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Abstract
Hilbert’s 17th Problem was solved by Artin, who showed that every real positive semidefinite

polynomial can be written as a sum of squares of rational functions. In this handout, we are going to
present a related result due to Pólya: For every homogenous, positive definite and even polynomial f
there is a k ∈ N such that (

∑
X2

i )kf has only positive coefficients and is therefore a sum of squares
of monomials, i.e. we can uniformly choose the denominators in Artin’s solution. A similar result was
proven by Reznick for polynomials not necessarily even together with a bound for the exponent k.
We will prove the two above mentioned theorems and their non-homogenous versions. We will also
discuss these results by giving examples in the positive definite case and a counterexample in the
positive semidefinite one, and sketching some related open questions.

1 Introduction
In 1888 Hilbert [4] showed the existence of positive semidefinite polynomials which are not sums of squares
of polynomials. In 1900 he posed his famous 23 Problems and, in particular, the 17th can be stated as
follows:

Is it true that every positive semidefinite polynomial is a sum of squares of
rational functions? Or equivalently: If f is a positive semidefinte polynomial,
is there a polynomial q such that q2f is a sum of squares?

A positive answer to Hilbert’s 17th Problem was given in 1927 by Artin [1]. However, his proof is not
constructive, so it is natural to look for explicit solutions to Hilbert’s 17th problem. In particular, an
explicit solution with uniform denominators would be even more desirable, because it would provide a
uniform certificate for the positive semidefiniteness of a polynomial. The aim of this handout is to present
the following results due to Pólya [9] and Reznick [13], which exactly deal with this problem. In 1928,
shortly after Artin’s solution to Hilbert’s 17th Problem, Pólya found an explicit solution to Hilbert’s 17th
Problem in one special case:

If f is a positive definite and even form, then (
∑
X2
i )kf has positive coefficients

and is therefore a sum of squares of monomials for k ∈ N0 large enough.
In 1939 Habicht [3] used Pólya’s Theorem to construct explicit solutions to Hilbert’s 17th Problem for
any positive definite form, but without getting uniform denominators. In 1993 Reznick could extend
Pólya’s result to any positive definite form:

If f is a positive definite form, then (
∑
X2
i )kf is a sum of squares for k ∈ N0

large enough.
Let us briefly describe the structure of this handout. In Section 2 we will introduce some preliminary
notions and results needed to prove the theorems by Pólya and Reznick mentioned above. In particular,
we will define (Archimedean) preprimes and quadratic modules and state the Representation Theorem.
We will also recall the definition of homogenization and dehomogenization of a polynomial as well as
some basic related properties, which we will need to conclude non-homogenous versions of the theorems
of Pólya and Reznick. Most of the material in this section is taken from [8]. In Section 3 we will prove
the theorems of Pólya and Reznick and their non-homogenous versions. Here we will also state bounds
for the exponents due to Powers and Reznick (see [13] and [10]). In Section 4 we will provide examples of
positive semidefinite polynomials for which Reznick’s Theorem still works. However, Reznick’s Theorem
does not hold for all positive semidefinite forms because of the existence of so called bad points for some
polynomials. We will present a counterexample due to Delzell [2]. These examples will motivate some
concluding open questions.
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2 Preliminaries
In the following, let n ∈ N and denote by R[X0, . . . , Xn] the algebra of polynomials in n+ 1 variables.
We will always assume that A is a commutative ring with 1 and Q ⊆ A (e.g. A = R[X0, . . . , Xn]). For
any subset S of R[X0, . . . , Xn], we set

KS := {x ∈ Rn+1 | ∀f ∈ S : f(x) ≥ 0}.

Definition 2.1. Let T ⊆ A. T is called a preprime of A if

T + T ⊆ T, TT ⊆ T and Q≥0 ⊆ T.

A preprime T of A is called

(i) Archimedean if ∀a ∈ A ∃N ∈ N0 : N + a ∈ T .

(ii) quasi-preordering if ∀a ∈ A ∃r ∈ Q>0 : (r + a)2 ∈ T .

(iii) preorder if A2 ⊆ T .

