Polynomial optimization in non-commuting variables

Sabine Burgdorf

Polynomial optimization problems arise across many sciences, e.g. in control theory, operations research, combinatorics and, computer science. However, very simple instances of polynomial optimization problems are known to be NP hard, thus approximation techniques based on sums of squares concepts taken from real algebraic geometry and inspired by moment theory from probability and functional analysis were developed. We focus on polynomial optimization problems in matrix variables, since many applied problems, e.g. in quantum chemistry, or in quantum information theory naturally involve polynomials in matrix variables.

Background

Polynomial Optimization
Let $p, g_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be polynomials. We want to optimmize p over the semialgebraic set

$$
K=\left\{a \in \mathbb{R}^{n} \mid g_{i}(a) \geq 0, i \in I\right\}
$$

Polynomial optimization is NP-hard
$p_{\text {min }}=\min p(a)$ s.t. $a \in K$

$$
=\max \lambda \text { s.t. } p-\lambda \geq 0 \text { on } K
$$

Challenge: Certify positivity over the set K.

Semidefinite Programming
Let C, A_{i} be matrices and b_{i} be real vectors. An SDP is of the following form

```
max \langleC,G\rangle s.t. }\langle\mp@subsup{A}{i}{},G\rangle=\mp@subsup{b}{i}{},i\in
\(G \succeq 0\)
```

SDPs essentially solva ble in polynomial time mplemented e.g. in SeDuMi, SDPT3, or Mosek.

SOS Approximation

$$
p_{\text {sos }}=\max \lambda \text { s.t. } p-\lambda \operatorname{sos}
$$

sos: $\sum_{i} f_{i}^{2}+\sum_{j} g_{j} \sum_{k} h_{k}^{2}$
Fact 1: $p_{\text {sos }} \leq p_{\text {min }}$

Fact 2: This is de facto an SDP via Gram matrices

$$
f^{2}=[x]^{\top} G[x]
$$

with $G \succeq 0$ and $[x]$ a vector of all monomials of degree $\leq \operatorname{deg} f$.
Fact 3: For compact K, Positivstellensätze \& degree bounds imply an approximation hierarchy p_{t} converging monotonically to $p_{\text {min }}$.
 the set of all n-tuples A consisiting of symmetric matrices A_{i} of arbitrary but similar size. We can then evaluate a polynomial p in A simply by replacing X_{i} with A_{i}.
To get a polynomial optimization problem we need to definie when a polynomial is considered to be positive. There are two natural options: positivity by eigenvalue and positivity by trace.

Positivity by eigenvalue

Optmization Problem
Def.: p is matrix-positive if $p(A) \succeq 0$ for all $A \in \mathcal{S}^{n}$.
Let $p, g_{i} \in \mathbb{R}\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be symmetric polynomials. We want to optimmize p over

$$
K=\left\{A \in \mathcal{S}^{n} \mid g_{i}(A) \succeq 0\right\}
$$

Optimization Problem:
$p_{\text {min }}=\max \lambda$ s.t. $p-\lambda \succeq 0$ on K $=\min \langle\varphi, p(A) \varphi\rangle$ s.t. $A \in K,\|\varphi\|=1$

This is still NP-hard!
SOS Approximation
$p_{\text {sos }}=\max \lambda$ s.t. $p-\lambda$ sos
with sos: $\sum_{i} f_{i}^{*} f_{i}+\sum_{j, k} h_{j k}^{*} g_{j} h_{j k}$
Fact $1,2 \& 3$ also hold in this case!

Application: Ground state energy
We have a molecule of N electrons which can occupy M orbitals. Each orbital is associated with creation/anihilation operators a_{i}^{\dagger}, a_{i}, and its pairwise interaction is described via $h_{i j k l} \in \mathbb{R}$

$$
\begin{aligned}
\min _{\left(a, a^{\dagger}, \varphi\right)} & \left\langle\varphi, \sum_{i j k l} h_{i j k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l} \varphi\right\rangle \\
\text { s.t. } & \|\varphi\|=1 \\
& \left\{a_{i}, a_{j}\right\}=\left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\}=0 \\
& \left\{a_{i}^{\dagger}, a_{j}\right\}=\delta_{i j} \\
& \left(\sum a_{i}^{\dagger} a_{i}-N\right) \varphi=0
\end{aligned}
$$

