Interactions between Algebra, Geometry and Combinatorics

Karin Baur

University of Graz

12 June 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Pythagoras' theorem
- Ptolemy's Theorem

Triangulations

- Polygons
- Surfaces

3 Cluster theory

- Cluster algebras
- Cluster categories

4 Surfaces and combinatorics

- Categories and diagonals
- Dimers, boundary algebras and categories of modules

・ロト ・個ト ・ヨト ・ヨト

2

Overview and Outlook

Pythagoras's theorem

Theorem (Pythagoras, 570-495 BC)

The sides of a right triangle satisfy $a^2 + b^2 = c^2$.

Ptolemy's Theorem (Theorema Secundum)

A cyclic quadrilateral is a quadrilateral whose vertices lie on a common circle.

Theorem (Ptolemy, 70 - 168 BC)

The lengths of a sides and diagonals of a cyclic quadrilateral satisfy: $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$

Ptolemy's Theorem (Theorema Secundum)

A cyclic quadrilateral is a quadrilateral whose vertices lie on a common circle.

Theorem (Ptolemy, 70 - 168 BC)

The lengths of a sides and diagonals of a cyclic quadrilateral satisfy: $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$

Ptolemy's Theorem (Theorema Secundum)

A cyclic quadrilateral is a quadrilateral whose vertices lie on a common circle.

Theorem (Ptolemy, 70 - 168 BC)

The lengths of a sides and diagonals of a cyclic quadrilateral satisfy: $|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|$

Triangulations

A triangulation of an *n*-gon is a subdivision of the polygon into triangles.

Result: n - 2 triangles, using n - 3 diagonals (invariants of the *n*-gon).

Theorem (Euler's Conjecture, 1751, Proofs: Catalan et al., 1838-39) Number of ways to triangulate a convex *n*-gon:

 $C_n := \frac{1}{n-1} \binom{2n-4}{n-2}$

Catalan numbers

Triangulations

A triangulation of an *n*-gon is a subdivision of the polygon into triangles.

Result: n - 2 triangles, using n - 3 diagonals (invariants of the *n*-gon).

Theorem (Euler's Conjecture, 1751, Proofs: Catalan et al., 1838-39) Number of ways to triangulate a convex *n*-gon:

$$C_n := \frac{1}{n-1} \binom{2n-4}{n-2}$$
 Catalan numbers

n	3	4	5	6	7	8
Cn	1	2	5	14	42	132

Figures in the plane: disk, annulus

Punctured disk

Dynkin type D

Marked points on boundary, one marked point in interior. (degenerate triangles

Annulus

Marked points on both boundaries of the figure.

Finiteness (Fomin - Shapiro - D. Thurston 2005)

S Riemann surface

nteractions between Algebra, Geometry and Combinatorics

Figures in the plane: disk, annulus

Finiteness (Fomin - Shapiro - D. Thurston 2005

S Riemann surface

Karin Baur

eractions between Algebra, Geometry and Combinatoric

Figures in the plane: disk, annulus

S Riemann surface

J IS a UISK allu

Karin Baur

teractions between Algebra, Geometry and Combinatorics

Karin Baur

Figures in the plane: disk, annulus

Punctured disk Dynkin type D Marked points on boundary, one marked point in interior. (degenerate triangles) Dynkin type \tilde{A} Annulus Marked points on both boundaries of the figure. Finiteness (Fomin - Shapiro - D. Thurston 2005) S is a disk and S Riemann surface with marked points M has \iff M has at most one finitely many triangulations point in $S \setminus \partial S$

Dynkin type A

- 4 同 6 4 日 6 4 日 6

3

4 / 25

n-gon: disk with n marked points on boundary.

Disk

Triangles, diagonals

'Triangles'

Figures with three or less edges: degenerate triangles.

'Diagonals' (FST 2005)

The number of diagonals is constant. It is the **rank** of the surface:

$$p + 3q - 3(2 - b) + 6g$$

where: *p* marked points, *q* punctures, *b* boundary components, *g* genus.

today: $q \in \{0,1\}$, $b \in \{1,2\}$, g = 0.

Cluster algebras

- recursively defined algebras $\subseteq \mathbb{Q}(x_1, \ldots, x_n)$
- grouped in overlapping sets of generators
- many relations between the generators

Cluster algebras

- recursively defined algebras $\subseteq \mathbb{Q}(x_1, \ldots, x_n)$
- grouped in overlapping sets of generators
- many relations between the generators

Pentagon-recurrence (Spence, Abel, Hill)

Cluster algebra $\mathcal{A} := \langle (f_i)_i \rangle = \langle f_1, f_2, \dots, f_5 \rangle \subseteq \mathbb{Q}(x_1, x_2).$ Relations: $f_1 f_3 = f_2 + 1$, $f_2 f_4 = f_3 + 1$, etc.

