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@ Geometry
@ Pythagoras' theorem

@ Ptolemy’s Theorem

© Triangulations
@ Polygons
@ Surfaces

© Cluster theory
@ Cluster algebras
o Cluster categories

@ Surfaces and combinatorics
o Categories and diagonals
@ Dimers, boundary algebras and categories of modules

© Overview and Outlook



Pythagoras'’s theorem

Theorem (Pythagoras, 570-495 BC)

The sides of a right triangle satisfy a®> + b?> = c2.
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Ptolemy's Theorem (Theorema Secundum)

A cyclic quadrilateral is a

quadrilateral whose vertices

lie on a common circle.
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Ptolemy's Theorem (Theorema Secundum)

A cyclic quadrilateral is a
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quadrilateral whose vertices
lie on a common circle.
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Ptolemy’s Theorem (Theorema Secundum)

A cyclic quadrilateral is a
quadrilateral whose vertices
lie on a common circle.

Theorem (Ptolemy, 70 - 168 BC)

The lengths of a sides and diagonals of a cyclic quadrilateral satisfy:
|AC| - |BD| = |AB| - |CD| + |BC| - | DA
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Triangulations
A triangulation of an n-gon is a subdivision of the polygon into triangles.

Result: n — 2 triangles, using n — 3 diagonals (invariants of the n-gon).
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Triangulations

A triangulation of an n-gon is a subdivision of the polygon into triangles.

Result: n— 2 triangles, using n — 3 diagonals (invariants of the n-gon).

Theorem (Euler’'s Conjecture, 1751, Proofs: Catalan et al., 1838-39)

Number of ways to triangulate a convex n-gon:

C, = L 2n—4 Catalan numbers
n—1\n—-2

6 7 8
14 42 132

D3

Karin Baur Interactions between Algebra, Geometry and Combinatorics

3/25



Figures in the plane: disk, annulus
Disk

Dynkin type A
n-gon: disk with n marked points on boundary.
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Figures in the plane: disk, annulus
Disk

Dynkin type A
n-gon: disk with n marked points on boundary.

Punctured disk Dynkin type D
Marked points on boundary, one marked point in interior.

(degenerate triangles)
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Figures in the plane: disk, annulus
Disk Dynkin type A

n-gon: disk with n marked points on boundary.

Punctured disk Dynkin type D
Marked points on boundary, one marked point in interior. (degenerate triangles)

Annulus Dynkin type A
Marked points on both boundaries of the figure.
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Figures in the plane: disk, annulus

Disk Dynkin type A
n-gon: disk with n marked points on boundary.

Punctured disk Dynkin type D
Marked points on boundary, one marked point in interior. (degenerate triangles)

Annulus Dynkin type A
Marked points on both boundaries of the figure.

Finiteness (Fomin - Shapiro - D. Thurston 2005)

S Riemann surface S is a disk and
with marked points M has <= M has at most one
finitely many triangulations point in S\ 9S
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Triangles, diagonals

Qa®

Figures with three or less edges: degenerate triangles.

‘Triangles’

‘Diagonals’ (FST 2005)

The number of diagonals is constant. It is the rank of the surface:

where: p marked points, g punctures,

p+39—3(2—b) +6g, b boundary components, g genus.

today: q € {0,1}, b€ {1,2}, g = 0.
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Cluster algebras

“In an attempt to create an algebraic
framework for dual canonical bases
and total positivity in semi simple
groups, we initiate the study of a

new class of commutative algebras.”

Cluster Algebras

Fomin-Zelevinsky 2001

Karin Baur Interactions between Algebra, Geometry and Combinatorics

6/25



Cluster algebras

“In an attempt to create an algebraic
framework for dual canonical bases
and total positivity in semi simple
groups, we initiate the study of a
new class of commutative algebras.”

Fomin-Zelevinsky 2001

Cluster Algebras

@ recursively defined algebras C Q(x1, ..., x,)
@ grouped in overlapping sets of generators

@ many relations between the generators
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Pentagon-recurrence (Spence, Abel, Hill)

Sequence (f;); C Q(x1,x2):  fmi1 = A with fi i =x1, h:i=x.

3 = xo+1 f = x1+x0+1 fo = x1+1

fo = f1, f7 = fp, etc.

X1 x1x2 ! x2 !
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Pentagon-recurrence (Spence, Abel, Hill)

Sequence (f;); C Q(x1,x2):  fmi1 = % with fi == x1, H = xo.

