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Abstract. The classical truncated Moment Problem asks whether a real-valued linear functional
defined on the space R[X1, . . . ,Xn]d of polynomials in n variables with real coefficients and total
degree at most d can be represented as integration with respect to a non-negative Radon measure
on Rn. While huge progress has been made in finding solvability criteria for the full case, i.e. when
the starting functional is defined on the whole polynomial algebra R[X1, . . . , Xn], new approaches
are needed for getting solutions to the truncated case. In 2017 L. A. Fialkow introduced a new
approach to the classical truncated Moment Problem using the core variety, which we are going to
investigate in this report. We will derive the most important properties of the core variety along
with an illustrative example and see how the core variety can be used to establish a necessary and
sufficient condition for solving the truncated Moment Problem. Furthermore, we will pose some open
questions and emphasize the great potential of this approach.
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1. Introduction

Let (S, τ) be a non-empty topological T1 space and V a finite dimensional R-vector space consisting
of real valued Borel measurable functions on (S,B(S)), where B(S) is the Borel σ-algebra induced by
τ on S. This report gives an existence criterion for a fixed L : V → R linear to be representable as
integration w.r.t. a non-negative Borel measure µ on (S, τ) i.e.

L(f) =

∫

S

f dµ, ∀f ∈ V.

For S = Rn endowed with the Euclidean topology and V equal to the finite dimensional R-vector
space R[X1, . . . , Xn]d of polynomials in n variables with real coefficients and total degree at most
d, this criterion provides a solution to the truncated Moment Problem (n, d ∈ N). More precisely,
the truncated K-Moment Problem asks whether a linear functional L : R[X1, . . . , Xn]d → R can be
represented as integration w.r.t. a non-negative Radon measure µ on (Rn,B(Rn)) supported on a fixed
closed subset K of Rn, said K-representing measure for L, i.e.

L(f) =

∫

K

f dµ, ∀f ∈ R[X1, . . . , Xn]d.

If K = Rn, then we refer to this problem just as the truncated Moment Problem.

The full K-Moment Problem consists of the same question but for V := R[X1, . . . , Xn], i.e. for
the infinite dimensional R-vector space consisting of polynomials in n variables with coefficients in
R of any degree. Several criteria for the existence of a solution to the full K-Moment Problem are
known in the literature. The most famous of these criteria is the Riesz-Haviland theorem, which states
that the non-negativity of L on any non-negative polynomial on K is both necessary and sufficient
for the existence of a representing measure for L supported on K. However, this result as well as
many other criteria for the full case do not remain valid in the truncated case, since clearly we lose
information by the truncation and so new approaches are needed for the truncatedK-Moment Problem.

The approach presented in this report has been introduced in [2] and makes use of a geometric
invariant called the core variety. In fact, in [2] the author proves that the core variety contains the
support of any representing measure for L. Therefore, the core variety being non-empty is clearly
necessary for the existence of a representing measure for L. It is then natural to ask, if this also
suffices for the existence of a representing measure for L. This question is positively answered in the
main theorem of this report based on [4]. Hence, a necessary and sufficient criterion for solving the
truncated Moment Problem is given. This result can also be used to establish a truncated version of
the Riesz-Haviland theorem in the general setting defined above (see [2, Theorem 3.1]). A truncated
version of the Riesz-Haviland theorem in the classical setting over R[X1, . . . , Xn]d was already estab-
lished in [3, Theorem 2.2].

This new approach to the truncatedK-Moment Problem also sheds some light on the fullK-Moment
Problem. Indeed, J. Stochel proves in [10] that a given full K-Moment Problem is solvable if and only
if any corresponding truncated version is solvable.

Let us shortly describe the structure of this report. In Section 2 we recall some preliminary notions
based on [5], [6], [7] and [8]. In Section 3 we introduce the core variety using a sequence of zero sets
{Si}i∈N0

associated to a fixed linear functional and observe some of the most important properties of
this sequence, such as the fact that it stabilizes. This is useful to give a more explicit description of
the core variety, as in [4]. In Section 4 we prove the main theorem of [4], giving a criterion for the
existence of a representing measure in the general setting introduced above. In Section 5 this result is
applied to the truncated Moment Problem and yields a necessary and sufficient condition for a linear
functional on R[X1, . . . , Xn]d to admit a K-representing measure where K ⊆ Rn. In Section 6 the
potential of this new approach is pointed out, by posing some open questions related to the truncated
Moment Problem.
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2. Preliminaries

The aim of this section is to recall the most basic notions from (real) algebraic geometry and mea-
sure theory needed to understand the main result presented in this report.

For any n ∈ N and any field k we set k[X] := k[X1, . . . , Xn] to be the ring of polynomials in n

variables with coefficients in k. We denote elements of kn by x := (x1, . . . , xn). For d ∈ N0 we set
k[X]d to be the subring of k[X] consisting of polynomials in n variables with coefficients in k and total
degree at most d.