Pentagon-recurrence (Spence, Abel, Hill)

Sequence
$$(f_i)_i \subseteq \mathbb{Q}(x_1, x_2)$$
: $f_{m+1} = \frac{f_m + 1}{f_{m-1}}$ with $f_1 := x_1, f_2 := x_2$.
 $f_3 = \frac{x_2 + 1}{x_1}, f_4 = \frac{x_1 + x_2 + 1}{x_1 x_2}, f_5 = \frac{x_1 + 1}{x_2}, f_6 = f_1, f_7 = f_2$, etc.

Cluster algebra $\mathcal{A} := \langle (f_i)_i \rangle = \langle f_1, f_2, \dots, f_5 \rangle \subseteq \mathbb{Q}(x_1, x_2).$ Relations: $f_1 f_3 = f_2 + 1$, $f_2 f_4 = f_3 + 1$, etc.

3

3 1 4 3 1

Cluster algebras

Start with $\{x_1, \ldots, x_n\}$ cluster, $B = (b_{ij}) n \times n$ a sign-skew symmetric matrix over \mathbb{Z} . The pair (\underline{x}, B) is a seed. Relations through mutation at k (B mutates similarly):

$$x_k\cdot x_k'=\prod_{b_{ik}>0}x_i^{b_{ik}}+\prod_{b_{ik}<0}x_i^{-b_{ik}}$$

Mutation at $k: x_k \mapsto x'_k$, and so $(\underline{x}, B) \rightsquigarrow (\{x_1, \dots, x'_k, \dots, x_n\}, B')$.

Cluster variables all the x_i , the x'_i , etc.

Cluster algebra $\mathcal{A} = \mathcal{A}(\underline{x}, B) \subset \mathbb{Q}(x_1, \dots, x_n)$ generated by all cluster variables.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ • • • • • ●

Cluster algebras

$$\mathcal{A} = \mathcal{A}(\underline{x}, B) \subset \mathbb{Q}(x_1, \ldots, x_n).$$

Properties

- Laurent phenomenon: $\mathcal{A} \subset \mathbb{Z}[x_1^{\pm}, x_2^{\pm}, \dots, x_n^{\pm}]$: Fomin-Zelevinsky.
- Finite type follows Dynkin type: Fomin-Zelevinsky.
- Positivity: coefficients in Z_{>0}: Musiker-Schiffler-Williams 2011, Lee-Schiffler 2015, Gross-Hacking-Keel-Kontsevich 2018.

Examples $\mathbb{C}[SL_2], \mathbb{C}[Gr(2, n)]$ (Fomin-Zelevinsky), $\mathbb{C}[Gr(k, n)]$ (Scott).

Overview

Karin Baur

Interactions between Algebra, Geometry and Combinatorics

10 / 25

3

イロト イポト イヨト イヨト

In focus

* ongoing projects

Karin Baur

11 / 25

(日) (同) (三) (三)

Background: algebra \longleftrightarrow geometry

Analogies

● Polygon → cluster algebra: Fomin-Zelevinsky, FST

Karin Baur

nteractions between Algebra, Geometry and Combinatorics

Background: algebra \longleftrightarrow geometry

pentagon recurrence	Ptolemy relation		
cluster variables: $f_{m+1} = \frac{f_m+1}{f_{m-1}}$	diagonals: $ac = ab + cd$		
$x_2 = \frac{x_1 + x_2 + 1}{x_1 x_2} = x_1$	(1,4) $(2,5)$ $(1,3)$		
$x_1 \frac{x_2+1}{x_1} \frac{x_1+1}{x_2} x_2$	(1,3) $(2,4)$ $(3,5)$ $(1,4)$		

Analogies

- Polygon \longleftrightarrow cluster algebra: Fomin-Zelevinsky, FST
- $\bullet \ \ \mathsf{Polygon} \longleftrightarrow \mathsf{cluster} \ \mathsf{category:} \ \ \mathsf{Caldero-Chapoton-Schiffler}, \ \ \mathsf{B-Marsh}$
- motivates: Surfaces <---> categories: B-King-Marsh

12 / 25

3

• • = • • = •

Background: algebra \longleftrightarrow geometry

pentagon recurrence	Ptolemy relation		
cluster variables: $f_{m+1} = \frac{f_m+1}{f_{m-1}}$	diagonals: $ac = ab + cd$		
$x_2 = \frac{x_1 + x_2 + 1}{x_1 x_2} = x_1$	(1,4) $(2,5)$ $(1,3)$		
$x_1 \frac{x_2+1}{x_1} \frac{x_1+1}{x_2} x_2$	(1,3) $(2,4)$ $(3,5)$ $(1,4)$		