Remark 2.2. Any Archimedean preprime is a quasi-preordering.

Proof. Suppose T is an Archimedean preprime and let a ∈ A. Because T is Archmidean, there are
N1, N2 ∈ N0 s.t. a+N1, a

2 +N2 ∈ T . Set N := max{N1, N2} and r := N + 1 ∈ Q>0. Then

(r+a)2 = (N+1+a)2 = (N+1)2+(N+1)a+a2 = (N+1)(N+1+a)+a2 = (N + 1︸ ︷︷ ︸
∈T

)(N + a︸ ︷︷ ︸
∈T

)+N + 1 + a2︸ ︷︷ ︸
∈T

∈ T

Definition 2.3. Let T ⊆ A be a preprime. Then

HT := {a ∈ A | ∃N ∈ N0 : N ± a ∈ T}

is called the ring of bounded elements of A with respect to T .

Proposition 2.4. Let T ⊆ A be a preprime. Then

(i) HT is a subring of A.

(ii) T is Archimedean iff HT = A.

Proof. See Proposition 5.1.3 in [8].

>

Definition 2.5. Let S ⊆ A. The preprime generated by S is defined as

T (S) :=

 ∑
e=(e1,...,en)∈Nn0

qes
e1
1 · · · senn | n ∈ N, s1, . . . , sn ∈ S, qe ∈ Q≥0

 .

Note that T (a1, . . . , an) is the smallest preprime of A containing a1, . . . , an.

Definition 2.6. Let T be a preprime of A.

(i) A T -module of A is a subset M of A such that M +M ⊆M , TM ⊆M and 1 ∈M .

(ii) A T -module M of A is said to be Archimedean if for each a ∈ A there exists N ∈ N such that
N + a ∈M .

(iii) A quadratic module M of A is a
∑
A2-module.

Proposition 2.7. Let M be a quadratic module of R[X0, . . . , Xn]. Then M is Archimedean iff there is
N ∈ N0 s.t. N −

∑n
i=0 X

2
i ∈M .
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Proof. See Corollary 5.2.4 in [8].

Theorem 2.8 (Representation Theorem). Suppose that T a quasi-preordering of R[X0, . . . , Xn] and M
is an Archimedean T -module of R[X0, . . . , Xn]. Then, for any f ∈ R[X0, . . . , Xn], the following holds:

f > 0 on KM ⇒ f ∈M

Proof. See Theorem 5.4.4 in [8].

Definition 2.9.

(i) f ∈ R[X0, . . . , Xn] is called a form or homogeneous, if f is a an R-linear combination of monomials
of the same degree. Moreover, f is called a k-form (k ∈ N0) if f is an R-linear combination of
monomials of degree k.

(ii) If f ∈ R[X1, . . . , Xn] \ {0} and d := deg f , then the d-th homogeneous part of f is called the leading
form LF (f) of f . We set LF (0) := 0.

(iii) If f ∈ R[X1, . . . , Xn] \ {0}, d := deg f , and f =
∑d
k=0 fk with fk k-form for all k ∈ {0, . . . , d}, then

the homogenization f∗ ∈ R[X0, . . . , Xn] of f (with respect to X0) is given by

f∗ :=
d∑
k=0

Xd−k
0 fk = Xd

0f

(
X1

X0
, . . . ,

Xn

X0

)
and 0∗ = 0.

(iv) For homogeneous f ∈ R[X0, . . . , Xn], we call f̃ := f(1, X1, . . . , Xn) the dehomogenization of f (with
respect to X0).

Definition 2.10. Let f ∈ R[X1, . . . , Xn]. If f ≥ 0 on Rn, f is called positive semidefinite. If f > 0 on
Rn or f is homogenous and f > 0 on Rn \ {0}, f is called positive definite.

Proposition 2.11.

(i) LF (f) = f∗(0, X1, . . . , Xn) for all f ∈ R[X1, . . . , Xn].

(ii) f̃∗ = f for all f ∈ R[X1, . . . , Xn].

(iii) Let f ∈ R[X1, . . . , Xn]. f∗ is positive semidefinite iff f is positive semidefinite.