The following is one of the most important concept in this report (see e.g. [7]).

Definition 2.1. Let R be a real closed field and n ∈ N. For s ∈ N, and f1, . . . , fs ∈ R[X] we define
the associated algebraic (zero) set to be

Z(f1, . . . , fs) := {a ∈ Rn | ∀i ∈ {1, . . . , s} : fi(a) = 0}.

Remark 2.2. If we drop the assumption of R being real closed, we call this set an affine variety of Rn

and denote it by V(f1, . . . , fs) (see e.g. [8]). Recall that

V(f1, . . . , fs) = V(〈f1, . . . , fs〉),

where 〈f1, . . . , fs〉 is the ideal generated by f1, . . . , fs over R.

In the following we always assume the underlying field to be R, which is real closed. Therefore,
both notions coincide and are equivalently applicable for defining the core variety.

A fundamental object in the study of the classical K-Moment Problem is the cone (i.e. a set closed
under non-negative linear combinations of its elements) Psd(K) of all polynomials in n-variables which
are non-negative on a fixed closed subset K of Rn.

Definition 2.3. Let S be a set and V a set of real valued functions on S. For K ⊆ S we define

PsdV (K) := {f ∈ V | ∀x ∈ K : f(x) ≥ 0}.

Remark 2.4. If V is clear from the context, we simplify to Psd(K) := PsdV (K).

Recall also the following notion.

Definition 2.5. Let n ∈ N and S ⊆ Rn. The convex cone generated by S is defined as

cone(S) :=

{
m∑

i=1

λifi | m ∈ N, λ1, . . . , λm ∈ R≥0, f1, . . . , fm ∈ S

}

.

Remark 2.6. The cone(S) is the smallest convex cone in Rn containing S.

As the Moment Problem simultaneously evolved in algebra and functional analysis, it is indispens-
able to recall some basic definitions of measure theory and functional analysis.

A non-empty topological space (S, τ) induces a measurable space (S,B(S)), where B(S) is the Borel

σ-algebra induced by τ on S. In particular, for S = Rn we have B(Rn) =
n⊗

i=1

B(R).

Throughout this script we are working over a non-empty topological T1 space.

Definition 2.7. A non-empty topological space (S, τ) is a T1 space if for any distinct x, y ∈ S there
exist two neighborhoods Nx of x and Ny of y such that x 6∈ Ny and y 6∈ Nx.

Remark 2.8. Requiring the T1 property on (S, τ) is equivalent to require any singleton of S to be
closed w.r.t. τ . Note that any Hausdorff space is a T1 space.

To attack the truncated Moment Problem, we need to understand the notion of representing mea-
sures for a linear functional.
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Definition 2.9. Let (S, τ) be a non-empty topological space, V a vector space of Borel measurable real
valued functions over (S,B(S)) and V ∗ := {L : V → R | L is linear}. A non-negative Borel measure µ
on (S,B(S)) is a representing measure for L ∈ V ∗, if for any f ∈ V we have

L(f) =

∫

S

f dµ.

The main focus of the classical Moment Problem are representing non-negative Radon measures.

Definition 2.10. Let (S, τ) be a non-empty topological Hausdorff space. A Radon measure µ

on (S,B(S)) is a locally finite (i.e. for all x ∈ S, there exists some neighborhood N of x such that
µ(N) < ∞) and inner regular (i.e. for any B ∈ B(S), µ(B) = sup({µ(K) | K ⊆ B,K is compact}))
measure.

Let us recall two further basic definitions from measure theory.

Definition 2.11. Let (S,Σ) be a measurable space. A measure µ on (S,Σ) is σ-finite if there exists
at most countably many Ai ∈ Σ such that µ(Ai) <∞ and

⋃

i

Ai = S.

Definition 2.12. Let (S,Σ) be a measurable space, A ∈ Σ and µ a measure on (S,Σ). A is called an
atom of µ if µ(A) > 0 and for any B ∈ Σ with B ⊆ A either µ(B) = µ(A) or µ(B) = 0.

For more details on the notions introduced above see e.g. [5], [6], [7] and [8].

3. The Core Variety

We are now ready to introduce the core variety and observe some of its properties. From now on
let (S, τ) be a non-empty topological T1 space inducing the measure space (S,B(S)). Furthermore,
let V be a finite dimensional R-vector space in {f : (S,B(S)) → (R,B(R)) | f is measurable} and let
V ∗ := {L : V → R | L is linear}, i.e. V ∗ is the (algebraic) dual space of V . We set Psd(·) := PsdV (·)
as defined in Definition 2.3.

Definition 3.1. For L ∈ V ∗, set

S0 := S0(L) := S

S1 := S1(L) := Z({p ∈ Psd(S) | L(p) = 0})
Si+1 := Si+1(L) := Z({p ∈ Psd(Si) | L(p) = 0}) for any i ∈ N.