Analogies

- Polygon \longleftrightarrow cluster algebra: Fomin-Zelevinsky, FST
- Polygon \longleftrightarrow cluster category: Caldero-Chapoton-Schiffler, B-Marsh
- motivates: Surfaces ++++ categories: B-King-Marsh

Karin Baur

12 / 25

∃ → (∃ →

Cluster category

Definition (Cluster category of type Q, in example: $Q = 1 \leftarrow 2$) $C_Q := D^b(Q-rep)/(\tau^{-1} \circ [1])$

Category C_Q : Fin. many <u>indecomposable objects</u>, arrows: irreducible morphisms. vertices

13 / 25

3

• • = • • = •

Cluster category

Definition (Cluster category of type Q, in example: $Q = 1 \leftarrow 2$) $C_Q := D^b(Q-rep)/(\tau^{-1} \circ [1])$

Category C_Q :

Fin. many indecomposable objects, arrows: irreducible morphisms.

vertices

- 3

- 4 同 6 4 日 6 4 日 6

Cluster category

Definition (Cluster category of type Q, in example: $Q = 1 \leftarrow 2$) $C_Q := D^b(Q-rep)/(\tau^{-1} \circ [1])$

Category C_Q :

Fin. many indecomposable objects, arrows: irreducible morphisms.

13 / 25

∃ ► < ∃ ►</p>

Properties of cluster categories

Properties

- C_Q is Krull-Schmidt, triangulated, of Calabi-Yau dimension 2: Buan-Marsh-Reineke-Reiten-Todorov 2005, Keller, 2005.
- $C_{A_{n-3}}$, C_{D_n} arises from triangulations of (punctured) *n*-gon: Caldero-Chapoton-Schiffler 2005, Schiffler 2008.
- *m*-cluster categories in types *A*, *D* from *m*-angulations of (punctured) polygons: B-Marsh 2007, 2008.

Strategy

Use combinatorial geometry to describe cluster categories: Surface combinatorics yields cluster algebras, cluster categories.

A B F A B F

Properties of cluster categories

Properties

- C_Q is Krull-Schmidt, triangulated, of Calabi-Yau dimension 2: Buan-Marsh-Reineke-Reiten-Todorov 2005, Keller, 2005.
- $C_{A_{n-3}}$, C_{D_n} arises from triangulations of (punctured) *n*-gon: Caldero-Chapoton-Schiffler 2005, Schiffler 2008.
- *m*-cluster categories in types *A*, *D* from *m*-angulations of (punctured) polygons: B-Marsh 2007, 2008.

Strategy

Use combinatorial geometry to describe cluster categories: Surface combinatorics yields cluster algebras, cluster categories.

A B A A B A

Categories via surfaces: 2 approaches

Approach 1:

 C_{A_2} described via diagonals in pentagon; C_{A_n} via diagonals in (n+3)-gon.

Objects correspond to diagonals. Morphisms via rotation. Extensions via intersections of diagonals, shift, τ , etc.

In \mathcal{C}_{A_2} : indecomposable objects X_d where d is a diagonal in pentagon. Irreducible morphism $X_{(2,5)} \to X_{(3,5)}$ and $\operatorname{Ext}^1_{\mathcal{C}}(X_{(1,3)}, X_{(2,4)}) \neq 0$.

Algebra via geometry: Approach 1

Development

Categories C_{D_n} , $C_{\tilde{A}_n}$, C_{E_6} , module categories, root category, derived category etc.

B-Marsh [2007,08], Schiffler [2008], Warkentin [2009], Brüstle-Zhang [2011], Lamberti [2011,12], B-Marsh [2012], Coelho-Simoes [2012], Holm-Jørgensen [2012], Igusa-Todorov [2012,13], B-Dupont [2014], B-Torkildsen [2015], Gratz [2015], Torkildsen [2015], Canakci-Schroll [2017], B-Gratz [2018], Opper-Plamondon-Schroll [2018], B-Coelho Simoes [2018] etc.

Dimers on surfaces: Approach 2

Triangulations of disks $\rightsquigarrow C_{A_n}$ or C(Gr(2, n+3)).

New: can get C(Gr(k, n)) for any k through surface combinatorics.

Approach 2: B-King-Marsh 2016

The Grassmannian cluster category C(Gr(k, n)) is described via (k, n)-dimers.

