

GREEDY CONTROLLABILITY OF LINEAR DYNAMICAL SYSTEMS BY THE REDUCED-BASIS METHOD Giulia Fabrini, Laura Iapichino, Martin Lazar, Stefan Volkwein giulia.fabrini@uni-konstanz.de

Introduction

Often a dynamical system is characterized by one or more parameters describing physical features of the problem or geometrical configurations of the computational domain. As a consequence, by assuming that the system is controllable, corresponding to different parameter values, a range of optimal controls exists. The goal of the proposed approach is to avoid the computation of a control function for any instance of the parameters. The greedy controllability consists in the selection of the most representative values of the parameter set that allows a rapid approximation of the control function for any desired new parameter value, ensuring that the system is steered to the target within a certain accuracy. By proposing the Reduced Basis method in this framework, the computational costs are drastically reduced and the efficiency of the greedy controllability approach is significantly

Reduced-Order Greedy controllability

Remark: the exploration of the parameter domain require repetitive evaluation of the system \rightarrow use a reduced order state system (Reduced Basis Method).

Reduced-Order Greedy algorithm (offline)

[1] The initial basis is composed by the target function x^1 .

[2] Run the Greedy algorithm (with repetitive evaluations of the reduced systems) and select μ_{next} .

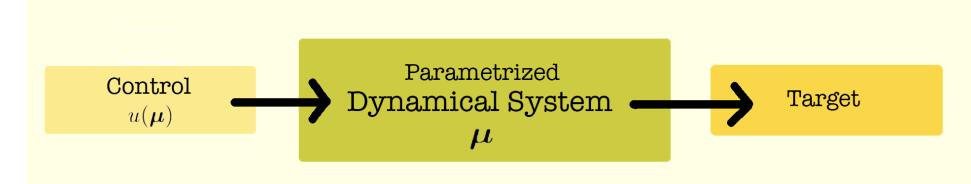
[3] Find the optimal control $u_{\mu_{next}}$ and the state solution $x_{\mu_{next}}(t)$.

[4] Enrich the existing basis with the POD of $x_{\mu_{next}}(t)$.

[5] Repeat step [2] for the selection of the remaining parameter values until the surrogate

improved.

Controllability problem



Finite-dimensional linear control system (e.g., after spatial discretization of a PDE):

$$\dot{x}(t) = A_{\mu}x(t) + B_{\mu}u(t)$$
 for $t \in (0, T]$ and $x(0) = x^{\circ}$ (DS _{μ})

State variable: $x = x_{\mu} : [0,T] \to \mathbb{R}^{n}$ with large *n* Control variable: $u = u_{\mu} : [0,T] \to \mathbb{R}^{m}$ with $m \le n$ Parameter set: $\mathscr{D}_{ad} = \{\mu \in \mathbb{R}^{\wp} \mid \mu_{a} \le \mu \le \mu_{b} \text{ in } \mathbb{R}^{\wp}\}$, i.e., compact System matrices: $\mathscr{D}_{ad} \ni \mu \mapsto A_{\mu} \in \mathbb{R}^{n \times n}$ and $\mathscr{D}_{ad} \ni \mu \mapsto B_{\mu} \in \mathbb{R}^{n \times m}$ Lipschitz-continuous Goal: Given a final target $x^{1} \in \mathbb{R}^{n}$ find a control $u = u_{\mu}$ such that the state $x = x_{\mu}$ of (\mathbf{DS}_{μ}) satisfies

 $x_{\mu}(T) = x^1$ for every $\mu \in \mathscr{D}_{\mathsf{ad}}$

Assumption: System (DS_{μ}) is controllable for all values of $\mu \in \mathscr{D}_{ad}$. **Solution approach**: If $(\varphi_{\mu}, \varphi_{\mu}^{\circ})$ solves the linear-quadratic problem distance is smaller than the desired tolerance.