Definition 3.2. For L ∈ V ∗, the set

CV(L) :=
∞⋂

i=0

Si

is called the core variety corresponding to L.

Remark 3.3. It can be easily observed that the sequence {Si}i∈N0
is decreasing w.r.t. ⊆, i.e. for all

i ∈ N0 we observe Si+1 ⊆ Si.
Indeed, this can be proven by induction over i ∈ N0.
Base case i = 0 Clear.
Inductive assumption Suppose that Sj+1 ⊆ Sj holds for all j ≤ i.
Step of induction i 7→ i+ 1 Let us fix x ∈ Si+2. Since i + 2 ≥ 2 (i ∈ N0), according to
Definition 3.1, we have p(x) = 0 for any p ∈ Psd(Si+1) with L(p) = 0. Let q ∈ Psd(Si)
with L(q) = 0. The inductive assumption Si+1 ⊆ Si implies q ∈ Psd(Si+1). Hence, we
can conclude q(x) = 0. Since q was arbitrarily chosen, we get x ∈ Si+1.

The following observation reveals that the sequence {Si}i∈N0
might stabilize.

Lemma 3.4. If Sk = Sk+1 for some k ∈ N0, then for any l ≥ k Sl = Sk.

Proof. If ∅ = Sk = Sk+1, then the claim trivially holds by Remark 3.3.
Therefore, w.l.o.g. assume ∅ 6= Sk = Sk+1. Let x ∈ Sk = Sk+1, then for any g ∈ Psd(Sk) = Psd(Sk+1)
with L(g) = 0, g(x) = 0. Hence, x ∈ Sk+2. Since x was arbitrarily chosen in Sk, we conclude
∅ 6= Sk = Sk+1 = Sk+2 using Remark 3.3. Iteratively the claim follows. �
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From now on we will keep the following assumption.

(3.1) ∀L ∈ V ∗ ∃ pL ∈ V s.t. L(pL) > 0 and pL is strictly positive on S.

This will be used to prove the next lemma.

Lemma 3.5. Let f ∈ V and Sk+1 6= ∅ with k ∈ N0. If f ↾Sk
≡ 0, then L(f) = 0.

Proof. Assume that there exists some f ∈ V such that f ↾Sk
≡ 0 but L(f) 6= 0. W.l.o.g. L(f) < 0 (else

use −f and exploit the linearity of L). Set g := pL − L(pL)
L(f) f ∈ V and observe for any x ∈ Sk that

g(x) = pL(x)
︸ ︷︷ ︸

>0

−
L(pL)

L(f)
f(x)
︸︷︷︸

=0

> 0.

Therefore, g is strictly positive on Sk. By the linearity of L, we have

L(g) = L(pL)−
L(pL)

L(f)
L(f) = 0.

Altogether we conclude ∅ = Sk+1.  �

We are now ready to prove the main property of the sequence {Si}i∈N0
.

Proposition 3.6. The sequence {Si}i∈N0
stabilizes, i.e. there exists some k ∈ N0 sufficiently large

such that, for all l ≥ k, Sl = Sk.

Proof. Let i ∈ N0 and set

Wi := {f ↾Si
| f ∈ V }.

W.l.o.g. ∅ 6= Si+1. Define ψ : Wi →Wi+1 by ψ(f ↾Si
) := f ↾Si+1

. According to Remark 3.3, Si+1 ⊆ Si

and so ψ is well-defined and trivially surjective.
Recalling that V ⊇Wi is finite dimensional, we deduce

(3.2) dimWi+1 = dim(im(ψ)) = dimWi − dim(ker(ψ)) = dimWi − dim(ker(ψ)).

Now assume that the sequence has not yet stabilized, i.e. Si+1 ( Si, and so we can fix some
x ∈ Si\Si+1. For such an x there exists some f ∈ Psd(Si) such that L(f) = 0 but f(x) 6= 0 by the
definition of Si+1. We conclude f ↾Si

6≡ 0.
Now let y ∈ Si+1. Since f ∈ Psd(Si) with L(f) = 0, we know f(y) = 0. Moreover, y was arbitrarily

chosen in Si+1 and so

f ↾Si+1
≡ 0.

Hence, we found a non-trivial element - given by f - in the kernel of ψ. Therefore, dim(ker(ψ)) > 0.
Plugging this observation into (3.2) we deduce

dimWi+1 < dimWi.

