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1913 : Bohr’s model of the hydrogen atom

n = 1

n = 2

n = 3 Increasing
energy orbits

Emitted photon
with energy E = h f

Kinetic momentum is “quantized” J “ nh, where n P N.
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1917 : A paper of Einstein

Zum Quantensatz von Sommerfeld und Epstein
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1925 : operators / wave mechanics

Heisenberg : physical observables are operators (matrices) obeying certain
commutation rules

r pp , pq s “ i~I .

The “spectrum” is obtained by computing eigenvalues of the energy operator pH.

De Broglie (1923) : wave particle duality.

Schrödinger (1925) : wave mechanics

i~
dψ

dt
“

´

´
~2

2m
∆` V

¯

ψ

ψpx , y , z , tq is the wave function.
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1925 : operators / wave mechanics

In Heisenberg’s picture the spectrum is computed by
diagonalizing the operator pH .

In Schrödinger’s picture, we must diagonalize
´

´
~2

2m
∆` V

¯

.

The two theories are mathematically equivalent : Schrödinger’s picture corresponds to
a representation of the Heisenberg algebra on the Hilbert space L2pR3q.

But not physically equivalent !
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Wigner 1950’ Random Matrix model for heavy nuclei

Figure: Left : nearest neighbour spacing histogram for nuclear data ensemble (NDE). Right :
Dyon-Mehta statistic ∆ for NDE. Source O. Bohigas
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Spectral statistics for hydrogen atom in strong magnetic field

Figure: Source Delande.
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Billiard tables

In classical mechanics, billiard flow φt : px , ξq ÞÑ px ` tξ, ξq.

In quantum mechanics, i~
dψ

dt
“

´

´
~2

2m
∆` 0

¯

ψ.
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Spectral statistics for several billiard tables

Figure: Random matrices and chaotic dynamics
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A list of questions and conjectures

For classically ergodic / chaotic systems,

show that the spectrum of the quantum system resembles that of large random
matrices (Bohigas-Giannoni-Schmit conjecture);

study the probability density |ψpxq |2, where ψpxq is a solution to the Schrödinger
equation (Quantum Unique Ergodicity conjecture);

show that ψpxq resembles a gaussian process (x P Bpx0,R~q,R " 1) (Berry
conjecture).



I. Some history II. Quantum ergodicity III. Graphs

A list of questions and conjectures

For classically ergodic / chaotic systems,

show that the spectrum of the quantum system resembles that of large random
matrices (Bohigas-Giannoni-Schmit conjecture);

study the probability density |ψpxq |2, where ψpxq is a solution to the Schrödinger
equation (Quantum Unique Ergodicity conjecture);

show that ψpxq resembles a gaussian process (x P Bpx0,R~q,R " 1) (Berry
conjecture).



I. Some history II. Quantum ergodicity III. Graphs

A list of questions and conjectures

For classically ergodic / chaotic systems,

show that the spectrum of the quantum system resembles that of large random
matrices (Bohigas-Giannoni-Schmit conjecture);

study the probability density |ψpxq |2, where ψpxq is a solution to the Schrödinger
equation (Quantum Unique Ergodicity conjecture);

show that ψpxq resembles a gaussian process (x P Bpx0,R~q,R " 1) (Berry
conjecture).



I. Some history II. Quantum ergodicity III. Graphs

A list of questions and conjectures

This is meant in the limit ~Ñ 0 (small wavelength).

´

´
~2

2m
∆` V

¯

ψ “ Eψ ùñ }∇ψ } „
?

2mE

~
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II. Quantum ergodicity

M a billiard table / compact Riemannian manifold, of dimension d .

In classical mechanics, billiard flow φt : px , ξq ÞÑ px ` tξ, ξq
(or more generally, the geodesic flow = motion with zero acceleration).
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II. Quantum ergodicity

M a billiard table / compact Riemannian manifold, of dimension d .

