
Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Maria Infusino
Dr. Charu Goel

MASTER SEMINAR ON REAL ALGEBRAIC GEOMETRY–SS15

List of possible topics

1. Cylindrical decomposition of semialgebraic sets
This seminar will discuss how a semialgebraic subset of Rn (where R is a real closed field) can
be decomposed as a disjoint union of finitely many semialgebraic sets such that each of them is
semialgebraically homeomorphic to an open hypercube of Rd.
(See [5, Lecture 16, 17], [1, Section 2.3])

2. Topological definition of dimension of semialgebraic sets
Using the cylindrical decomposition it is possible to give a topological definition of dimension of a
semialgebriac set K. In this seminar, this notion will be introduced, discussed and compared with
the dimension of K as an algebraic set.
(See [5, Lecture 22], [1, Section 2.8])

3. Moment Problem: Proof of Haviland’s Theorem
Haviland’s Theorem represents one of the first general result about the multivariate moment prob-
lem. Several are the proofs of this result available in literature. This seminar will present a proof
of Haviland’s Theorem based on Riesz’ representation theorem.
(See [6, Lectures 16, 17, 18], [7, Section 3.2], [2], [3])

4. Moment Problem: Schmüdgen Theorem (1991):
This seminar will present, in various equivalent formulations, the celebrated result of 1991 due to
Schmüdgen about the characterizion of the K−moment sequences for compact semialgebraic sets
K. The main objective is to give in details the original proof of this result, which is based on the
Positivstellensatz and the spectral theorem for commuting bounded self-adjoint operators.
(See [10])

5. Proof of Hilbert’s 1888 Theorem for ternary quartics: P3,4 = Σ3,4.
This seminar will present the original proof due to Hilbert of the fact that every psd ternary quartic
is a sum of not more than three squares of quadratic forms. The central idea of Hilbert’s proof is to
associate to any ternary quartic a curve in the complex projective plane and then use the classical
theory of algebraic curves.
(See [4] and [8, Chapter 7])

6. The necessity part of Hilbert’s 1888 Theorem: Σn,m ( Pn,m for all n ≥ 3, m ≥ 4 and
(n,m) 6= (3, 4) with m even.
Using algebraic geometry, Hilbert showed that there exist psd quaternary quartics and ternary
sextic which are not sos forms and also that this is sufficient to get psd not sos forms in all the
other cases mentioned above. This seminar will present an explicit example of psd ternary sextic
which is not a sos provided by Schmüdgen in 1979 without applying the theory of algebraic curves.
The connections between the existence of such examples and the multivariate moment problem
might also be highlighted.
(See [9] and [4], [8, Chapter 7])



7. Saturation of preorderings in R[X].
In this seminar the question of when a finitely generated preordering in the polynomial ring R[X] is
saturated will be examined. It will be presented the result by Scheiderer of 2000, which shows that
saturation never occurs when the associated basic closed semialgebraic set in Rn has dimension
≥ 3. Moreover, various examples where saturation holds or fails will be presented in dimensions
smaller than two.
(See [7, Section 2.6-2.7] and [6, Lecture 11])

8. Positive polynomials and sum of squares in formal power series rings This seminar will
discuss the question of whether a nonnegative polynomial can be written as sum of squares in the
ring of formal power series R[[X]].
(See [7, Section 1.6], [6, Lecture 10])
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