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1913 : Bohr's model of the hydrogen atom

Increasing
energy orbits

Emitted photon
with energy E=h f

Kinetic momentum is “quantized” J = nh, where n e N.
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1917 : A paper of Einstein

Zum Quantensatz von Sommerfeld und Epstein

Typus b): es treten unendlich viele p;-Systeme an der be-
trachteten Stelle auf. In diesem Falle lassen sich die p; nicht
als Funktionen der ¢; darstellen.

Man bemerkt sogleich, da der Typus b) die im § 2 formu-
lierte Quantenbedingung 11) ausschlieBt. Andererseits bezieht sich
die klassische statistische Mechanik im wesentlichen nur auf den
Typus b); denn nur in diesem Falle ist die mikrokanonische Ge-
samtheit der auf ein System sich beziehenden Zeitgesamtheit
dquivalent ).

1) In der mikrokanonischen Gesamtheit sind Systeme vorhanden, welche

bei gegebenen g; beliebig gegebene (mit dem Energiewert vereinbare) p;
besitzen.



1917 : A paper of Einstein

Zum Quantensatz von Sommerfeld und Epstein

Type b): There are infinitely many p,-systems at the location under consideration,
In this case the p; cannot be represented as functions of the g;.

One notices immediately that type b) excludes the quantum condition we
formulated in §2. On the other hand, classical statistical mechanics deals essentially
only with type b); because only in this case is the microcanonic ensemble of one
system equivalent to the time ensemble.’

In summarizing we can say: The application of the quantum condition (11)
demands that there exist orbits such that a single orbit determines the p,-field for
which a potential J* exists.



1925 : operators / wave mechanics

@ Heisenberg : physical observables are operators (matrices) obeying certain
commutation rules

(5. G]=inl.

The "spectrum” is obtained by computing eigenvalues of the energy operator H.



1925 : operators / wave mechanics

@ Heisenberg : physical observables are operators (matrices) obeying certain
commutation rules

(5. G]=inl.

The "spectrum” is obtained by computing eigenvalues of the energy operator H.

e De Broglie (1923) : wave particle duality.

@ Schrodinger (1925) : wave mechanics

49 _

Y(x,y,z,t) is the wave function.



1925 : operators / wave mechanics

In Heisenberg's picture the spectrum is computed by
diagonalizing the operator H .

h2
In Schrodinger’s picture, we must diagonalize (— %A + V).



1925 : operators / wave mechanics

In Heisenberg's picture the spectrum is computed by
diagonalizing the operator H.

h2
In Schrodinger's picture, we must diagonalize (— %A + V).

The two theories are mathematically equivalent : Schrodinger's picture corresponds to
a representation of the Heisenberg algebra on the Hilbert space L?(IR3).

But not physically equivalent !



Wigner 1950° Random Matrix model for heavy nuclei
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0
Figure: Left : nearest neighbour spacing histogram for nuclear data ensemble (NDE). Right :



Spectral statistics for hydrogen atom in strong magnetic field

Figure: Source Delande.



Billiard tables

. dy 2
In quantum mechanics, IhE = <— —A+ 0)#}.



Spectral statistics for several billiard tables
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Figure: Random matrices and chaotic dynamics



A list of questions and conjectures

For classically ergodic / chaotic systems,

@ show that the spectrum of the quantum system resembles that of large random
matrices (Bohigas-Giannoni-Schmit conjecture);
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A list of questions and conjectures

For classically ergodic / chaotic systems,

@ show that the spectrum of the quantum system resembles that of large random
matrices (Bohigas-Giannoni-Schmit conjecture);

o study the probability density |1(x)|?, where 1(x) is a solution to the Schrédinger
equation (Quantum Unique Ergodicity conjecture);

@ show that v)(x) resembles a gaussian process (x € B(xp, Rh), R » 1) (Berry
conjecture).



A list of questions and conjectures

This is meant in the limit 2 — 0 (small wavelength).

vV2mE
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ll. Quantum ergodicity

M a billiard table / compact Riemannian manifold, of dimension d.

In classical mechanics, billiard flow ¢! : (x,&) — (x + t&,€)
(or more generally, the geodesic flow = motion with zero acceleration).



ll. Quantum ergodicity

M a billiard table / compact Riemannian manifold, of dimension d.