(iv) Let f ∈ R[X1, . . . , Xn]. f∗ is positive definite iff f and LF (f) are positive definite.

Proof.

(i) Let f ∈ R[X1, . . . , Xn] of degree d ∈ N0 and f =
∑d
k=0 fk with fk k-form for all k ∈ {0, . . . , d}.

Then

LF (f) = fd = fd +
d−1∑
k=0

0d−kfk = f∗(0, X1, . . . , Xn).

(ii) Let f ∈ R[X1, . . . , Xn]. Then

f∗ = Xd
0f

(
X1

X0
, . . . ,

Xn

X0

)
and, therefore, f̃∗ = 1df

(
X1

1 , . . . ,
Xn

1

)
= f

(iii) See Proposition 2.2.6 in [14].

(iv) "⇒": If f∗ > 0 on Rn+1 \ {0}, then also on {1} × Rn and on {0} × Rn \ {0}, i.e. f and LF (f) are
positive definite.
"⇐": Let f and LF (f) be positive definite. Clearly, we can write deg f = 2d with d ∈ N0 and let
x = (x0, . . . , xn) ∈ Rn+1 \ {0}. If x0 = 0, then

f∗(x) = f∗(0, x1, . . . , xn)
2.11(i)︷︸︸︷= = LF (f)(x1, . . . , xn) > 0.
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If x0 6= 0, then

f∗(x) = x2d
0︸︷︷︸
>0

f

(
X1

X0
, . . . ,

Xn

X0

)
> 0.

Hence, f is positive definite.

3 Theorems of Pólya and Reznick
We have now introduced everything needed to prove the theorems by Pólya and Reznick. For the proofs
we follow [8]. We will also show the non-homogenous versions of these theorems and state bounds for the
exponent k.

Theorem 3.1 (Pólya 1928). Let f ∈ R[X0, . . . , Xn] be homogenous of degree d ∈ N. If

f > 0 on K := {x = (x0, . . . , xn) ∈ Rn+1 | ∀i ∈ {0, . . . , n} : xi ≥ 0, x 6= 0},

then there is k ∈ N0 s.t. (
∑n
i=0 Xi)

k
f has positive coefficients.

Proof. Let f > 0 on K. Consider the set T of polynomials in R[X0, . . . , Xn] with positive coefficients.
We want to show (

∑n
i=0 Xi)

k
f ∈ T for some k ∈ N. It is easy to see that T is the preprime generated by

X0, . . . , Xn and R≥0.
Consider now the ideal I generated by 1−

∑n
i=0 Xi and the preprime T ′ = T + I. Then

KT ′ =
{
x ∈ Rn+1

∣∣∣∣∣
n∑
i=0

xi = 1, ∀i ∈ {0, . . . , n} : xi ≥ 0
}
⊆ K,

so f > 0 on KT ′ . Since for any j ∈ {0, . . . , n}, we have Xj ∈ T ′ and 1−Xj =
∑n
i=0
j 6=i

Xi+1−
∑n
i=0 Xi ∈ T ′,

we get X0, . . . , Xn ∈ HT ′ . Since R≥0 ⊆ T ′, we have R ⊆ HT ′ . By Proposition 2.4, HT ′ is a subring
of R[X0, . . . , Xn] and hence HT ′ = R[X0, . . . , Xn]. Then T ′ is Archimedean and, therefore, a quasi-
preordering by Remark 2.2. We can now use the Representation Theorem 2.8 and get f ∈ T ′, i.e.

f = g + h

(
1−

n∑
i=0

Xi

)

for some g ∈ T , h ∈ R[X0, . . . , Xn]. Substituting Xj∑n

i=0
Xi

for Xj (j ∈ {0, . . . , n}), we get

1
(
∑n
i=0 Xi)d

f = f

(
X0∑n
i=0 Xi

, . . . ,
Xn∑n
i=0 Xi

)
= g

(
X0∑n
i=0 Xi

, . . . ,
Xn∑n
i=0 Xi

)
+ h

(
X0∑n
i=0 Xi

, . . . ,
Xn∑n
i=0 Xi

)(
1−

n∑
j=0

Xj∑n
i=0 Xi︸ ︷︷ ︸

=1

)

= g

(
X0∑n
i=0 Xi

, . . . ,
Xn∑n
i=0 Xi

)
By multiplying by (

∑n
i=0 Xi)k for k ∈ N0 large enough to clear denominators, we get (

∑n
i=0 Xi)

k−d
f ∈ T ,

so (
∑n
i=0 Xi)

k−d
f has positive coefficients by the definition of T .