Numerical Example

State equation: for $\mu \in \mathscr{D}_{ad} = [0.5, 4] \subset \mathbb{R}$ $\dot{y}(t, x) - \mu \Delta y(t, x) + \beta \cdot \nabla y(t, x) = 0$ for $(t, x) \in Q = (0, T) \times \Omega$ $\mu \frac{\partial y}{\partial n}(t, s) = \sum_{i=1}^{m} u_i(t) \chi_i(s)$ for $(t, s) \in \Sigma = (0, T) \times \partial \Omega$ (S_µ) $y(0, x) = y^{\circ}(x)$ for $x \in \Omega = (0, 2) \times (0, 1) \subset \mathbb{R}^2$

Control shape functions: $\chi_i = \chi_{\Gamma_i}$ for $1 \le i \le m$ with $\partial \Omega = \bigcup_{i=1}^m \Gamma_i$ **Finite element (FE) Galerkin discretization of (S**_{μ}):

 $\dot{x}(t) = A_{\mu}x(t) + Bu(t)$ for $t \in (0, T], \quad x(0) = x^{\circ}$

Numerical Results:

Classical approach:

 (\mathbf{QP}_{μ})

μ	0.5	1	1.5	2	2.5	3	3.5	4
CG iterations	59	34	28	29	28	24	20	20
CPU time	62 s	38 s	32 s	33 s	32 s	26 s	22 s	22 s
$\ x_{\boldsymbol{\mu}}(T) - x^1\ $	8.6e-3	2.8e-3	9.6e-3	7.4e-3	8.1e-3	6.9e-3	7.7e-3	6.5e-3

Greedy controllability (offline): 50 minutes (with N = 18, $|\mathscr{D}_{ad}^{gr}| = 1000$) **Reduced-order Greedy controllability (offline)**: 5 minutes, speed-up factor ≈ 10

 $\begin{cases} \min J_{\mu}(\varphi,\varphi^{\circ}) = \frac{1}{2} \int_{0}^{T} \|\mathbf{B}_{\mu}^{\top}\varphi(t)\|^{2} dt + \langle x^{1},\varphi^{\circ} \rangle + \langle x^{\circ},\varphi(0) \rangle \\ \text{s.t. } \dot{\varphi}(t) = -\mathbf{A}_{\mu}^{\top}\varphi(t) \text{ for } t \in [0,T) \quad \text{and} \quad \varphi(T) = \varphi^{\circ} \end{cases}$

then $u_{\mu} = B_{\mu}^{\top} \varphi_{\mu}$ is the control that steers the solution $x = x_{\mu}$ of

 $\dot{x}(t) = A_{\mu}x(t) + B_{\mu}u_{\mu}(t) \text{ for } t \in (0,T] \text{ and } x(0) = x^{\circ}$

to the desired target x^1 ;

Numerical strategy: apply CG method to minimize $\hat{J}_{\mu}(\varphi^{\circ}) = J_{\mu}(\varphi_{\mu}(\varphi^{\circ}), \varphi^{\circ})$ Problem: computationally too expensive

