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Polynomial optimization problems arise across many sciences, e.g. in control theory, ope-
rations research, combinatorics and, computer science. However, very simple instances
of polynomial optimization problems are known to be NP hard, thus approximation techni-
ques based on sums of squares concepts taken from real algebraic geometry and inspired
by moment theory from probability and functional analysis were developed. We focus on
polynomial optimization problems in matrix variables, since many applied problems, e.g.
in quantum chemistry, or in quantum information theory naturally involve polynomials in
matrix variables.

G ⪰ 0 ⟨A,G⟩ = b

Background

Polynomial Optimization

Let p, gi ∈ R[x1, . . . , xn] be polynomials. We
want to optimmize p over the semialgebraic
set

K = {a ∈ Rn | gi(a) ≥ 0, i ∈ I}

Polynomial optimization is NP-hard

pmin = min p(a) s.t. a ∈ K
= maxλ s.t. p − λ ≥ 0 on K

Challenge: Certify positivity over the set K.

Semidefinite Programming

Let C,Ai be matrices and bi be real vectors.
An SDP is of the following form

max ⟨C,G⟩ s.t. ⟨Ai , G⟩ = bi , i ∈ I
G ⪰ 0

SDPs essentially solva-
ble in polynomial time,
implemented e.g. in
SeDuMi, SDPT3, or
Mosek.
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SOS Approximation

psos = maxλ s.t. p − λ sos

Fact 1: psos ≤ pmin

Fact 2: This is de facto an SDP via Gram matrices:
f 2 = [x ]TG[x ]

with G ⪰ 0 and [x ] a vector of all monomials of degree ≤ deg f .

Fact 3: For compact K, Positivstellensätze & degree bounds imply an
approximation hierarchy pt converging monotonically to pmin.

We consider now polynomials p ∈ R⟨X1, . . . , Xn⟩, where the XI are noncommuting variables (i.e. EAT̸=TEA) with an involution ∗ fixing the variables (i.e. X∗i = Xi and a∗ = a for a ∈ R). Let Sn be
the set of all n−tuples A consisiting of symmetric matrices Ai of arbitrary but similar size. We can then evaluate a polynomial p in A simply by replacing Xi with Ai .
To get a polynomial optimization problem we need to definie when a polynomial is considered to be positive. There are two natural options: positivity by eigenvalue and positivity by trace.

Positivity by eigenvalue

Optmization Problem

Def.: p is matrix-positive if p(A) ⪰ 0 for all
A ∈ Sn.

Let p, gi ∈ R⟨X1, . . . , Xn⟩ be symmetric
polynomials. We want to optimmize p over

K = {A ∈ Sn | gi(A) ⪰ 0}.

Optimization Problem:

pmin = maxλ s.t. p − λ ⪰ 0 on K
= min⟨φ, p(A)φ⟩ s.t. A ∈ K, ∥φ∥ = 1

This is still NP-hard!

SOS Approximation

psos = maxλ s.t. p − λ sos
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Fact 1, 2 & 3 also hold in this case!

Application: Ground state energy

We have a molecule of N electrons which
can occupy M orbitals. Each orbital is as-
sociated with creation/anihilation operators
a†i , ai , and its pairwise interaction is descri-
bed via hi jk l ∈ R
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Positivity by trace

Optmization Problem

Def.: p is trace-positive if Tr(p(A)) ≥ 0 for
all A ∈ Sn.

Let p, gi ∈ R⟨X1, . . . , Xn⟩ be symmetric
polynomials. We want to optimmize p over

K = {A ∈ Sn | gi(A) ⪰ 0}

Optimization Problem

pmin = maxλ s.t. Tr(p − λ) ≥ 0 on K
= minTr(p(A)) s.t. A ∈ K

This is still NP-hard!

SOS Approximation

psos = maxλ s.t. p − λ sos
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Fact 1, 2 & 3 also hold in this case!

Application: Completely psd cone

A matrix A ∈ Mn(R) is called completely
psd if it has a symmetric psd factorization,
i.e., there exist Bi ⪰ 0 s.t.

Ai j = Tr(BiBj)

for all i , j ∈ [n]. The set of all those matri-
ces is the convex cone CSn+.
This cone is the matrix analog of the com-
pletely positive cone, i.e., the cone of ma-
trices which have a Gram representation
using vectors in the nonnegative orthant.
It is thus closely related to symmetric psd
lifts of polyhedra. In other words, can one
reformulate a Linear Program with plenty of
nodes as a Semidefinite Program of higher
dimension with fewer conditions.
If we optimize over the dual cone of CS+
instead of CS+ itself, we optimize over all
noncommutative polynomials p of the form
p =

∑
i ,j pi jX

2
i X
2
j which are trace-positive.

Optimizing over Q can thus
be reformulated to optimize
over CS+.

This has been done for
quantum graph parameters,
e.g. the quantum chromatic
numer.
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Application: Quantum Correlations

Entanglement is a striking feature of quantum mechanics
which creates (bipartite) correlations which cannot be ob-
tained classically. There are two descriptions of the set of
bipartite quantum correlations:
Q = {pab,xy = φT (Eax ⊗ F by )φ | Eax , F by POVM, ∥φ∥ = 1} and
Q = {pab,xy = φT (EaxF by )φ | Eax , F by POVM, ∥φ∥ = 1, [Eax , F by ] = 0},
where x, y are the input parameters and a, b is the output.
A POVM is a set {Ea}a of psd operators whith

∑
aEa = 1.

If we allow only finite dimensional operators as POVMs,
both descriptions coincide.

Most concrete examples of quantum correlations are in Q.
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Q = π(CS+ ∩ B).

Most bounds on quantum correlations are based on Qc.
Optimization over Qc can be reformulated as polynomial
optimization problem using matrix-positivity.

Example: Bell inequalities
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