The dimension of the Wi drops in such a case.
Now we put it all together by examining what cases might happen for the sequence {Si}i∈N0

.
Case 1 Assume ∅ = Si. Then according to Remark 3.3 the sequence stabilizes for k = i.
Case 2 Assume ∅ = Si+1 ( Si 6= ∅. Then according to Remark 3.3 the sequence stabilizes for k = i+1.
Case 3 Assume ∅ 6= Si = Si+1. Then according to Lemma 3.4 the sequence stabilizes for k = i.
Case 4 Assume ∅ 6= Si+1 ( Si 6= ∅. Then by dimWi+1 < dimWi, the drop of dimension can only take
place finitely often, since V = W0 is finite dimensional. Therefore, one of Case 1 to Case 3 is fulfilled
after a finite time. This leads to a stabilization of the sequence in at most one more step (Case 2). �

We can now immediately derive a more explicit description of the core variety and an upper bound
for the stabilization index of the sequence {Si}i∈N0

.

Lemma 3.7. The sequence {Si}i∈N0
stabilizes in at most (dimV ) − 1 steps. Hence, for all k ≥

(dimV )− 1 we have Sk = S(dimV )−1.
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Proof. Let us construct the longest possible chain, which does not stabilize by exploiting the proof of
Proposition 3.6. To do that Case 4 has to be repeatedly fulfilled for the longest time possible. Clearly
W0 = V . Therefore, we start with full dimension dim V . The least drop of dimension possible in each
step is one.

If the stabilization has not taken place yet at step i, we have Si+1 6= ∅ and so pL ↾Si+1
∈ Wi+1.

Clearly L(pL) > 0 by the choice of pL ∈ V . Moreover, Si+1 6= S as we have not yet stabilized.
Suppose that dimWi+1 = 1 and so Wi+1 = 〈pL ↾Si+1

〉, i.e. for any f ∈ V there exists some cf ∈ R

such that f ≡ cfpL on Si+1. Hence,
L(f) = cf L(pL)

︸ ︷︷ ︸

>0

by exploiting Remark 3.5. Clearly L(f) = 0 if and only if cf = 0 and so if and only if f ≡ 0. Therefore,
we conclude

Si+2 := Z({cfpL ∈ Psd(Si+1) | cf = 0}) = Z(0) = S.  

Hence, dimWi+1 ≥ 2 and so the dimension of Wi can drop down at most to two. This leaves us with
at most dim V − 2 drop of dimensions in total.

In the next step one of Case 1 to Case 3 is fulfilled and so the stabilization occurs in at most one
more step (Case 2). Altogether the sequence terminates after at most dimV − 1 steps. �

The properties introduced so far enable us to give a more explicit description of the core variety.

Remark 3.8. Let k be a stabilizing index as in Proposition 3.6. Then we obtain

CV(L) =
∞⋂

i=0

Si =

k⋂

i=0

Si = Sk = S(dimV )−1

by exploiting Remark 3.3 and Lemma 3.7. Note that k < (dimV )− 1 might hold.

As already emphasized (dim V )− 1 is only an upper bound for the stabilization index, which does
not necessarily need to be reached. Yet it is the least upper bound we can find, as showed by the next
example.

Example 3.9. Set S := [0,∞) ⊆ R and endow it with the Borel σ-algebra B(S). Moreover, set

f0(x) := −
1

2
x+ 1[0,2](x)

f1(x) :=
(x− 2)(4− x)

x− 1
1[1,4](x)

f2(x) :=
(x− 4)(6− x)

x− 3
1[3,6](x)

and
p :≡ 1.

0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

f0
f1
f2

Fig 1: Visualization of f0, f1 and f2
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The behavior of f0, f1 and f2 on S := [0,∞) is visualized in Fig. 1. Obviously p, f0, f1 and f2 are
linear independent B(S)-measurable functions over R as Fig. 1 emphasizes. Now set

V := 〈f0, f1, f2, p〉R,

which is a finite dimensional vector space over R. More precisely, dimV = 4. Define L ∈ V ∗ by

L(p) := 1

and

L(fi) := 0

for i = 0, . . . , 2. By setting pL := p the standing assumption (3.1) is fulfilled. Now observe

S0 := S

and
S1 := Z({f ∈ Psd(S) | L(f) = 0}).

Any f ∈ V with L(f) = 0 must be of the form f = a0f0 + a1f1 + a2f2 with a0, a1, a2 ∈ R for obvious
reasons. Let f ∈ Psd(S). Then obviously a2 ≥ 0 and

(3.3) 0 ≤ lim
xց3

f(x) = lim
xց3

a0f0(x) + a1f1(x) + a2f2(x) =
1

2
+ a2 lim

xց3

(x− 4)(6 − x)

x− 3
︸ ︷︷ ︸

→−∞

.

This immediately yields a2 = 0. This behavior can also be deduced by carefully considering Fig.1,
where it gets obvious that f goes to −∞ as xց 3 if and only if a2 6= 0.
Analogously a1 = 0 can be easily seen by letting xց 1. Therefore, we conclude f = a0f0 ∈ 〈f0〉 with
a0 ≥ 0 and hence

S1 = Z(f0) = [2,∞).

