were introduced in the
course "Real Algebraic Geometry I” from the WS 2018-19 and that could be a starting point for a master
thesis in the research stream investigated in the Schwerpunkt Reelle Geometrie und Algebra. The talks
could focus for instance on the topics listed below, but we are also open to related thematic proposals
from the participants. Each talk will provide a review of the results already known in literature about
one of these topics and point out some related open questions.

List of possible topics

1. Cylindrical decomposition of semialgebraic sets
This seminar will discuss how a semialgebraic subset of Rn (where R is a real closed field) can
be decomposed as a disjoint union of finitely many semialgebraic sets such that each of them is
semialgebraically homeomorphic to an open hypercube of Rd. (See [9, Lecture 16, 17], [6, Sec 2.3])

2. Topological definition of dimension of semialgebraic sets
Using the cylindrical decomposition it is possible to give a topological definition of dimension of a
semialgebriac set K. In this seminar, this notion will be introduced, discussed and compared with
the dimension of K as an algebraic set. (See [9, Lecture 22], [6, Section 2.8])

3. The necessity part of Hilbert’s 1888 Theorem:
Σn,m ( Pn,m for all n ≥ 3, m ≥ 4 and (n,m) 6= (3, 4) with m even.
Using algebraic geometry, Hilbert showed that there exist psd quaternary quartics and ternary
sextic which are not sos forms and also that this is sufficient to get psd not sos forms in all the
other cases mentioned above. This seminar will present an explicit example of psd ternary sextic
which is not a sos provided by Schmüdgen in 1979 without applying the theory of algebraic curves.
The connections between the existence of such examples and the multivariate moment problem
might also be highlighted. (See [15] and [8], [14, Chapter 7])

4. Theorems of Polya and Reznick
This seminar will discuss two interesting results which can be both derived from the Represen-
tation Theorem for Archimedean T-modules. Namely, Polya’s theorem establishes that if f is a
homogenous polynomial which is positive on Rn \ {0}, then there exists k ∈ N0 s.t. the polynomial
(
∑n

i=1 Xi)
kf has non-negative coefficients. With similar methods, it is possible to show a similar

result due of Reznick which states that if f is a positive homogenous polynomial, then there exists
k ∈ N0 s.t. the polynomial (

∑n
i=1 X

2
i )kf is a sum of squares. (See [10, Section 5.5], [12], [13])

5. The core variety in the truncated moment problem
In [7] Fialkow introduced an alternate approach to the truncated moment problem based on a
geometric invariant called the core variety. This seminar will give an introduction to this approach
and show how the core variety can be used to establish a general solvability criterion for the
multivariate truncated moment problem, [3] (see also [16, Section 18.3]).



6. Preservation of moments
This seminar will discuss the problem of classifying all functions which, when applied term by
term, leave invariant the sequences of moments of positive measures on the real line. Equivalently,
the classification of all entrywise endomorphisms of the cone of positive Hankel matrices with real
entries. (See [1], [2, Section 3])

7. Continuous logic
This seminar will provide a general presentation of continuous first order logic as a formalism for
the model theory of complete metric structures, such as may arise in probability theory, functional
analysis, topological dynamics, and other areas of mathematics. The main purpose is to discuss
separably categorical theories, analogous to countably categorical theories in classical first order
logic. (see [4], [5]).

8. Counting rational points using o-minimality.
This seminar will be concerned with the distribution of rational points on certain nonalgebraic
subsets of Rn. In particular, it will focus on a recent result in [11] showing that there are very
few rational points of a definable set X in an o-minimal structure over R which do not lie on some
connected semialgebraic subset of X of positive dimension.
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