A **dimer** is an oriented graph (quiver) embedded in a surface, such that its complement is a union of disks. Comes with a natural potential.

A dimer with boundary (B-King-Marsh)

A **dimer with boundary** Q is a quiver embedded in a surface, glued from oriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

A (k, n)-dimer

A dimer Q is a (k, n)-dimer if the surface is an *n*-gon and if the associated zig-zag paths induce the permutation $i \mapsto i + k$ from S_n .

Karin Baur

Interactions between Algebra, Geometry and Combinatorics

A dimer with boundary (B-King-Marsh)

A **dimer with boundary** Q is a quiver embedded in a surface, glued from oriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

A (k, n)-dimer

A dimer Q is a (k, n)-dimer if the surface is an n-gon and if the associated zig-zag paths induce the permutation $i \mapsto i + k$ from S_n .

Karin Baur

Interactions between Algebra, Geometry and Combinatorics

A dimer with boundary (B-King-Marsh)

A **dimer with boundary** Q is a quiver embedded in a surface, glued from oriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

A (k, n)-dimer

A dimer Q is a (k, n)-dimer if the surface is an n-gon and if the associated zig-zag paths induce the permutation $i \mapsto i + k$ from S_n .

Karin Baur

Interactions between Algebra, Geometry and Combinatorics

18 / 25

< 回 ト < 三 ト < 三 ト

Dimers and associated algebras

Definition (Dimer algebra of a dimer Q)

Dimer algebra Λ_Q of Q: path algebra $\mathbb{C}Q$ with relations $p_1(\alpha) = p_2(\alpha)$.

Let $e_b \in \Lambda_Q$ be the sum of the trivial paths of the boundary vertices of Q.

Dimers and associated algebras

Definition (Dimer algebra of a dimer Q)

Dimer algebra Λ_Q of Q: path algebra $\mathbb{C}Q$ with relations $p_1(\alpha) = p_2(\alpha)$.

Let $e_b \in \Lambda_Q$ be the sum of the trivial paths of the boundary vertices of Q.

Definition

Let Q be a dimer, with dimer algebra Λ_Q . The **boundary algebra of** Q is the algebra $A_Q = e_b \Lambda_Q e_b$.

Boundary algebra $A_Q = e_b \Lambda_Q e_b$ of (3,6)-dimer Q

Generators x_i , y_i , i = 1, ..., 6. Relations: xy = yx, $x^3 = y^3$ (at each vertex) or $x^k = y^{n-k}$, respectively

Karin Baur

Boundary algebra $A_Q = e_b \Lambda_Q e_b$ of (3, 6)-dimer Q

Generators x_i , y_i , i = 1, ..., 6. Relations: xy = yx, $x^3 = y^3$ (at each vertex) or $x^k = y^{n-k}$, respectively

Karin Baur

Interactions between Algebra, Geometry and Combinatorics

Boundary algebra $A_Q = e_b \Lambda_Q e_b$ of (3,6)-dimer Q

Generators x_i , y_i , i = 1, ..., 6. Relations: xy = yx, $x^3 = y^3$ (at each vertex) or $x^k = y^{n-k}$, respectively

Karin Baur

Boundary algebra $A_Q = e_b \Lambda_Q e_b$ of (3, 6)-dimer Q

Generators x_i , y_i , i = 1, ..., 6. Relations: xy = yx, $x^3 = y^3$ (at each vertex) or $x^k = y^{n-k}$, respectively

Karin Baur

(k, n)-dimers $\leftrightarrow \sigma$ Grassmannians

Theorem (B-King-Marsh 2016)

Any (k, n)-dimer yields the cluster category $\mathcal{C}(Gr_{k,n})$.

Key ingredients

- Let Q, Q' two (k, n)-dimers, with boundary algebras A_Q and $A_{Q'}$. Then $A_Q \cong A_{Q'}$ (B-King-Marsh 2016).
- $A_Q \cong B$, algebra used by Jensen-King-Su 2016.
- CM(B) categorifies Scott's cluster structure of the Grassmannian cluster algebra C[Gr(k, n)], Jensen-King-Su 2016.
- In $CM(A_Q)$, Plücker correspond to rank 1 modules.
- (k, n)-dimers yield cluster-tilting objects.

21 / 25

A B M A B M

Results from (k, n)-dimers $\leftrightarrow \rightarrow$ Grassmannians

B-Bogdanic-Garcia Elsener 2018

extensions in $\mathcal{C}(\operatorname{Gr}(k, n))$ via rims

B-Bogdanic 2017

22 / 25

∃ ► < ∃ ►</p>

Projects around dimers with boundary

- Understand dimer on general surfaces with boundary.
- Develop theory of boundary algebras, of associated module categories.
- Laminations, starting with (k, n)-dimers.
- Friezes, SL_k-friezes.
- Dimer algebras and homotopy dimer algebras.
- Degenerate (k, n)-dimers. k = 2: tilings.