In quantum mechanics :

ind? _ (—h—2A+o)¢

dt 2m
h2

— oAy = EV,
2m

in the limit of small wavelengths.
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Figure: Billiard trajectories and eigenfunctions in a disk. Source A. Backer.



m=0 m=1 m=2 m=3 m=4
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Figure: Spherical harmonics



Square / torus

L

Figure: Eigenfunctions in a square. Source A. Backer.



Al
7 =

Figure: A few eigenfunctions of the Bunimovich billiard (Heller, 89).
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Figure: Source A. Bicker
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Figure: Propagation of a gaussian wave packet in a cardioid. Source A. Backer.



Figure: Propagation of a gaussian wave packet in a cardioid. Source A. Backer.



Eigenfunctions in the high frequency limit

M a billiard table / compact Riemannian manifold, of dimension d.

h2
A = = Y or  — — A = E,
2m

1Pk 2y = 1,
in the limit A\, — +00.

We study the weak limits of the probability measures on M,

|k (x) [? d Vol (x).
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Let (1x)ken be an orthonormal basis of L?(M), with
AP = M, Ak < A

QE Theorem (simplified): Shnirelman 74, Zelditch 85, Colin de Verdiere
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Assume that the action of the geodesic flow is ergodic for the Liouville measure.
Let ae CO(M). Then

ﬁ Z ‘fM a(X)‘¢k(x)|2dVo|(x) — JM a(x)d Vol(x) = 0.

A<
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Assume that the action of the geodesic flow is ergodic for the Liouville measure.
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Equivalently, there exists a subset S — N of density 1, such that

fMa(x)|zpk(x)|2dVol(x)—> a(x)d Vol (x).

k—>+00
keS M



Equivalently, there exists a subset S — N of density 1, such that

k—>+00
keS

f a(x) [ (x)|?d Vol (x) —— f a(x)d Vol (x).
M M

Equivalently,
|4k (x) [ Vol (x) ——— dVol(x)
k—>+00
keS

in the weak topology.



The full statement uses analysis on phase space, i.e.
T*M = {(x,ﬁ),xe M, €& e T;M}.

For a = a(x,&) a "reasonable” function on phase space, we can define an operator on
L2(M),

a(x.D.) (e = %ax).
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On M = RY, we identify the momentum ¢ with the Fourier variable, and put

a(x. DI () = s | aloe ) Fle) ede

for a a “reasonable” function.



On M = R?, we identify the momentum ¢ with the Fourier variable, and put

a(x. DYF(X) = oz | alx € F9) €.

for a a “reasonable” function.

Say ae S°(T*M) if ais smooth and 0-homogeneous in ¢ (i.e. a is a smooth function
on the sphere bundle SM).
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—AYy = M\x, A < A1

For ae S%(T*M), we consider

(Wi, a(x, D) iz (my-

This amounts to §,, a(x)[¢(x)[>d Vol(x) if a = a(x).



Let (1x)ken be an orthonormal basis of L?(M), with

=AYy = My, Ak < Ayt

QE Theorem (Shnirelman, Zelditch, Colin de Verdiere)

Assume that the action of the geodesic flow is ergodic for the Liouville measure.
Let a(x, &) € S°(T*M). Then

1
NV /\é}\ ‘< Wi (% Dx)Wi Yoy — f|g|=1 a(x, &) dxde| — 0.




Figure: Ergodic billiards. Source A. Backer
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Figure: Source A. Bicker



Why the geodesic flow 7

1 Define the “Quantum Variance”

Vary(K Z ‘(1% K Vi)12(m) ‘ -
A<

2 Introduction of pseudodiffs v~ emergence of a classical dynamical system (billiard
/ geodesic flow).
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Why the geodesic flow 7

1 Define the “Quantum Variance”

Vary (K Z ‘ "t‘/EKe*"t\/Zgb@,_z(M)‘ .
Ae<A

Invariance property under conjugacy by eitVA (quantum dynamics).

2 Introduction of pseudodiffs v~> emergence of a classical dynamical system (billiard
/ geodesic flow).

eit\/Za(X7 Dx) efit\/Z =30 ¢t(x, DX) + r(X, Dx).