_ xo+1 _ x1t+xo+1 _ xi+1 _ _
f'3_ X1’f4_ X1X0 1/:5_ X2' fe_ﬁ.vﬁ_féyetc

Cluster algebra A := ((fi);) = (fi,f,..., ) C Q(x1,x2).
Relations: fifs = b + 1, fhfy = 3 + 1, etc.
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Cluster algebras

Start with {x1,...,x,} cluster, B = (bjj) n x n a sign-skew symmetric
matrix over Z. The pair (x, B) is a seed. Relations through mutation at
k (B mutates similarly):

Xka HX:k_I_HXik

b >0 bix<0

Mutation at k: xx — x;, andso (x,B)~ ({x1,...,x,...,xn}, B').
Cluster variables all the x;, the x/, etc.

Cluster algebra A = A(x,B) C Q(xi,...,Xn) generated by all cluster
variables.
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Cluster algebras

A= A(x,B) C Q(x1,...,xn)
Properties
@ Laurent phenomenon: A C Z[xli,xzi, ..., xE]: Fomin-Zelevinsky.

o Finite type follows Dynkin type: Fomin-Zelevinsky.

o Positivity: coefficients in Z~q: Musiker-Schiffler-Williams 2011,
Lee-Schiffler 2015, Gross-Hacking-Keel-Kontsevich 2018.

Examples
C[SL2], C[Gr(2, n)] (Fomin-Zelevinsky), C[Gr(k, n)] (Scott).
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Overview

Poisson geometry
integrable systems e
Gekhtman-Shapiro-Vainshtein, 2003 Total pOSlthIty

canonical basis of Uy(g)

Teichmiiller theory

Fock-Goncharov, 2006

Cluster algebras

\ Fomin-Zelevinsky, 2001

A

‘ \

‘,
Cluster categories
o] O Buan-Marsh-Reineke-Reiten-Todorov, 2005

Combinatorics of surfaces Caldero-Chapoton-Schiffler, 2005
Fomin-Shapiro-Thurston, 2005
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In focus

Gratz, 2016

Parsons, 2015

Parsons, 2013
Grabowski-Gratz, 2014

Cluster algebras

B-Marsh 2012

B-Marsh w Thomas, 2009

Cluster categories

Surface combinatorics

B-Dupont, 2014
Tschabold, arXiv 2015
B-Parsons-Tschabold, 2016 B-Buan-Marsh, 2014

Vogel, 2016 B-King-Marsh, 2016
Aichholzer-Andritsch-B-Vogtenhuber, 2017 Lamberti, 2014
Gunawan-Musiker-Vogel, 2018 BfTorkild’sen. arXiv 2015
B-Fellner-Parsons-Tschabold, 2018 B-Gratz, 2018

B-Martin, 2018 McMahon, arXiv 2016, 2017
B-Gekhtman* Coelho Simoes-Parsons 2017
B-Martin, arXiv 2017
B-Coclho Simoes, arXiv 2018

B-Marsh 2007, 2008, 2012

Andritsch, 2018

Lamberti, 2011, 2012
Gratz, 2015

B-Bogdanic, 2016

B-Bogdanic-Garcia Elsener*

B-Coelho Simoes-Pauksztello®
B-Bogdanic-Pressland*
B-Bogdanic-Garcia Elsener-Martsinkovsky
B-Schiffler *

B-Nasr Isfahani *

*

B-Faber-Gratz-Serhiyenko-Todorov, 2017

B-Marsh* B-Faber-Gratz-Serhiyenko-Todorov*
B-Schroll* B-Laking *
B-Beil *

* ongoing projects
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Background: algebra <— geometry

pentagon recurrence

Ptolemy relation

cluster variables: fp1 = ’;":_fll diagonals: ac = ab + cd
X1+x0+1
x2 X2 *1 1,4) (2,5 (1,3)
1 1
o 2 2 o (1,3) (2,4) (3,5) (1,4)
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Background: algebra <— geometry

pentagon recurrence

Ptolemy relation

cluster variables: fp1 = ’;";:1 diagonals: ac = ab + cd
x1+x0+1
2 X% & (1,4) (2,5 (1,3)
S 5Eoe| (13) (24 (35 (14)
Analogies

@ Polygon <+— cluster algebra: Fomin-Zelevinsky, FST

@ Polygon +— cluster category: Caldero-Chapoton-Schiffler, B-Marsh
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Background: algebra <— geometry

pentagon recurrence

Ptolemy relation

cluster variables: fp1 = ’;":11 diagonals: ac = ab + cd
x1+x0+1
2 X% & (1,4) (2,5 (1,3)
S 5Eoe| (13) (24 (35 (14)
Analogies

@ Polygon <+— cluster algebra: Fomin-Zelevinsky, FST

@ Polygon +— cluster category: Caldero-Chapoton-Schiffler, B-Marsh

@ motivates: Surfaces «~ categories: B-King-Marsh
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Cluster category

Definition (Cluster category of type Q,
Co:

=D*(Q-rep)/(7* o [1])

a) Q-rep:

in example: Q@ =1 < 2) J

0

0<C

o & = E DA
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Cluster category

Definition (Cluster category of type Q,
Cq :=D"(Q-rep)/(r~ " o [1])

in example: Q@ =1 < 2) J
b) D*(Q — rep) :

(Q - rep)[~1]

o = £ DA
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Cluster category

Definition (Cluster category of type Q, in example: Q =1 « 2)
Cq :=DP(Q-rep)/(+~ o 1] J

Category Cq:

Fin. many indecomposable objects, arrows: irreducible morphisms.