Ptolemy's theorem

In polygon

Cluster category C_{A_2}

Polygon \longleftrightarrow cluster category

(1,4) and (2,5) intersect,(2,4) and (2,5) don't intersect.

 $\begin{aligned} & \operatorname{Ext}^{1}(X_{(1,4)}, X_{(2,5)}) \neq 0, \\ & \operatorname{Ext}^{1}(X_{(2,4)}, X_{(2,5)}) = 0. \end{aligned}$

Geometric interpretation of algebraic phenomena (e.g. [1], τ). Also for general surfaces and categories.

Polygon \longleftrightarrow cluster category

(1,4) and (2,5) intersect,(2,4) and (2,5) don't intersect.

$$\begin{aligned} & \operatorname{Ext}^{1}(X_{(1,4)}, X_{(2,5)}) \neq 0, \\ & \operatorname{Ext}^{1}(X_{(2,4)}, X_{(2,5)}) = 0. \end{aligned}$$

Geometric interpretation of algebraic phenomena (e.g. [1], τ). Also for general surfaces and categories.

Karin Baur

Interactions between Algebra, Geometry and Combinatorics

Polygon \longleftrightarrow cluster category

(1,4) and (2,5) intersect,(2,4) and (2,5) don't intersect.

 $\begin{aligned} & \operatorname{Ext}^{1}(X_{(1,4)}, X_{(2,5)}) \neq 0, \\ & \operatorname{Ext}^{1}(X_{(2,4)}, X_{(2,5)}) = 0. \end{aligned}$

Geometric interpretation of algebraic phenomena (e.g. [1], τ). Also for general surfaces and categories.

∃ ▶ ∢

$\mathsf{Polygon}\longleftrightarrow\mathsf{cluster}\mathsf{ category}$

(1,4) and (2,5) intersect, (2,4) and (2,5) don't intersect. $\operatorname{Ext}^{1}(X_{(1,4)}, X_{(2,5)}) \neq 0,$ $\operatorname{Ext}^{1}(X_{(2,4)}, X_{(2,5)}) = 0.$

Geometric interpretation of algebraic phenomena (e.g. [1], τ). Also for general surfaces and categories.

(3, 6)-dimer

boundary algebra C(Gr(3, 6))

$\mathsf{Dimer} \longleftrightarrow \mathsf{Category} \text{ of modules}$

vertices boundary vertices indecomposable objects projective-injective indec's

Interactions between Algebra, Geometry and Combinatorics

3 1 4

Dimer \longleftrightarrow Category of modules

vertices boundary vertices indecomposable objects projective-injective indec's

Interactions between Algebra, Geometry and Combinatorics

25 / 25

- ×

Dimer \longleftrightarrow Category of modules

vertices boundary vertices indecomposable objects projective-injective indec's

- ₹ 🗦 🕨

$\mathsf{Dimer}\longleftrightarrow\mathsf{Category} \text{ of modules}$

vertices boundary vertices indecomposable objects projective-injective indec's

Karin Baur, PhD in Mathematics, born in Zurich.

Education

- 1977 1989 Schools in Zurich, Matura type B (classical).
- 1990 1996 Studies (Mathematics, Philosophy, French Literature), University of Zurich.
- 1994 Erasmus (Paris VI).
- 1997 2001 PhD studies in Mathematics, University of Basel.

CV, continued

Academic positions

- 2002 2003 Post-doctoral assistant, ETH Zurich.
- 2003 2005 Post-doc (SNSF) University of California, San Diego, USA
- 2005 2007 Research associate (EPSRC), University of Leicester
- 2007 2011 Assistant professor (SNSF Professor), ETH Zurich
- 2011 Full professor, University of Graz, Austria
- 2018 Professor, University of Leeds, UK.

Karin Baur

Interactions between Algebra, Geometry and Combinatoric

25 / 25

3

Doubts and strategies

Questions along the way

- Are there jobs?
- Unknown area: new maths, new questions. Which direction?
- Endurance, patience.
- Geographically: where?
- What are the alternatives?

Resources

- Family
- Peers, friends
- Mentors
- Collaborators
- Deadlines
- Interest

Aspects of the job of a mathematician

Karin Baur

Interactions between Algebra, Geometry and Combinatorics 25 / 25

イロト イポト イヨト イヨト

3