1 T
limsup Vary(a(x, Dy)) = limsup Var)\(7 J ao¢(x, Dx)dt>
0

A—>00 A—>00



3 Control by the L2-norm (Plancherel formula).

1T
limsup Vary(a(x, Dy)) = limsup Var)\<? J ao¢'(x, Dx)dt>
0

A—00 A—00
T 1/2
0

S <LeM,|§|—1 ’% f 209" (x.) dt)dedg)



3 Control by the L2-norm (Plancherel formula).

1 (T
limsup Vary(a(x, Dy)) = limsup Var>\<? J ao¢'(x, Dx)dt)
0

A—00 A—00

(g b reotmoef o)

4 Use the ergodicity of classical dynamics to conclude.
Ergodicity : if a has zero mean, then

1" .
lim Tjo ao¢t(x,§)dt =0

T—40

in L2(dxd¢) and for almost every (x, &).
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Figure: Source A. Bicker
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Quantum Unique Ergodicity conjecture : Rudnick, Sarnak 94

On a negatively curved manifold, we have convergence of the whole sequence :

<¢k7 a(x, D Q/Jk >L2(M) —)f X g)dng

(x,£)eSM




Quantum Unique Ergodicity conjecture : Rudnick, Sa

On a negatively curved manifold, we have convergence of the whole sequence :

) 7Dx 2 = y dxd&.
<¢k a(X )lbk >[_ (M) (x.£)eSM a(X g) xdg

Proved by E. Lindenstrauss, in the special case of arithmetic congruence surfaces, for
joint eigenfunctions of the Laplacian, and the Hecke operators.




Let M have negative curvature and dimension d. Assume
<¢k,a(x, Dy )k >L2(M) - f a(x, &) du(x,§).
(x,£)eSM

(1) [A-Nonnenmacher 2006] : & must have positive (non vanishing) Kolmogorov-
Sinai entropy.

For constant negative curvature, our result implies that the support of u has
dimension > d = dim M.



Let M have negative curvature and dimension d. Assume
<¢k,a(X, Dy )k >L2(M) - f a(x, &) du(x,§).
(x,£)eSM

(1) [A-Nonnenmacher 2006] : & must have positive (non vanishing) Kolmogorov-
Sinai entropy.

For constant negative curvature, our result implies that the support of u has
dimension > d = dim M.

(2) [Dyatlov-Jin 2017] : d = 2, constant negative curvature, ;. has full support.



IIl. Toy models

Toy models are “simple” models where either
@ some explicit calculations are possible,
OR

@ numerical calculations are relatively easy.



IIl. Toy models

Toy models are “simple” models where either
@ some explicit calculations are possible,
OR

@ numerical calculations are relatively easy.

They often have a discrete character.
Instead of studying 5 — 0 one considers finite dimensional Hilbert spaces whose
dimension N — +00.



Regular graphs

Figure: A (random) 3-regular graph. Source J. Salez.



Regular graphs

Let G = (V,E) be a (g + 1)-regular graph.
Discrete laplacian : f : V — C,

Af(x) = Y (Fly) = f(x) = X f(y) = (g + D)f (x).

y~x y~x

A=A—(qg+1)



Why do they seem relevant 7

@ They are locally modelled on the (g + 1)- regular tree T,

e T4 may be considered to have curvature —oo.
@ Harmonic analysis on Ty is very similar to h.a. on H".

e For g = p a prime number, T}, is the symmetric space of the group SL»(Qp).
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Why do they seem relevant 7

@ They are locally modelled on the (g + 1)- regular tree T,
(cf. H" for hyperbolic manifolds).

e T4 may be considered to have curvature —oo.
@ Harmonic analysis on Ty is very similar to h.a. on H".

e For g = p a prime number, T}, is the symmetric space of the group SL»(Qp).
H? is the symmetric space of SLy(R).



A major difference

Sp(A) = [=(g+1),q+1]
Let |V| = N. We look at the limit N — +o0.



Some advantages

@ The adjacency matrix A is already an N x N matrix, so may be easier to compare
with Wigner's random matrices.

@ Regular graphs may be easily randomized : the Gy 4 model.



A geometric assumption

We assume that Gy has “few” short loops (= converges to a tree in the sense of
Benjamini-Schramm).



A geometric assumption

We assume that Gy has “few” short loops (= converges to a tree in the sense of
Benjamini-Schramm).

This implies convergence of the spectral measure (Kesten-McKay)

ﬁ{l Ai€l} —— | m(\)dA

N—+00 /

for any interval /.
The density m is completely explicit, supported in (—2,/9,2,/q).



Numerical simulations on Random Regular Graphs (RRG)

25 2. -5 L 05 0 05 L 15 2. 25 3.

(a) cubic graph on 2000 vertices; (b) 5-valent graph on 500 vertices.