~~

vertices
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Properties of cluster categories

Properties

@ Cq is Krull-Schmidt, triangulated, of Calabi-Yau dimension 2:
Buan-Marsh-Reineke-Reiten-Todorov 2005, Keller, 2005.

@ Ca,_,, Cp, arises from triangulations of (punctured) n-gon:
Caldero-Chapoton-Schiffler 2005, Schiffler 2008.

@ m-cluster categories in types A, D from m-angulations of (punctured)
polygons: B-Marsh 2007, 2008.

v
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Properties of cluster categories

Properties

@ Cq is Krull-Schmidt, triangulated, of Calabi-Yau dimension 2:
Buan-Marsh-Reineke-Reiten-Todorov 2005, Keller, 2005.

@ Ca,_,, Cp, arises from triangulations of (punctured) n-gon:
Caldero-Chapoton-Schiffler 2005, Schiffler 2008.

@ m-cluster categories in types A, D from m-angulations of (punctured)
polygons: B-Marsh 2007, 2008.

v

Strategy

Use combinatorial geometry to describe cluster categories:
Surface combinatorics yields cluster algebras, cluster categories.
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Categories via surfaces: 2 approaches

Approach 1:
Ca, described via diagonals in pentagon; Ca, via diagonals in (n + 3)-gon. J

Objects correspond to diagonals. Morphisms via rotation. Extensions via
intersections of diagonals, shift, 7, etc.

1

Y S

3 3

2

In Ca,: indecomposable objects Xy where d is a diagonal in pentagon.
Irreducible morphism X5 5y — X(35) and Exté(X(173),X(274)) # 0.

Karin Baur
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Algebra via geometry: Approach 1

Qo @

Development

Categories Cp,, Cj , Cg,, module categories, root category, derived
category etc.

B-Marsh [2007,08], Schiffler [2008], Warkentin [2009], Briistle-Zhang [2011],
Lamberti [2011,12], B-Marsh [2012], Coelho-Simoes [2012], Holm-Jgrgensen
[2012], Igusa-Todorov [2012,13], B-Dupont [2014], B-Torkildsen [2015], Gratz
[2015], Torkildsen [2015], Canakci-Schroll [2017], B-Gratz [2018],
Opper-Plamondon-Schroll [2018], B-Coelho Simoes [2018] etc.
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Dimers on surfaces: Approach 2
Triangulations of disks ~» Ca, or C(Gr(2, n + 3)).
New: can get C(Gr(k, n)) for any k through surface combinatorics.

Approach 2: B-King-Marsh 2016

The Grassmannian cluster category C(Gr(k, n)) is described via
(k, n)-dimers.

A dimer is an oriented graph (quiver) embedded in a surface, such that its
complement is a union of disks. Comes with a natural potential.

pi(@) = 182304
pa(@) = 7273

Ro i pi(@) = pa(@)

Potential: yields the relations R,
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A dimer with boundary (B-King-Marsh)

A dimer with boundary Q is a quiver embedded in a surface, glued from
oriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

A

—a |

= U=

Q7
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A dimer with boundary (B-King-Marsh)

A dimer with boundary Q is a quiver embedded in a surface, glued from
oriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

A

—a |

—\\ e

VY 4
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A dimer with boundary (B-King-Marsh)

A dimer with boundary Q is a quiver embedded in a surface, glued from
oriented disks. Arrows appear in 1 (boundary arrows) or 2 faces (interior).

A S
In red: zig-zag paths

5 @ 2
\ o = (14)(25)(36)

A (k, n)-dimer

A dimer Q is a (k, n)-dimer if the surface is an n-gon and if the
associated zig-zag paths induce the permutation i — i + k from S,,.
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Dimers and associated algebras

Definition (Dimer algebra of a dimer Q)
Dimer algebra Ag of Q: path algebra CQ with relations p1(a) = p2(«). J

Let e, € Ag be the sum of the trivial paths of the boundary vertices of Q.

Karin Baur Interactions between Algebra, Geometry and Combinatorics
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Dimers and associated algebras

Definition (Dimer algebra of a dimer Q)
Dimer algebra Ag of Q: path algebra CQ with relations p1(a) = p2(a). J

Let e, € Ag be the sum of the trivial paths of the boundary vertices of Q.
Definition

Let Q be a dimer, with dimer algebra Ag.