Greedy Controllability

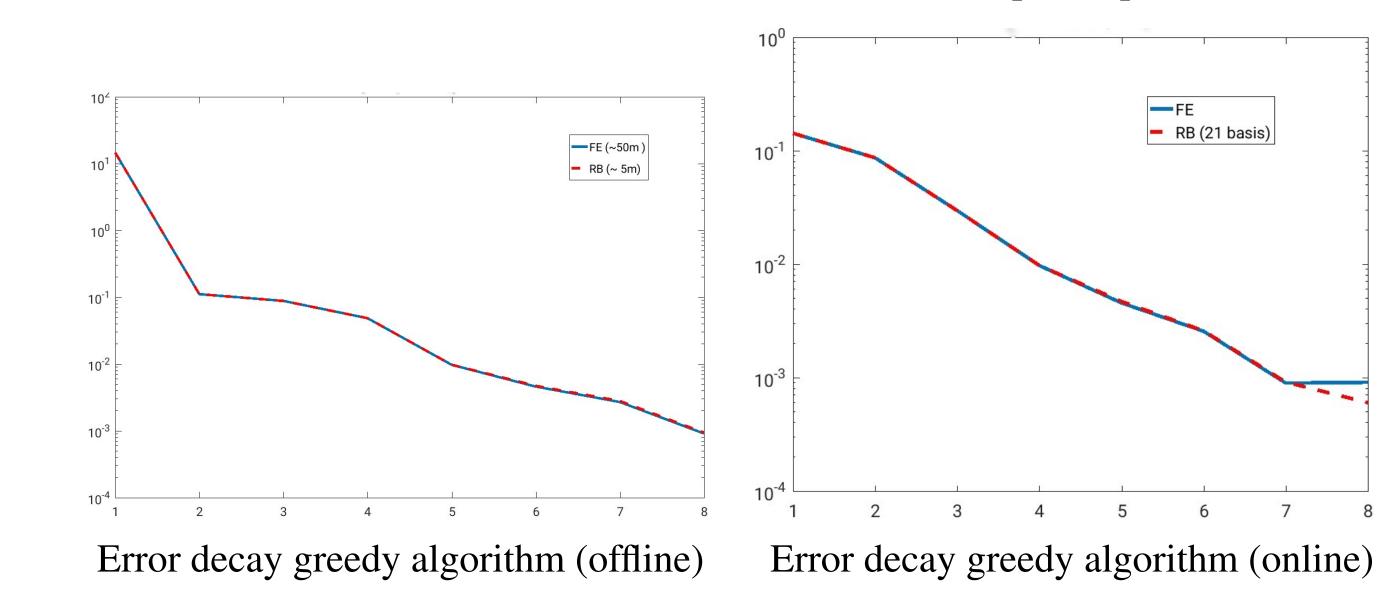
Goal [Lazar/Zuazua'16] Given a tolerance $\varepsilon > 0$ find $N(\varepsilon)$ parameters $\mu_1, \ldots, \mu_{N(\varepsilon)}$, so that for all $\mu \in \mathscr{D}_{ad}$ the associated control $u_{\mu}^{\star} = \sum_{j=1}^{N(\varepsilon)} \alpha_j u_j$ yields $\|x_{\mu}^{\star}(T) - x^1\| \leq \varepsilon$ for any chosen $\mu \in \mathscr{D}_{ad}$

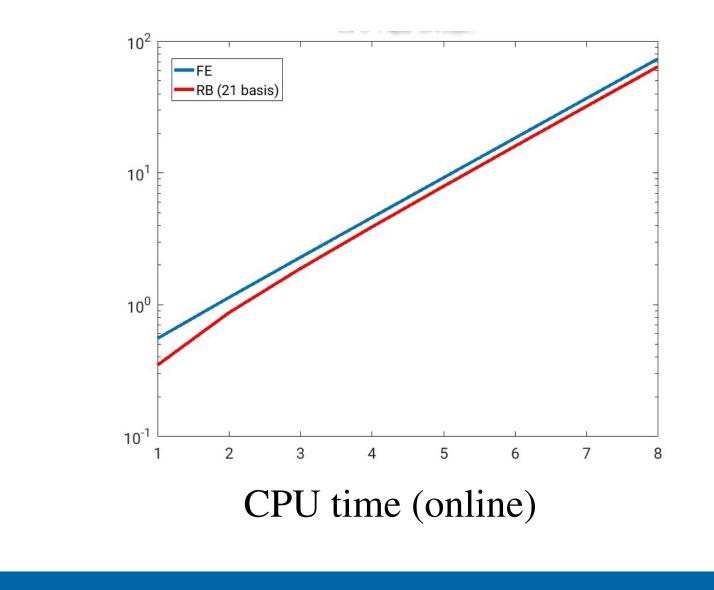
for the state $x = x_{\mu}^{\star}$ solving $\dot{x}(t) = A_{\mu}x(t) + B_{\mu}u_{\mu}^{\star}(t) \longrightarrow N(\varepsilon)$ as small as possible.