Figure 1. Eigenvalue distributions of random graphs vs McKay’s law

Figure: Source Jakobson-Miller-Rivin-Rudnick



Recent results : deterministic
A-Le Masson, 2013

Assume that Gy has “few” short loops and that it forms an expander family =
uniform spectral gap for A.

Let (¢(N)) be an ONB of eigenfunctions of the laplacian on Gy.

Let a = apy: VN — R be such that |a(x)| < 1 for all x € Vjy. Then

NET—OO N - Z Z ¢(N) =& =G

Xe VN

where

(=% Z a(x).

XE VN




Recent results : deterministic
A-Le Masson, 2013

Assume that Gy has “few” short loops and that it forms an expander family =
uniform spectral gap for A.

Let (¢(N)) be an ONB of eigenfunctions of the laplacian on Gy.

Let a = apy: VN — R be such that |a(x)| < 1 for all x € Vjy. Then

im 2) 29[ ()" - ¢y | =0,

N 0
-t Xe VN

where

(=% Z a(x).

XE VN
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For any € > 0,

lim lﬁ{i,

N—o>+wo N

Y, a60|e () )| > f =o0.

X€E VN



Recent results : deterministic

Brooks-Lindenstrauss, 2011

Assume that Gy has “few” loops of length < clog V.
For € > 0, there exists 6 > 0 s.t. for every eigenfunction ¢,

BcVy, Y [o(x)|*=e = [B|>N°.

xeB

Proof also yields that | ¢ |, < |log N|~1/4.



Deterministic examples :

e the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988 (arithmetic quotients of
the g-adic symmetric space PGL(2,Qq)/PGL(2,Z4));



Deterministic examples :

e the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988 (arithmetic quotients of
the g-adic symmetric space PGL(2,Qq)/PGL(2,Z4));

o Cayley graphs of SLy(Z/pZ), p ranges over the primes, (Bourgain-Gamburd,
based on Helfgott 2005).



Recent results : random

Spectral statistics : Bauerschmidt, Huang, Kno

Let d = g+ 1 > 10%,

For the Gy 4 model, with large probability as N — 40, the small scale Kesten-
McKay law

{,Ae/}N%%J (\)dA

holds for any interval I for |I| > log N*/N, and

< [-2y/q+ €2,/ —¢€].




Recent results : random

Figure 2. Level spacing distribution of a cubic graph on 2000 vertices vs GOE

Spectral statistics : Bauerschmidt, Huang,

Nearest neighbour spacing distribution coincides with Wigner matrices for

N¢ < d(=q+1) < N?3<




Recent results : random

Delocalization : Bauerschmidt, Huang, Yau

Let d = g + 1 > 10%.
For the Gy 4 model,

® ||¢,(-N) g0 < % as soon as )\,(N) € [—2\/a +€,2,/q — el;
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Delocalization : Bauerschmidt, Huang, Yau

Let d = g + 1 > 10%.
For the Gy 4 model,

° ||gb,(-N) oo < '°\g/% as soon as )\ €[-2\/q+¢€2,/q—¢];

o (see also Bourgade —Yau) QUE : given a: {1,...,N} — R,
for all A € [—2,/g + €,2,/g — €],

N
3 a(x)] oM
x=1

with large probability as N — +00.

= 2209+ O(5 ) lale

= I




Recent results : random

Gaussianity of eigenvectors, Backhausz-Szeged

Consider the Gy g model.

With probability 1 — o(1) as N — o0, one has : for all eigenfunctions qﬁgN), for all
diameters R > 0, the distribution of

(N)
i 1B(xR)

when x is chosen uniformly at random in V(Gp 4), is close to a Gaussian process
on Br, (o, R).
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Gaussianity of eigenvectors, Backhausz-Szege

Consider the Gy g model.

With probability 1 — o(1) as N — o0, one has : for all eigenfunctions qﬁgN), for all
diameters R > 0, the distribution of

(N)
i 1B(xR)

when x is chosen uniformly at random in V(Gp 4), is close to a Gaussian process
on Br, (o, R).

Remaining open question : is this Gaussian non-degenerate ?
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@ Non-regular graphs (joint work with M. Sabri).



Open questions and suggestions

QUE for deterministic regular graphs ?

Stronger forms of QUE for Random Regular Graphs ?

Non-regular graphs (joint work with M. Sabri).

More systematic study of manifolds in the large-scale limit (cf. Le
Masson-Sahlsten for hyperbolic surfaces, when genus g —> +0).

Random manifolds?



End

Thank you for your attention !

...and thanks to R. Séroul and all colleagues who provided pictures.
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