Similarly, we determine

S2 := Z({f ∈ Psd(S1) = Psd([2,∞)) | L(f) = 0}).

Again any f ∈ V is of the form f = a0f0+ a1f1+ a2f2 with a0, a1, a2 ∈ R and if f is also non-negative
on [2,∞), then (3.3) shows that a2 = 0 and a1 ≥ 0. Hence,

S2 := Z(f0, f1) = [4,∞).

Lastly we observe that

S3 := Z({f ∈ Psd(S2) = Psd([4,∞)) | L(f) = 0}) = Z(f0, f1, f2) = [6,∞).

So we found a strictly decreasing sequence

S = S0 ) S1 ) S2 ) S3 = Sk

where k := 3 = 4− 1 = dimV − 1 is the highest index possible for which the sequence {Sk}k∈N0
might

has not yet stabilized according to Lemma 3.7.

4. An existence criterion for representing measures

The core variety will now be used to state and prove a solvability criterion for the existence of a
representing measure for a fixed linear functional L on V as in Section 3. Recall that (S, τ) is assumed
to be a T1 space, V a finite dimensional R-vector space consisting of real valued measurable functions
over (S,B(S)) s.t. the standing assumption (3.1) holds.

A very simple type of linear functionals on V having a representing measure are the point evaluations.

Definition 4.1. For any fixed s ∈ S, we define the point evaluation at s to be the linear functional
on V s.t.

Ls(f) := f(s), ∀f ∈ V.

Obviously for any s ∈ S, Ls has a representing measure given by δs, where δs denotes the Dirac
measure with mass at s. Point evaluations are in fact representable by a finitely atomic measure.
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Definition 4.2. A σ-finite measure µ on a measurable space (A,Σ) is called finitely atomic, if there
exists a partition of A consisting of countably many measurable Ui such that each Ui is either an atom
of µ or a zero set.

Since (S, τ) is assumed to fulfill the T1 property in our setting, we know by Remark 2.8 that any
singleton is closed and so measurable. Therefore, any non-zero non-negative finitely atomic measure
µ on (S,B(S)) is necessarily a non-negative linear combination of Dirac measures i.e.

µ =

m∑

i=1

λiδsi

for some m ∈ N, s1, . . . , sm ∈ S and λ1, . . . , λm ∈ R≥0. Note that if (S, τ) is a Hausdorff space, then
any finitely atomic measure is especially a Radon measure.

Recall that a corollary to the Bayer-Teichmann Theorem (see [1, Theorem 2]) guarantees that if
L ∈ V ∗ has a representing measure µ, then L has a finitely atomic representing measure.

Definition 4.3. Set
C := Cone({Ls | s ∈ S})

and
M := {L ∈ V ∗ | L has a representing measure},

i.e. C is the convex cone of all linear functionals on V coming from finitely atomic measures on (S,B(S))
and M is the set of all linear functionals on V having a representing measure on (S,B(S)).

Note that C = Psd(S)∗ w.r.t. the product topology on RS , where R is endowed with the Borel
σ-algebra B(R) (see [2, Proposition 2.1] for a proof).

Moreover, there exists a close relation between the linear functionals representable by finitely atomic
measures and the ones representable by a not necessarily finitely atomic measure.

Proposition 4.4. Let R be endowed with the Euclidean topology and let B(R) be the corresponding
Borel σ-algebra. Then

int(C) = int(M) = int(Psd(S)∗) = {L ∈ V ∗ | ∀f ∈ Psd(S)\{0} : L(f) > 0} =: SP

w.r.t. the product topology on RS. Any L ∈ SP is said to be strictly positive over Psd(S).

Proof. See [2, Corollary 2.2]. �

As already mentioned in the introduction, we are interested in K-representing measures. Therefore,
let us recall the definition of the support of a measure.

Definition 4.5. Let µ be a Borel measure on (S,B(S)) induced by (S, τ). Then the support of µ is
defined as

supp(µ) := {s ∈ S | µ(U) > 0 for all open sets U ∋ s}.

In particular, based on [2, Corollary 2.2] and Proposition 4.4 we observe the following.

Corollary 4.6. If L ∈ SP, then L ∈ C and
⋃

µ∈A(L)

supp(µ) = S

where A(L) := {µ measure on (S,B(S)) | µ finitely atomic representing measure for L}.

The next proposition will be crucial in the proof of the main theorem of this report. For k ∈ N0 set

Wk := {f ↾Sk
| f ∈ V }

and for L ∈ V ∗ define L̃ : Wk → R L̃(f ↾Sk
) := L(f) for all f ∈ V .

8
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Proposition 4.7. Let L ∈ V ∗.