In quantum mechanics :

i~
dψ

dt
“

´

´
~2

2m
∆` 0

¯

ψ

´
~2

2m
∆ψ “ Eψ,

in the limit of small wavelengths.
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Disk

Figure: Billiard trajectories and eigenfunctions in a disk. Source A. Bäcker.
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Sphere

Figure: Spherical harmonics
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Square / torus

Figure: Eigenfunctions in a square. Source A. Bäcker.
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Figure: A few eigenfunctions of the Bunimovich billiard (Heller, 89).
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Figure: Source A. Bäcker
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Eigenfunctions in a
mushroom-shaped billiard.
Source A. Bäcker
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Figure: Propagation of a gaussian wave packet in a cardioid. Source A. Bäcker.
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Eigenfunctions in the high frequency limit

M a billiard table / compact Riemannian manifold, of dimension d .

∆ψk “ ´λkψk or ´
~2

2m
∆ψ “ Eψ,

}ψk }L2pMq “ 1,

in the limit λk ÝÑ `8.

We study the weak limits of the probability measures on M,

ˇ

ˇψkpxq
ˇ

ˇ

2
dVolpxq.
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Let pψkqkPN be an orthonormal basis of L2pMq, with

´∆ψk “ λkψk , λk ď λk`1.

QE Theorem (simplified): Shnirelman 74, Zelditch 85, Colin de Verdière
85

Assume that the action of the geodesic flow is ergodic for the Liouville measure.
Let a P C 0pMq. Then

1

Npλq

ÿ

λkďλ

ˇ

ˇ

ˇ

ż

M
apxq

ˇ

ˇψkpxq
ˇ

ˇ

2
d Volpxq ´

ż

M
apxqd Volpxq

ˇ

ˇ

ˇ
ÝÑ
λÑ8

0.
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Equivalently, there exists a subset S Ă N of density 1, such that

ż

M
apxq

ˇ

ˇψkpxq
ˇ

ˇ

2
dVolpxq ´́´́ Ñ́

kÝÑ`8
kPS

ż

M
apxqd Volpxq.

Equivalently,
ˇ

ˇψkpxq
ˇ

ˇ

2
Volpxq ´́´́ Ñ́

kÝÑ`8
kPS

dVolpxq

in the weak topology.
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The full statement uses analysis on phase space, i.e.

T ˚M “
 

px , ξq, x P M, ξ P T ˚x M
(

.

For a “ apx , ξq a “reasonable” function on phase space, we can define an operator on
L2pMq,

apx ,Dxq

´

Dx “
1

i
Bx

¯

.
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On M “ Rd , we identify the momentum ξ with the Fourier variable, and put

apx ,Dxqf pxq “
1

p2πqd

ż

Rd

apx , ξq pf pξq eiξ¨x dξ.

for a a “reasonable” function.

Say a P S0pT ˚Mq if a is smooth and 0-homogeneous in ξ (i.e. a is a smooth function
on the sphere bundle SM).
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´∆ψk “ λkψk , λk ď λk`1.

For a P S0pT ˚Mq, we consider

xψk , apx ,DxqψkyL2pMq.

This amounts to
ş

M apxq|ψkpxq|
2 dVolpxq if a “ apxq.
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Let pψkqkPN be an orthonormal basis of L2pMq, with

´∆ψk “ λkψk , λk ď λk`1.

QE Theorem (Shnirelman, Zelditch, Colin de Verdière)

Assume that the action of the geodesic flow is ergodic for the Liouville measure.
Let apx , ξq P S0pT ˚Mq. Then

1

Npλq

ÿ

λkďλ

ˇ

ˇ

ˇ

@

ψk , apx ,Dxqψk

D

L2pMq
´

ż

|ξ|“1
apx , ξqdx dξ

ˇ

ˇ

ˇ
ÝÑ 0.
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Figure: Ergodic billiards. Source A. Bäcker
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Why the geodesic flow ?

1 Define the “Quantum Variance”

VarλpK q “
1

Npλq

ÿ

λkďλ

ˇ

ˇ

ˇ
xψk ,

eit
?

∆

K

e´it
?

∆

ψkyL2pMq

ˇ

ˇ

ˇ
.

Invariance property under conjugacy by eit
?

∆ (quantum dynamics).

2 Introduction of pseudodiffs ù emergence of a classical dynamical system (billiard
/ geodesic flow).

eit
?

∆apx ,Dxqe´it
?

