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Introduction

By "spectral structure of square matrices"
we mean properties of the eigenvalues and
eigenvectors of matrices. In view of the well-
known Perron-Frobenius theory that de-
scribes the spectral structure of general
entrywise nonnegative matrices, we study
the spectral structure of strictly sign-regular
matrices of some order. A matrix is called
strictly sign-regular of order k, denoted by
SSRk, if all its minors of order k are non-
zero and have the same sign. For example,
totally positive matrices (TP ), i.e., matri-
ces with all minors positive, are SSRk for
all k. Another important class of matri-
ces are those that are SSRk for all odd k.
Such matrices have interesting sign varia-
tion diminishing properties, and it has been
recently shown that they play an important
role in the analysis of certain nonlinear co-
operative systems.

Definitions and Notations
We will introduce the following definitions.

1 A vector x ∈ Rn is called totally nonzero if no entry
of x is zero.

2 Let v be the function from the totally nonzero vectors
x = [x1, x2, . . . , xn]T ∈ Rn into the nonnegative
integers defined by
v(x) := #{i : xixi+1 < 0}, for i = 1, 2, . . . , n− 1,

the total sign variation of x. For general vectors
x ∈ Rn, v−(x) is the minimum value of v(y) among
all totally nonzeros y that agree with x in its nonzero
entries and v+(x) is the maximum value of v(y)
among all such vectors. In the case that x has zero
entries, v−(x) is also v(x′) in which x′ is simply the
result of deleting the zero entries from x.

3 For a vector x ∈ Rn, let
v−c (x) := max

i
v−(xi, xi+1, . . . , xn, x1, . . . , xi),

the cyclic number of sign variations.
4 Consider the linear time-varying system

ẋ(t) = A(t)x(t) (1)
with A(t) a continuous matrix function of t. This
system is called totally positive differential system,
denoted by TPDS, on a time interval (a, b) if its
transition matrix φ(t, t0) is totally positive for any
pair(t0, t) with a < t0 < t < b. Here the transition
matrix is the matrix satisfying x(t) = φ(t, t0)x(t0). In
particular, φ(t0, t0) = I . In the special case where
A(t) is a constant matrix, i.e., A(t) ≡ A, then
φ(t, t0) = exp((t− t0)A). Of course, the transition
matrix is real, square, and nonsingular.

5 Let M+ ⊂ Rn×n denote the subset of n× n real
matrices that are tridiagonal with positive entries on
the super- and sub-diagonals.

6 Let A ∈ Rn×n. We say that a set of complex
numbers c1, . . . , cm ∈ Cn matches A if m∑

i=1
|ci|2 > 0,

and for every i if the eigenvector vi of A is real then
ci is real and, if vi,vi+1 is a conjugate complex pair
then ci+1 = c̄i.
The following example is a simple illustrative example
to the previous definitions.
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Motivation and Previous Works
Applications of strictly sign-regular matrices often come from their interpretation as variation-diminishing transformations.
Strictly sign-regular matrices are characterized by the strong variation-diminishing property, i.e., v+(Ax) ≤ v−(x) for all
nonzero x ∈ Rn. In particular, multiplying a vector by a TP matrix can only decrease the number of sign variations in the
vector. It was shown that the system (1) is TPDS if and only if A ∈ M+. Several studies analysed certain non-linear
dynamical systems by showing that the transition matrix in the variational system satisfies a variation-diminishing property
with respect to the cyclic number of sign variations in a vector. Motivated by this, Theorem (A) shows that the SSRk

property is equivalent to a non-standard variation-diminishing property. Theorem (B) provides a simple necessary and
sufficient condition for a nonsingular square matrix A to satisfy a CVDP .

Theorem A Let A ∈ Rn×n be a nonsingular matrix. Pick k ∈ {1, . . . , n}. Then the following two conditions are
equivalent.
(i) For any vector x ∈ Rn \ {0} with s−c (Ax) ≤ k − 1, v+(Ac) ≤ k − 1.
(ii) A is SSRk.

Theorem B Let A ∈ Rn×n be a nonsingular matrix. The following two conditions are equivalent.
(i) For any vector x ∈ Rn \ {0} v+

c (Ax) ≤ v−c (x).
(ii) The matrix A is SSRr for all odd r in the range r ∈ {1, . . . , n}.

Main Results

Our main results extend Theorem (A) to vectors x ∈ Cn and study the properties of the eigen-
values of the matrices in Theorem (B).

1 Suppose that A ∈ Rn×n is nonsingular and SSRk for some k ∈ {1, . . . , n− 1}. For any
c1, . . . , cn−1 ∈ C that match A, we have

v+( k∑
i=0
civ

i) ≤ k − 1.

2 Let A ∈ Rn×n be nonsingular and SSRk for all odd k ∈ {1, 3, . . . , n}. Then the following
statements are true.

1 λ1 is a positive simple eigenvalue of A.
2 The algebraic multiplicity of any eigenvalue of A is not greater than 2.
3 The inequalities |λ1| > |λ2| ≥ |λ3| > |λ4| ≥ |λ5| . . . hold.
4 For every i ∈ {3, 5, 7, . . . }, λi−1, λi are either a pair of complex conjugate or both are real and of the same sign.
5 If n is even, then λn is real.
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