(1) If ∅ 6= Sk = Sk+1 for some k ∈ N0, then

L̃ ∈ SPk := {l ∈W ∗
k | ∀f ∈ Psd(Sk)\{0} : l(f ↾Sk

) > 0}

and L̃ has a finitely atomic representing measure. Moreover,
⋃

µ∈A(L̃)

supp(µ) = Sk,

where A(L̃) := {µ measure on (Sk,B(Sk)) | µ finitely atomic representing measure for L̃}.
(2) If any f in V is continuous on S, then supp(µ) ⊆ S1 for any representing measure µ of L.

Proof.

(1) Let us observe that L̃ ∈ SPk. It can be easily seen that L̃ is a well-defined linear functional
on Wk. Indeed if f ↾Sk

= g ↾Sk
then f − g ≡ 0 on Sk and so by Lemma 3.5

0 = L(f − g) = L(f)− L(g),

where the last equation follows by the linearity of L. Altogether L̃(f ↾Sk
) = L(f) = L(g) =

L̃(g ↾Sk
). Note that L̃ is clearly linear, since L is linear. Putting it all together, we conclude

L̃ ∈W ∗
k .

So assume that L̃ 6∈ SPk, due to the existence of some q ∈ Psd(Sk)\{0} such that L̃(q ↾Sk
) ≤ 0.

Case 1 Assume that 0 = L̃(q ↾Sk
) := L(q). Since q is an element of Psd(Sk)\{0}, we know

that q(s) > 0 for some s ∈ Sk. Therefore, such s is not an element of Sk+1, which
yields a contradiction since s ∈ Sk = Sk+1.  

Case 2 Assume that b := L̃(q ↾Sk
) < 0 and set a := L̃(pL ↾Sk

) := L(pL) > 0. Define

p := pL − a
b
q. Now fix s ∈ Sk and observe p(s) = pL(s)

︸ ︷︷ ︸

>0

−
a

b
︸︷︷︸

<0

q(s)
︸︷︷︸

≥0

︸ ︷︷ ︸

≤0

> 0 (pL(s) > 0

since pL is strictly positive on S according to the standing assumption (3.1)). So
p > 0 on Sk, since s ∈ Sk was arbitrarily chosen. Moreover,

L(p) =: L̃(p ↾Sk
) = L̃(pL ↾Sk

)−
a

b
L̃(q ↾Sk

) = 0

by exploiting the linearity of L̃. We conclude Sk+1 = ∅, due to the existence of a
strictly positive element over Sk on which L vanishes. This yields a contradiction as
Sk+1 = Sk 6= ∅.

Since L̃ ∈ SPk, Corollary 4.6 (by setting S = Sk and SP = SPk) ensures that L̃ is an element

of Ck := cone({L̃s | s ∈ Sk}), where L̃s is the restriction of Ls on Sk. Moreover, L̃ has a
finitely atomic representing measure on (Sk,B(Sk)) and

⋃

µ∈Ak(L̃)

supp(µ) = Sk.

(2) Assume that µ is a representing measure for L such that supp(µ) 6⊆ S1. Then there exists some
s ∈ supp(µ)\S1 ⊆ S\S1 = S0\S1. As an immediate consequence there exists some p ∈ Psd(S)
such that L(p) = 0 and p(s) > 0. Moreover, since any f in V is assumed to be continuous,
especially the considered p ∈ V is continuous. Hence, there exists some open neighborhood U
of s such that p(U) > 0. On top of that s was chosen to be an element of the support of µ and
so we deduce µ(U) > 0. Exploiting µ being a representing measure of L, we have

0 = L(p) =

∫

S

p dµ ≥

∫

U

p dµ > 0.  

�

Remark 4.8. In particular if ∅ 6= S1 = S0 = S, then k = 0 and so Wk = W0 = V . Hence, L̃ = L and
by (1) L is strictly positive over Psd(S) and has a finitely atomic representing measure.

9
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We can now state and prove the main result of this report, which gives a necessary and sufficient
condition for the existence of a representing measure for a fixed L ∈ V ∗ using the core variety.

Theorem 4.9. L ∈ V ∗ fulfilling the standing assumption (3.1) has a representing measure if and only
if CV(L) 6= ∅. In particular, if CV(L) 6= ∅, then

⋃

µ∈A(L)

supp(µ) = CV(L),

where A(L) := {µ measure on (S,B(S)) | µ finitely atomic measure representing L}.

Proof. Recall the standing assumption (3.1)

∀L ∈ V ∗ ∃ pL ∈ V s.t. L(pL) > 0 and pL is strictly positive on S.

⇒
Assume that L has a representing measure µ. By Proposition 3.6, there exists a k ∈ N0 sufficiently
large such that {Si}i∈N0

stabilizes at index k. So by Remark 3.8 we have CV(L) = Sk. Let us show
by induction over i ∈ N0 that the following claim holds.
Claim For all i ∈ N0, Si ∈ B(S) and

(4.1) µ(Si) = µ(S0) = µ(S) > 0.