Positivity by trace

Optmization Problem

Def.: p is trace-positive if $\operatorname{Tr}(p(A)) \geq 0$ for all $A \in \mathcal{S}^{n}$.
Let $p, g_{i} \in \mathbb{R}\left\langle X_{1}, \ldots, X_{n}\right\rangle$ be symmetric polynomials. We want to optimmize p over

$$
K=\left\{A \in \mathcal{S}^{n} \mid g_{i}(A) \succeq 0\right\}
$$

Optimization Problem

$$
p_{\min }=\max \lambda \text { s.t. } \operatorname{Tr}(p-\lambda) \geq 0 \text { on } K
$$ $=\min \operatorname{Tr}(p(A))$ s.t. $A \in K$

This is still NP-hard!
SOS Approximation

$$
p_{\text {sos }}=\max \lambda \text { s.t. } p-\lambda \operatorname{sos}
$$

with sos: $\sum_{i} f_{i}^{*} f_{i}+\sum_{j, k} h_{j k}^{*} g_{j} h_{j k}+\sum_{i}\left[q_{i}, r_{i}\right]$
Fact $1,2 \& 3$ also hold in this case!

Application: Completely psd cone

A matrix $A \in M_{n}(\mathbb{R})$ is called completely psd if it has a symmetric psd factorization, i.e., there exist $B_{i} \succeq 0$ s.t.

$$
A_{i j}=\operatorname{Tr}\left(B_{i} B_{j}\right)
$$

for all $i, j \in[n]$. The set of all those matrices is the convex cone $\mathcal{C S}^{n}$.
This cone is the matrix analog of the completely positive cone, i.e., the cone of matrices which have a Gram representation using vectors in the nonnegative orthant. It is thus closely related to symmetric psd lifts of polyhedra. In other words, can one reformulate a Linear Program with plenty of nodes as a Semidefinite Program of higher dimension with fewer conditions.
If we optimize over the dual cone of $\mathcal{C} \mathcal{S}_{+}$ instead of $\mathcal{C} \mathcal{S}_{+}$itself, we optimize over all noncommutative polynomials p of the form $p=\sum_{i, j} p_{i j} X_{i}^{2} X_{j}^{2}$ which are trace-positive.

[^0]Most concrete examples of quantum correlations are in \mathcal{Q}.
Optimizing over \mathcal{Q} can thus be reformulated to optimize over $\mathcal{C} \mathcal{S}_{+}$.
This has been done for quantum graph parameters, e.g. the quantum chromatic numer.

Most bounds on quantum correlations are based on \mathcal{Q}_{c}. Optimization over \mathcal{Q}_{c} can be reformulated as polynomial optimization problem using matrix-positivity. Example: Bell inequalities

$\max _{(E, \varphi)}$	$\left\langle\varphi, \sum_{i, j} c_{i j} E_{i} E_{j} \varphi\right\rangle$		
s.t.	$\\|\varphi\\|=1$		
	$E_{i} E_{j}=\delta_{i j}$ for some i, j		
	$\sum_{i \in M_{k}} E_{i}=1$		
	$\left[E_{i}, E_{j}\right]=0$ for $i \in A, j \in B$		

[^0]: Application: Quantum Correlations
 Entanglement is a striking feature of quantum mechanics which creates (bipartite) correlations which cannot be obtained classically. There are two descriptions of the set of bipartite quantum correlations:
 $\mathcal{Q}=\left\{p_{a b, x y}=\varphi^{\top}\left(E_{x}^{a} \otimes F_{y}^{b}\right) \varphi \mid E_{x}^{a}, F_{y}^{b} \mathrm{POVM},\|\varphi\|=1\right\}$ and $\mathcal{Q}=\left\{p_{a b, x y}=\varphi^{T}\left(E_{x}^{a} F_{y}^{b}\right) \varphi \mid E_{x}^{a}, F_{y}^{b} \mathrm{POVM},\|\varphi\|=1,\left[E_{x}^{a}, F_{y}^{b}\right]=0\right\}$ where x, y are the input parameters and a, b is the output. A POVM is a set $\left\{E_{a}\right\}_{a}$ of psd operators whith $\sum_{a} E_{a}=1$. If we allow only finite dimensional operators as POVMs, both descriptions coincide.