∆ “ a ˝ φtpx ,Dxq ` rpx ,Dxq.

lim sup
λÝÑ8

Varλ
`

apx ,Dxq
˘

“ lim sup
λÝÑ8

Varλ

´

1

T

ż T

0

a ˝ φtpx ,Dxq

dt

¯
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3 Control by the L2-norm (Plancherel formula).

lim sup
λÑ8

Varλpapx ,Dxqq “ lim sup
λÑ8

Varλ

´ 1

T

ż T

0
a ˝ φtpx ,Dxqdt

¯

ď

´

ż

xPM,|ξ|“1

ˇ

ˇ

ˇ

1

T

ż T

0
a ˝ φtpx , ξqdt

ˇ

ˇ

ˇ

2
dx dξ

¯1{2
.

4 Use the ergodicity of classical dynamics to conclude.
Ergodicity : if a has zero mean, then

lim
TÑ`8

1

T

ż T

0
a ˝ φtpx , ξqdt “ 0

in L2pdx dξq and for almost every px , ξq.
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Figure: Source A. Bäcker
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Quantum Unique Ergodicity conjecture : Rudnick, Sarnak 94

On a negatively curved manifold, we have convergence of the whole sequence :

@

ψk , apx ,Dxqψk

D

L2pMq
ÝÑ

ż

px ,ξqPSM
apx , ξqdx dξ.

Proved by E. Lindenstrauss, in the special case of arithmetic congruence surfaces, for
joint eigenfunctions of the Laplacian, and the Hecke operators.
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Theorem

Let M have negative curvature and dimension d . Assume

@

ψk , apx ,Dxqψk

D

L2pMq
ÝÑ

ż

px ,ξqPSM
apx , ξqdµpx , ξq.

(1) [A-Nonnenmacher 2006] : µ must have positive (non vanishing) Kolmogorov-
Sinai entropy.

For constant negative curvature, our result implies that the support of µ has
dimension ě d “ dimM.

(2) [Dyatlov-Jin 2017] : d “ 2, constant negative curvature, µ has full support.
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III. Toy models

Toy models are “simple” models where either

some explicit calculations are possible,

OR

numerical calculations are relatively easy.

They often have a discrete character.
Instead of studying ~Ñ 0 one considers finite dimensional Hilbert spaces whose
dimension N Ñ `8.
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Regular graphs

Figure: A (random) 3-regular graph. Source J. Salez.
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Regular graphs

Let G “ pV ,E q be a pq ` 1q-regular graph.

Discrete laplacian : f : V ÝÑ C,

∆f pxq “
ÿ

y„x

`

f pyq ´ f pxq
˘

“
ÿ

y„x

f pyq ´ pq ` 1qf pxq.

∆ “ A´ pq ` 1qI
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Why do they seem relevant ?

They are locally modelled on the pq ` 1q- regular tree Tq

(cf. Hn for hyperbolic manifolds)

.

Tq may be considered to have curvature ´8.

Harmonic analysis on Tq is very similar to h.a. on Hn.

For q “ p a prime number, Tp is the symmetric space of the group SL2pQpq.

H2 is the symmetric space of SL2pRq.
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A major difference

SppAq Ă r´pq ` 1q, q ` 1s

Let |V | “ N. We look at the limit N Ñ `8.
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Some advantages

The adjacency matrix A is already an N ˆ N matrix, so may be easier to compare
with Wigner’s random matrices.

Regular graphs may be easily randomized : the GN,d model.
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A geometric assumption

We assume that GN has “few” short loops (= converges to a tree in the sense of
Benjamini-Schramm).

This implies convergence of the spectral measure (Kesten-McKay)

1

N
7ti , λi P I u ´́´́ Ñ́

NÑ`8

ż

I
mpλqdλ

for any interval I .

The density m is completely explicit, supported in p´2
?
q, 2
?
qq.
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Numerical simulations on Random Regular Graphs (RRG)

Figure: Source Jakobson-Miller-Rivin-Rudnick
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Recent results : deterministic

A-Le Masson, 2013

Assume that GN has “few” short loops and that it forms an expander family =
uniform spectral gap for A.

Let pφ
pNq
i qNi“1 be an ONB of eigenfunctions of the laplacian on GN .