Base case i=0 Clear from the standing assumption (3.1).
Inductive assumption Assume that for any j ≤ i, Sj ∈ B(S) and µ(Sj) = µ(S0) = µ(S) > 0.
Step of induction i 7→ i+ 1 Set T := 〈{f ∈ kerL | f ∈ Psd(Si)}〉 and note that Si+1 = Z(T ).

Case 1 Assume that T = {0}. Then Si+1 = Z(T ) = Z(0) = S ∈ B(S) and clearly

µ(Si+1) = µ(S0) = µ(S) > 0.
Case 2 Assume that T 6= {0}. Then there exist m ∈ N and f1, . . . , fm ∈ T ⊆ V such that

T = 〈f1, . . . , fm〉, since V is a finite dimensional vector space and T a subspace of V .
Observe that

Si ⊇ Si+1 = Z(T ) = Z(〈f1, . . . , fm〉) = Z

(
m∑

i=1

fi

)

,

where the last equality holds, because fi ∈ Psd(Si) for i ∈ {1, . . . ,m}. Clearly,
m∑

i=0

fi is

Borel measurable and so

Si+1 = Z

(
m∑

i=1

fi

)

=

(
m∑

i=1

fi

)−1

({0}) ∈ B(S)

as {0} ∈ B(R). Now set C := Si ∩ Sc
i+1 ∈ B(S) and observe that

m∑

i=1

fi ↾Si+1
≡ 0 and

m∑

i=1

fi ↾C> 0.

Since µ is assumed to be a representing measure of L, exploiting Remark 3.5, we get

0 = L

(
m∑

i=1

fi

)

=

∫

S

m∑

i=1

fi dµ =
µ(S)=µ(Si)

∫

Si

m∑

i=1

fi dµ =

∫

C∪̇Si+1

m∑

i=1

fi dµ

=

∫

C

m∑

i=1

fi dµ +

∫

Si+1

m∑

i=1

fi

︸ ︷︷ ︸

=0

dµ =

∫

C

m∑

i=1

fi

︸ ︷︷ ︸

>0

dµ.

Hence, µ(C) = 0 and so

µ(Si+1) = µ(Si\C) = µ(Si)− µ(C) = µ(Si) = µ(S0) = µ(S) > 0.

By induction we can conclude that (4.1) holds. This implies that

µ(CV(L)) = µ(Sk) > 0
10
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and so that CV(L) 6= ∅.

⇐
Assume that CV(L) 6= ∅ and let k ∈ N0 be such that CV(L) = Sk. Set

Wk := {f ↾Sk
| f ∈ V }

and define L̃ : Wk → R via L(f ↾Sk
) := L(f). Applying Proposition 4.7, we deduce that L̃ is strictly

positive over Psd(Sk)\{0} and has a finitely atomic representing measure. Moreover, the union of the
supports of all such measures is exactly Sk.

Now set Ck := Cone({L̃s | s ∈ Sk}), where L̃s is the restriction of Ls on Sk. Then we just observed

that L̃ ∈ Ck, i.e.

L̃ =
m∑

i=1

aiL̃ri

for some m ∈ N, a1, . . . , am ∈ R>0 and r1, . . . , rm ∈ Sk. Therefore, for any f ∈ V

L(f) =: L̃(f ↾Sk
) =

m∑

i=1

aiL̃ri(f ↾Sk
) =
ri∈Sk

m∑

i=1

aif(ri) =

m∑

i=1

aiLri(f)

and so L has a finitely atomic representing measure. More precisely, any finitely atomic measure
representing L̃ is also a finitely atomic measure representing L without the restriction on Sk.

Therefore, Sk is clearly a subset of the union of the supports of all finitely atomic representing
measures for L.

For the other inclusion, let µ be a finitely atomic measure representing L. The Claim ensures that
µ(Sk) = µ(S) and so atoms of µ must lie in Sk. Hence, the union of the supports of all finitely atomic
measures representing L must be a subset of Sk. Altogether we obtained that

⋃

µ∈A(L)

supp(µ) = Sk = CV(L).

�

Remark 4.10. If L ≡ 0 (so the standing assumption (3.1) is dropped), then clearly CV(L) = ∅.
Nevertheless, L is representable by the zero measure.

To clarify the importance of this main result, we will apply it to Example 3.9.

Example 4.11. Recalling Example 3.9 and Lemma 3.7, we deduce

CV(L) = SdimV −1 = S3 = [6,∞) 6= ∅.

Therefore, L has a finitely atomic representing measure and
⋃

µ∈A(L)

supp(µ) = [6,∞),

where A(L) := {µ measure on ([0,∞),B([0,∞))) | µ finitely atomic measure representing L}.

In the classical truncated Moment Problem we are working over the finite dimensional R-vector space
R[X]d and are interested in the existence of appropriate non-negative Radon measures on (Rn,B(Rn)).
Since Rn endowed with the Euclidean topology is a Hausdorff topological space, let us see what
happens, if (S, τ) is assumed to be Hausdorff.