Remark 3.2. For f ∈ R[X0, . . . , Xn] homogenous of degree d, say f =
∑
|α|=d aαX

α, Powers und Reznick
proved in [10] a bound for k in Theorem 3.1, i.e. Pólya’s Theorem holds for

k >
d(d− 1)L

2λ − d,

where L = L(f) := max{ |aα||cα| | |α| = d}, cα =
(
d
α

)
and λ = min{f(x) | x ∈ Rn+1, |x| = 1}.
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We will now proof the version of Pólya’s Theorem 3.1, that was stated in the introduction. To this end
we need the notion of even polynomials.

Definition 3.3. Let f ∈ R[X0, . . . , Xn] be homogenous. f is called even, if every monomial of f has even
degree in each variable or equivalently if f(X0, . . . , Xi−1,−Xi, Xi+1, . . . , Xn) = f for all i ∈ {0, . . . , n}.

Corollary 3.4. Let f ∈ R[X0, . . . , Xn] be homogenous. If f is positive definite and even, then there is
k ∈ N0 s.t. (

n∑
i=0

X2
i

)k
f

has positive coefficients and is therefore a sum of squares of monomials.

Proof. Let f be positive definite and even. As f is even, we have f̂ := f(
√
X0, . . . ,

√
Xn) ∈ R[X0, . . . , Xn].

Due to the positive definiteness of f and the fact that R≥0 = R2, we have that

f̂ > 0 on K := {x ∈ Rn | ∀i ∈ {0, . . . , n} : xi ≥ 0, x 6= 0}.

By Pólya’s Theorem 3.1 there is k ∈ N0 s.t. (
∑n
i=0 Xi)

k
f̂ has positive coefficients and so

(∑n
i=0 X

2
i

)k
f has

positive coefficients. Since
(∑n

i=0 X
2
i

)k
f is even and R≥0 = R2, it is a sum of squares of monomials.

Remark 3.5. We can also conclude Pólya’s Theorem 3.1 from Corollary 3.4: Let f be as in Theorem 3.1
and consider the homogenous, even and positive definite polynomial f̂ := f(X2

0 , . . . , X
2
n) ∈ R[X0, . . . , Xn].

By Corollary 3.4, there is k ∈ N0 s.t.
(∑n

i=0 X
2
i

)k
f̂ has positive coefficients and so (

∑n
i=0 Xi)

k
f has

positive coefficients.

We will now proof a non-homogenous version of Pólya’s Theorem 3.1.

Corollary 3.6. Let f ∈ R[X1, . . . , Xn]. If

f > 0, LF (f) > 0 on K := {x ∈ Rn | ∀i ∈ {1, . . . , n} : xi ≥ 0, x 6= 0},

then there is k ∈ N0 s.t. (
1 +

n∑
i=1

Xi

)k
f

has positive coefficients.

Proof. Let f > 0, LF (f) > 0 on K. Set d := deg f , K∗ := {x ∈ Rn+1 | ∀i ∈ {0, . . . , n} : xi ≥ 0, x 6= 0}
and consider the homogenization f∗ = Xd

0f
(
X1
X0
, . . . , XnX0

)
of f . As f > 0 and LF (f) > 0 on K, we

get f∗ > 0 on K∗ by proposition 2.11 (iv). By Pólya’s Theorem 3.1, g := (
∑n
i=0 Xi)

k
f∗ has positive

coefficients for some k ∈ N0. Then the dehomogenization g̃ of g is

g̃ = g(1, X1, . . . , Xn) =
(

1 +
n∑
i=1

Xi

)k
1df

(
X1

1 , . . . ,
Xn

1

)
=
(

1 +
n∑
i=1

Xi

)k
f

and has positive coefficients.