Let a “ aN : VN Ñ R be such that |apxq| ď 1 for all x P VN . Then

lim
NÑ`8

1

N

N
ÿ

i“1

ˇ

ˇ

ˇ

ÿ

xPVN

apxq
ˇ

ˇφ
pNq
i pxq

ˇ

ˇ

2
´ xay

ˇ

ˇ

ˇ

“ 0,

where

xay “
1

N

ÿ

xPVN

apxq.
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uniform spectral gap for A.

Let pφ
pNq
i qNi“1 be an ONB of eigenfunctions of the laplacian on GN .

Let a “ aN : VN Ñ R be such that |apxq| ď 1 for all x P VN . Then

lim
NÑ`8

1

N

N
ÿ

i“1

ˇ

ˇ

ˇ

ÿ

xPVN

apxq
ˇ

ˇφ
pNq
i pxq

ˇ

ˇ

2
´ xay

ˇ

ˇ

ˇ
“ 0,

where

xay “
1

N

ÿ

xPVN

apxq.
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For any ε ą 0,

lim
NÑ`8

1

N
7

!

i ,
ˇ

ˇ

ˇ

ÿ

xPVN

apxq
ˇ

ˇφ
pNq
i pxq

ˇ

ˇ

2
´ xay

ˇ

ˇ

ˇ
ě ε

)

“ 0.
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Recent results : deterministic

Brooks-Lindenstrauss, 2011

Assume that GN has “few” loops of length ď c logN.
For ε ą 0, there exists δ ą 0 s.t. for every eigenfunction φ,

B Ă VN ,
ÿ

xPB

ˇ

ˇφpxq
ˇ

ˇ

2
ě ε ùñ |B| ě Nδ.

Proof also yields that }φ}8 ď | logN|´1{4.
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Examples

Deterministic examples :

the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988 (arithmetic quotients of
the q-adic symmetric space PGLp2,Qqq{PGLp2,Zqq);

Cayley graphs of SL2pZ{pZq, p ranges over the primes, (Bourgain-Gamburd,
based on Helfgott 2005).
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Recent results : random

Spectral statistics : Bauerschmidt, Huang, Knowles, Yau, 2016

Let d “ q ` 1 ě 1020.

For the GN,d model, with large probability as N Ñ `8, the small scale Kesten-
McKay law

1

N
7
 

i , λi P I
(

„
NÝÑ`8

ż

I
mpλqdλ

holds for any interval I for |I | ě logN‚{N, and

I Ă r´2
?
q ` ε, 2

?
q ´ εs.
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Recent results : random

Spectral statistics : Bauerschmidt, Huang, Knowles, Yau

Nearest neighbour spacing distribution coincides with Wigner matrices for

Nε ă dp“ q ` 1q ă N2{3´ε.
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Recent results : random

Delocalization : Bauerschmidt, Huang, Yau

Let d “ q ` 1 ě 1020.

For the GN,d model,

}φ
pNq
i }`8 ď

log N‚
?
N

as soon as λ
pNq
i P r´2

?
q ` ε, 2

?
q ´ εs;

(see also Bourgade –Yau) QUE : given a : t1, . . . ,Nu ÝÑ R,

for all λ
pNq
i P r´2

?
q ` ε, 2

?
q ´ εs,

N
ÿ

x“1

apxq
ˇ

ˇφ
pNq
i pxq

ˇ

ˇ

2
“

1

N

ÿ

n

apxq ` O
´ logN‚

N

¯

}a}`2

with large probability as N Ñ `8.
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Recent results : random
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Recent results : random

Gaussianity of eigenvectors, Backhausz-Szegedy 2016

Consider the GN,d model.

With probability 1´ op1q as N Ñ8, one has : for all eigenfunctions φ
pNq
i , for all

diameters R ą 0, the distribution of

φ
pNq
i |Bpx ,Rq,

when x is chosen uniformly at random in V pGN,dq, is close to a Gaussian process
on BTqpo,Rq.

Remaining open question : is this Gaussian non-degenerate ?
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Open questions and suggestions

QUE for deterministic regular graphs ?

Stronger forms of QUE for Random Regular Graphs ?

Non-regular graphs (joint work with M. Sabri).

More systematic study of manifolds in the large-scale limit (cf. Le
Masson-Sahlsten for hyperbolic surfaces, when genus g ÝÑ `8).

Random manifolds?
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End

Thank you for your attention !

...and thanks to R. Séroul and all colleagues who provided pictures.
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