Corollary 4.12. Let (S, τ) be a Hausdorff space. If any f ∈ V is continuous and L ∈ V ∗, then

CV(L) =
⋃

µ∈R(L)

supp(µ),

where R(L) := {µ measure on (S,B(S)) | µ representing non-negative Radon measure for L}.
11
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Proof. Let µ ∈ R(L). Then we claim that for any i ∈ N0 we have

supp(µ) ⊆ Si.

Indeed, this can be proven by induction over i ∈ N0.
Base case i = 0 Clear.
Inductive assumption Assume that for any j ≤ i supp(µ) ⊆ Si.

Step of induction i 7→ i+ 1 Assume supp(µ) 6⊆ Si+1. Hence, it exists some x ∈ supp(µ)\Si+1 ⊆
Si\ Si+1, i.e. for some f ∈ Psd(Sk) with L(f) = 0 we have f(x) > 0. Since any f ∈ V is assumed
to be continuous, there exists some open neighborhood U of x such that f(U) > 0. Also, µ(U) > 0,
because x ∈ supp(µ) and U is an open neighborhood of x. Putting all together, we get

∫

U

f dµ > 0.

Moreover, f ∈ Psd(Si) and supp(µ) ⊆ Si yields that f ↾supp(µ)≥ 0. Since µ is a representing non-
negative Radon measure for L, we deduce that

0 = L(f) =

∫

S

f dµ =

∫

supp(µ)

f
︸︷︷︸

≥0

dµ ≥

∫

U

f dµ > 0.  

In conclusion for k ∈ N0 stabilizing {Si}i∈N0
, we have that

⋃

µ∈R(L)

supp(µ) ⊆ Sk = CV(L) =
(∗)

⋃

µ∈A(L)

supp(µ) ⊆
⋃

µ∈R(L)

supp(µ),

where A(L) := {µ measure on (S,B(S)) | µ finitely atomic measure representing L} and (∗) holds
according to Theorem 4.9. �

5. Application to the classical truncated Moment Problem

In this section we will see how the observed results can be applied to the truncated Moment Prob-

lem. For d ∈ N and n ∈ N, we take V := R[X]d and set (S,B(S)) := (Rn,B(Rn)) =

(

R,
n⊗

i=1

B(R)

)

.

Clearly, (Rn,B(Rn)) is a non-empty Hausdorff topological space and so the T1 property is fulfilled.
Let ~m := (mα)α∈Nn

0
,|α|≤d be a sequence of real numbers.

We now want to give a necessary and sufficient condition for ~m to be a truncated Moment Sequence,
i.e. for the existence of a non-negative Radon measure µ such that for any α ∈ Nn

0 with |α| ≤ d

mα =

∫

R

Xα dµ.

To do that, we consider the Riesz functional L~m : R[X ]d → R associated to the sequence ~m defined by

L~m(Xα) := mα for any α ∈ Nn
0 with |α| ≤ d.

Clearly, any p ∈ R[X ]d is continuous and Borel measurable. Furthermore, we assume that m0 > 0

and so L(1) = L(X0) = m0 > 0. This means that there exists some strictly positive pL ∈ V , namely
pL ≡ 1, such that the standing assumption (3.1) is fulfilled.

Altogether we established the required setting in Section 4 and so using the results obtained so far,
we get the following theorem.

Theorem 5.1. Let n, d ∈ N, ~m := (mα)α∈Nn

0
,|α|≤d ⊆ R with m0 > 0 and L~m be the associated Riesz

functional. Then ~m is a truncated Moment Sequence if and only if CV(L~m) 6= ∅. Moreover, any
representing Radon measure of L~m is necessarily supported on a subset of the core variety CV(L~m).
12
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6. Conclusion

According to J. Stochel in [10] a given full K-Moment Problem is solvable if and only if any
corresponding truncated version is solvable. Therefore, the new insights on the truncated Moment
Problem provided by the core variety approach here presented, also shed light on the full Moment
Problem. However, there are still many questions to be answered. For example:

(1) We do not have an explicit description of the core variety which allows an effective membership
verification. Instead, to compute the core variety we have to determine the whole sequence
{Si}i∈N0

iteratively, which can be rather hard to do.
(2) Having an easy criterion for checking whether the core variety is empty or not would be ex-

tremely useful because of Theorem 5.1 and would provide an effective solution to the truncated
Moment Problem.

(3) It is also not clear if the core variety approach could be directly applied to an infinite dimen-
sional V , i.e. if it could be directly used for getting new results on the full Moment Problem
without passing to the truncated version.

(4) Applying the core variety approach to any finite dimensional subspace of an infinitely generated
commutative unital R-algebra would lead to new insight into the general infinite dimensional
Moment Problem, for which few results are known in literature.
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