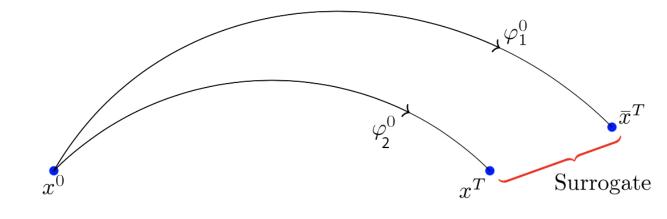
Greedy controllability – Offline: For given tolerance $\varepsilon > 0$ select (with a greedy approach) $\mu_1, \ldots, \mu_{N(\varepsilon)} \in \mathscr{D}_{ad}^{gr} \subset \mathscr{D}_{ad}$ discrete training set) and compute associated $u_1, \ldots, u_{N(\varepsilon)}$. **Greedy algorithm (offline)**

[1] Choose $\mu_1 \in \mathscr{D}_{ad}^{gr}$; [2] Compute $(\varphi_1, \varphi_1^\circ)$ by solving (\mathbf{QP}_{μ}) with $\mu = \mu_1$; set $u_1 = \mathbf{B}_{\mu_1}^{\top} \varphi_1, \Phi_1^\circ = \operatorname{span}\{\varphi_1^\circ\}$; [3] Find $\mu_2 = \operatorname{arg\,max}\{\operatorname{dist}(\varphi_{\mu}^\circ, \Phi_1^\circ) \mid \mu \in \mathscr{D}_{ad}^{gr}\}$;

[4] Compute $(\varphi_2, \varphi_2^\circ)$ by solving (\mathbf{QP}_{μ}) with $\mu = \mu_2$; set $u_2 = \mathbf{B}_{\mu_2}^{\top} \varphi_2, \Phi_2^\circ = \operatorname{span} \{\varphi_1^\circ, \varphi_2^\circ\}$; [n] **until** dist $(\varphi_{\mu_N}^\circ, \Phi_N^\circ) \leq \varepsilon$ for all $\mu \in \mathscr{D}_{\mathsf{ad}}^{\mathsf{gr}}$ **Remark**: Step [3] is expansive. **Solution:** Replace the distance dist $(\varphi_{\mu}^\circ, \Phi_1^\circ)$ with a surrogate distance given by dist (x^T, \bar{x}^T) :







$$x^T \leftarrow (\mathbf{DS}_{\mu})$$
 with $u = u_1$ and $\mu = \mu_1$.
 $\bar{x}^T \leftarrow (\mathbf{DS}_{\mu})$ with $u = u_1$ and $\mu \neq \mu_1$

Greedy controllability – Online: For any $\mu \in \mathscr{D}_{ad}$ set $u_{\mu}^{\star} = \sum_{i=1}^{N(\varepsilon)} \alpha_i u_i$ and solve $\dot{x}_{\mu}^{\star}(t) = A_{\mu} x_{\mu}^{\star}(t) + B_{\mu} u_{\mu}^{\star}(t) \Rightarrow ||x_{\mu}^{\star}(T) - x^1|| \leq \varepsilon.$

Conclusions

- Greedy controllability approach for parametrized linear dynamical systems.
- Significant speed-up by the reduced-order greedy controllability.

References

- [Fabrini/Iapichino/Volkwein '18]: Reduced-order greedy controllability of finite dimensional linear systems, IFAC PapersOnLine
- [Hesthaven/Rozza/Stamm '16], Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs in Mathematics.
- [Lazar/Zuazua'16]: Greedy controllability of finite dimensional linear systems, Automatica

Acknowledgemnets

I gratefully acknowledge Konstanz Women in Mathematics for the financial support.