Theorem 3.7 (Reznick 1995). Let f ∈ R[X0, . . . , Xn] be homogenous. If f is positive definite, then there
is k ∈ N s.t. (

n∑
i=0

X2
i

)k
f

is a sum of squares.
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Proof. Let f be positive definite and consider T =
∑

R[X0, . . . , Xn]2 + I, where I is the ideal generated
by 1−

∑n
i=0 X

2
i . Then

KT = {x ∈ Rn+1 | ||x|| = 1},
where || · || is the euclidean norm on Rn+1. Since 1−

∑n
i=0 X

2
i ∈ T , T is Archimedean by Proposition 2.7.

Moreover, f is positive definite, so f ∈ T by the Representation Theorem, i.e.

f =
t∑

j=1
g2
j + h

(
1−

n∑
i=0

X2
i

)
for some t ∈ N, g1 . . . , gt, h ∈ R[X0, . . . , Xn]. Substituting Xi

||X|| for Xi (i ∈ {0, . . . , n}), where ||X|| :=√∑n
i=0 X

2
i , we get

1
(
∑n
i=0 X

2
i ) d2

f = 1
||X||d

f = f

(
X0

||X||
, . . . ,

Xn

||X||

)

=
t∑

j=1
gj

(
X0

||X||
, . . . ,

Xn

||X||

)2
+ h

(
X0

||X||
, . . . ,

Xn

||X||

)(
1−

n∑
j=0

X2
j

||X||2︸ ︷︷ ︸
=1

)

=
t∑

j=1
gj

(
X0

||X||
, . . . ,

Xn

||X||

)2

Since ||X||2 ∈ R[X0, . . . , Xn] we can write any a ∈ R[X0, . . . , Xn][||X||] uniquely as a = b+c||X|| for some
b, c ∈ R[X0, . . . , Xn]. So by multiplying by ||X||2N for N ∈ N large enough to clear the denominators, we
get (

n∑
i=0

X2
i

)N− d2
f =

t∑
j=1

(pj + qj ||X||)2

for some p1, . . . , pt, q1, . . . , qt ∈ R[X0, . . . , Xn]. By expanding and comparing coefficients, we get

f =
t∑

j=1
p2
j + q2

j ||X||2 ∈
∑

R[X0, . . . , Xn]2 (and
t∑

j=1
2pjqj = 0)

as required.

Remark 3.8. In [13] Reznick proves even more. Indeed, he shows that if L ⊆ R is an ordered field,
f ∈ L[X0, . . . , Xn] is homogenous of degree d ∈ N0, positive definite and k ≥ nd(d−1)

(4 log 2)ε(f)) −
n+d

2 ,
then

(∑n
i=0 X

2
i

)k
f is a non-negative L−linear combination of (d + 2k)-th powers of linear forms in

Q[X0, . . . , Xn]. Here

ε(f) := inf{f(x) | x ∈ Rn+1, |x| = 1}
sup{f(x) | x ∈ Rn+1, |x| = 1}

We will now proof a non-homogenous version of Reznick’s Theorem 3.7.
Corollary 3.9. Let f ∈ R[X1, . . . , Xn] be positive definite with positive definite leading form. Then there
is k ∈ N s.t. (

1 +
n∑
i=1

X2
i

)k
f

is a sum of squares.
Proof. Set d := deg f . Since f and LF (f) are both positive definite, the homogenization f∗ :=
Xd

0f
(
X1
X0
, . . . , XnX0

)
of f is also positive definite by Proposition 2.11 (iv). By Reznick’s Theorem 3.7,

g :=
(∑n

i=0 X
2
i

)k
f∗ is a sum of squares. Then the dehomogenization

g̃ = g(1, X1, . . . , Xn) =
(

1 +
n∑
i=1

X2
i

)k
1df

(
X1

1 , . . . ,
Xn

1

)
=
(

1 +
n∑
i=1

X2
i

)k
f

is also a sum of squares.
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4 Examples and open questions
We will now consider two famous examples by Motzkin and Lax of polynomials which are positive
semidefinite, but not sums of squares. We will notice that for these polynomials Reznick’s Theorem still
holds although the polynomials are not positive definite. A counterexample by Delzell shows however
that Reznick’s Theorem does not hold for any positive semidefinite form.
Example 4.1 (Motzkin Polynomial). Consider the Motzkin Polynomial

M := X4Y 2 +X2Y 4 − 3X2Y 2Z2 + Z6.