The boundary algebra of Q is the algebra Ag = epAgep.
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Example: (3,6)-dimer and its boundary algebra
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Example: (3,6)-dimer and its boundary algebra
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Example: (3,6)-dimer and its boundary algebra

S

Karin Bau
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Example: (3,6)-dimer and its boundary algebra

Ys

Y2

Boundary algebra Ag = ex\gep of (3,6)-dimer Q

Generators x;, yj, i=1,...,6

Relations: xy = yx, x3 = y3 (at each vertex) or xk = y

n=k respectively

Karin Baur
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(k, n)-dimers «~» Grassmannians

Theorem (B-King-Marsh 2016)
Any (k, n)-dimer yields the cluster category C(Gry p).

Key ingredients

o Let Q, Q two (k, n)-dimers, with boundary algebras Ag and Ag.
Then Ag = A (B-King-Marsh 2016).
Aq = B, algebra used by Jensen-King-Su 2016.

CM(B) categorifies Scott's cluster structure of the Grassmannian
cluster algebra C[Gr(k, n)], Jensen-King-Su 2016.

In CM(Agq), Pliicker correspond to rank 1 modules.

(k, n)-dimers yield cluster-tilting objects.

Karin Baur Interactions between Algebra, Geometry and Combinatorics 21 /25



Results from (k, n)-dimers «~ Grassmannians

(k, n)-dimers tubular types
vield C(Gr(k, ) from C(Gr(k,n)) ﬁ

B-Bogdanic-Garcia Elsener 2018

B-King-Marsh 2016

R

C(Gr(3,6))

extensions in

C(Gr(k,n)) via rims

S L-friezes

from C(Gr(k7 n)) B-Bogdanic 2017
B-Faber-Gratz-Serh.-Todorov 2018 M
1.1 111 M35/ Mass!|

2 2 1 3 1
11 1 1 11
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Projects around dimers with boundary

two + two

boundary
arrows
six boundary arrows

Understand dimer on general surfaces with boundary.

Develop theory of boundary algebras, of associated module categories.
Laminations, starting with (k, n)-dimers.

Friezes, SL-friezes.

Dimer algebras and homotopy dimer algebras.

Degenerate (k, n)-dimers. k = 2: tilings.
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Approach 1

Ptolemy's theorem

D

o & = E DA
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Approach 1

Ptolemy's theorem

D

In polygon

1
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Approach 1
Ptolemy's theorem

In polygon

5

1

Cluster category Ca,

Karin Bau
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Approach 1

Ptolemy's theorem  In polygon Cluster category Ca,
1

Polygon <— cluster category
(1,4) and (2,5) intersect, Extl(X(1,4),X(2,5)) # 0,
(2,4) and (2,5) don't intersect. Extl(X(2,4),X(275)) =0.

Geometric interpretation of algebraic phenomena (e.g. [1], 7). Also for
general surfaces and categories.
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Approach 2

(3,6)-dimer

Karin Bau
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Approach 2

(3,6)-dimer

boundary algebra
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Approach 2

(3,6)-dimer

boundary algebra

C(Gr(3,6))

Karin Bau
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Approach 2

(3,6)-dimer boundary algebra  C(Gr(3,6))

Dimer <— Category of modules

vertices indecomposable objects
boundary vertices projective-injective indec's
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cv

Karin Baur, PhD in Mathematics, born in Zurich.

Education

1977 - 1989 Schools in Zurich, Matura type B (classical).

1990 - 1996 Studies (Mathematics, Philosophy, French Literature),
University of Zurich.

1994 Erasmus (Paris VI).

1997 - 2001 PhD studies in Mathematics, University of Basel.
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CV, continued

Academic positions

2002 - 2003 Post-doctoral assistant, ETH Zurich.

2003 - 2005 Post-doc (SNSF) University of California, San Diego, USA
2005 - 2007 Research associate (EPSRC), University of Leicester

2007 - 2011 Assistant professor (SNSF Professor), ETH Zurich

2011 - Full professor, University of Graz, Austria

2018 - Professor, University of Leeds, UK.
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Doubts and strategies

Questions along the way
@ Are there jobs?

@ Unknown area: new maths, new
questions. Which direction?

o Endurance, patience.
o Geographically: where?

@ What are the alternatives?

Resources

Family
Peers, friends

Mentors

o

o

o Collaborators
@ Deadlines

o

Interest
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research

]
| review/referee |

[ ]
| teaching |

learning
| grant application
I (&) I
| research talks |
. . collaborate admin
discussions
| e |
|develop ideas |
| mentoring | — | meetings |
postdocs ;
organize conferences
AN
students | g |
|—| ! graduate students ! ! travel | seminars
o T - = =
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