It is well known that M is positive semidefinte and not a sum of squares, but

(X2 + Z2)M = (Z44−X42Y 2)2 + (XY Z2 −X3Y )2 + (XZ3 −XY 2Z)2 ∈
∑

R[X,Y, Z]2.

and also (X2 + Y 2 + Z2)M is a sum of squares.
Since M is even, we can add εZ6 to M for a small ε > 0 to get an even positive definite form. Consider
the following positive definite modifications of the Motzkin polynomial

g := M + 9 and h := f(
√
X,
√
Y ,
√
Z) + 9

As g is even and positive definite, we can even use Pólya’s Theorem 3.1 or Corollary 3.4. Indeed
(X2 + Y 2 + Z2)7g and (X2 + Y 2 + Z2)7h have positive coefficients and g is therefore a sum of squares of
monomials.
Example 4.2 (Lax-Lax Polynomial). Consider the Lax-Lax Polynomial

L = X1X2X3X4 +
4∑
i=1

(−Xi)
4∏
j=1
j 6=i

(Xj −Xi) ∈ R[X1, X2, X3, X4]

It is possible to show that L is positive semidefinite and not a sum of squares, but (X2
1 +X2

2 +X2
3 +X2

4 )L
is a sum of squares. Indeed,

(X2
1 +X2

2 +X2
3 +X2

4 )L = f2
1 + 4

7f
2
2 + 7

6f
2
3 + 8

11f
2
4 + 11

9 f
2
5 + f2

6 + 4f2
7 ,

where

f1 =− 1
2X

2
1X4 +X1X2X4 +X1X3X4 −

1
2X1X

2
4 −

1
2X

2
2X4 +X2X3X4 −

1
2X2X

2
4 −

1
2X

2
3X4 −

1
2X3X

2
4 +X3

4

f2 =− 1
2X

2
1X3 + 3

4X
2
1X4 −

1
2X1X2X3 +X1X

2
3 −

1
2X1X3X4 −

3
4X1X

2
4 −

1
2X

2
2X3 + 3

4X
2
2X4 +X2X

2
3

− 1
2X2X3X4 −

3
4X2X

2
4 −

1
2X

3
3 −

5
4X

2
3X4 + 7

4X3X
2
4

f3 = 9
14X

2
1X3 −

3
14X

2
1X4 −

6
7X1X2X3 + 3

14X1X
2
3 −

6
7X1X3X4 + 3

14X1X
2
4 + 9

14X
2
2X3 −

3
14X

2
2X4 + 3

14X2X
2
3

− 6
7X2X3X4 + 3

14X2X
2
4 −

6
7X

3
3 + 6

7X
2
3X4

f4 =− 1
2X

2
1X2 −

3
8X

2
1X3 + 9

8X
2
1X4 +X1X

2
2 −

1
2X1X2X3 −

1
2X1X2X4 + 3

8X1X
2
3 −

9
8X1X

2
4 −

1
2X

3
2 + 5

8X
2
2X3

− 7
8X

2
2X4 −

1
8X2X

2
3 −

1
2X2X3X4 + 11

8 X2X
2
4

f5 =− 15
22X

2
1X2 −

3
22X

2
1X3 + 9

22X
2
1X4 −

3
22X1X

2
2 + 9

11X1X2X3 + 9
11X1X2X4 + 3

22X1X
2
3 −

9
22X1X

2
4

+ 9
11X

3
2 −

9
11X

2
2X3 −

9
11X

2
2X4 −

6
11X2X

2
3 + 9

11X2X3X4

f6 =−X2
1X2 +X2

1X3 +X1X
2
2 −X1X

2
3 −X2

2X3 +X2X
2
3

f7 =− 1
2X

3
1 + 1

4X
2
1X2 + 1

4X
2
1X3 + 1

4X
2
1X4 + 1

4X1X
2
2 −

1
2X1X2X3 −

1
2X1X2X4 + 1

4X1X
2
3 −

1
2X1X3X4

+ 1
4X1X

2
4 .
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Let us now introduce an example of a positive semidefinite form for which Reznick’s Theorem does not
hold.
Definition 4.3. Let f ∈ R[X0, . . . , Xn] be positive semidefinite. A point x ∈ Rn+1 is called bad point
for f if for every polynomial q ∈ R[X0, . . . , Xn] with q(x) 6= 0, we have that qf is not a sum of squares,
i.e. every common denominator in a solution of Hilbert’s 17th problem has to be zero at x.
Example 4.4 (Dellzell). The polynomial

D = X4
1X

2
2X

2
4 +X4

2X
2
3X

2
4 +X2

1X
4
3X

2
4 − 3X2

1X
2
2X

2
3X

2
4 +X8

3 ∈ R[X1, X2, X3, X4]

is positive semidefinite but has a bad point at (0, 0, 0, 1). Therefore,(
n∑
i=0

X2
i

)k
D

is not a sum of squares for any k ∈ N. Hence, Reznick’s Theorem does not hold in general for positive
semidefinite forms.
However, (X2

1 +X2
2 +X2

3 )D is a sum of squares. Indeed,

(X2
1 +X2

2 +X2
3 )D = 1

4f
2
1 + 1

4f
2
2 + 1

4f
2
3 + 1

4f
2
4 + 1

4f
2
5 + 1

4f
2
6 + 1

4f
2
7 + 1

3f
2
8 ,

where

f1 = 2X5
3

f2 = 2X2X
4
3

f3 = −X2
1X

2
2X4 −X2

1X
2
3X4 + 2X2

2X
2
3X4

f4 = −2X2
1X2X3X4 + 2X3

2X3X4

f5 = −2X1X
2
2X3X4 + 2X1X

3
3X4

f6 = 2X1X
4
3

f7 = −2X3
1X2X4 + 2X1X2X

2
3X4

f8 = −3
2X

2
1X

2
2X4 + 3

2X
2
1X

2
3X4.

These examples lead us to the following questions:
(i) It is well known that for any positive semidefinite form f ∈ R[X0, . . . , Xn], there exists p1, . . . , pt ∈

R[X0, . . . , Xn] and q ∈ R[X1, . . . , Xn] s.t. f =
∑t
i=0
(
pi
q

)2. Does this still hold in Reznick’s
Theorem, i.e. is there for f ∈ R[X0, . . . , Xn] homogenous and positive definite a k ∈ N0 s.t.(

X2
1 + · · ·+X2

n

)k
f

is a sum of squares?

(ii) Are there similar results to the one of Pólya for different K? For example, one should be able to
derive from the non-homogenous version of Pólya’s Theorem a similar result for K = Rs>0×(R\{0})t.

(iii) Let Sn denote the symmetric group. There are positive semidefinite symmetric polynomials
f1, . . . , fm ∈ R[X1, . . . , Xn]Sn , i.e. positive semidefinite polynomials that are invariant under per-
mutation of variables, s.t. for any positive semidefinite symmetric polynomial f ∈ R[X1, . . . , Xn]Sn

f =
∑

e=(e1,...,em)∈{0,1}m
pef

e1
1 , . . . , femm

for some pe ∈ R(X1, . . . , Xn)Sn . This result holds for arbitrary finite groups - or even compact
lie groups - instead of Sn (see [11] for more details). For the trivial group the statement is just
Hilbert’s 17th Problem.
Are there similar results to the one of Pólya or Reznick for positive definite symmetric polynomials?

(iv) Is there a uniform choice in Hilbert’s 17th Problem for positive semidefinite forms with respect to
bad points?
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