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Motivation

Consider the Stochastic Differential Equation

dX(t,x) = F(X(t, x))dt + QX(t, x))dB(t),  t>0,
{ X(0)=xcRN,

B(t) is a standard Brownian motion and Q(x) € L(RN).
» Probabilistic model of the physical process of diffusion
» Model in mathematical finance
» Model in biology

(SDE)



Motivation

Consider the Stochastic Differential Equation

dX(t, x) = F(X(t,x))dt + Q(X(t, x))dB(t),  t>0,
{ X(0)=x e RV,

u(t, x) == E(p(X(t,x)), ¢ € Cp(R"Y)
Then = u solves Kolomogorov/Fokker-Planck equation

r N
ou

E(t’ X) = Z aji(x)Dju(t, x) + F(x) - Vu(t, x), t >0,
i j=1

\ U(va) — QO(X), X € RN)

(FP)

(aj(x)) := $Q(x)Q(x)* can be unbounded.



Examples

» The Black-Scholes equation:

( 8V 0'2 282 (9V
— il — <
D 9t 2 X o Moxtv=0 0<isT.gg
L v(0,x) =(x—K)T, x > 0.

» v(t,x) =u(T —t, x) is the value of european type option on the
asset price x at time t;

o Is the stock volatility;

r is the risk-free rate;

0 < x is the underlying asset;

K is the prescribed price.

vV v.vY



Set y = log x. Then,

2

_a—1 _ (at1)® o o
v(it,x)=x" 2 e 8 “W(Zt,logx),

where a = 2; and w solves the heat equation

ow _ OPw t>0,ycR,




Examples

» Ornstein-Uhlenbeck operator:

(OU)

dX(t, x) = MX(t, x)dt + dB(t),  t>0,
X(0,x) = x € RV,

M = (my) € L(RN). Set My := [ eMeSM* ds. Then
u(t, x) - = B(F(X(t, x)))

— (27)" 2 (det My) 2 / e—%le1/2(e“Mx—y)l2f(y) dy
]RN

solves the Ornstein-Ulhenbeck equation

( Ju 1
< E(t’ X) = éAu(t, x)+ Mx - Vu(t, x), t >0, (OU)
L u(0,x)=1f(x) xeRN



Semigroups in short

Let X be a Banach space.
A family (T(t))s>o of bounded operators on X is called a strongly
continuous or Cy-semigroup if

» T(0)=/land T(t+s)=T(t)T(s) forall t,s > 0;
» I — T(t)x € X is continuous for every x € X.



Semigroups in short

The generator of a strongly continuous semigroup A is defined as

D(A) :={x € X : t — T(t)x is differentiable on [0, c0)}

Ax dT(t)x“o_I L Tx = x)

tw t

T(t) ~ e”



Semigroup approach to initial-boundary value problems

Given X Banach space, A: D(A) ¢ X — X with boundary conditions
in D(A)
3¢ (1) = Au(t)

u(0) = up

(ACP) {

» (A, D(A)) generates a Cy-semigroup (T(f))i>o0 on X < (ACP;)
well posed with solution

u(t) = T(t)up.

» Study qualitative properties: positivity, stability, regularity, ...



The resolvent

The Resolvent Operator is the operator
RINVA) =(A—A)1, Xep(A):={reC: - A— Xis bijective}

The semigroup is related to the Resolvent Operator
T(t) is a Cp-semigroup, || T(t)|| < e*! then X\ € p(A) for ReX > w

1

Rel — w

RO\, A)f = / e ST(s)ds, RN A)|| <
0



Generation Theorems

» Hille, Yosida, (1948). Let (A, D(A)) closed, densely defined and
A € p(A) for every \ > w

1
IR\, A)|| < 1 = Agenerates IT(1)] < et

» Lumer, Phillips, (1961).

Rg(\ — A) = X, [|[(A = A)f|| = Al|f]], forall A > 0 =
A generates || T(t)|| < 1



Some trivial example

Let w € R consider the operator A : R — R, Ax = wX

( %x(t) = Ax(t) = wx(t)

\ X(O) = X0

_/\

R(\, A) = (A — A)~" solves the equation Ax —wx = y < x = <&

R(\A)y = —— and p(A) = C\ {w})

A — W
A closed, dense )
Nep(A)ifa>w & Y L‘eorem A generates || T(1)|| < &t
IRA) =+ )

Fort>0,7(t) : R—R
Fixing xo, T(t)xp = x(t) is a function in t and solves (1)



Some trivial example

T(H)x = e“'x
Semigroup laws
i) T(t+8)x = eI+ x = g¥lgwSx = T(1)T(s)x

iif) T(0)x = e"9x = x
if) lim;_o T(f)x = x

Generator

Ax = lim
t}0 t t|0 t

Resolvent

R\, Ay = — :/o e—/\ST(s)yds:/O e \Se“Syds



Kernel Representation

If the coefficients of the differential operator have suitable regularity,
the semigroup has a kernel representation.

T(£)(x) = /R K(tx.Y)f(y)a

Consider the heat equation 0:;u(t, x) = Au(t, x) ,u(0, x) = f(x)

1 x=y?

@iz | € Wy

u(t,x) = T(t)f(x) =

x—y|?

In this case k(t,x,y) = We_ t

» The behavior of the semigroup depends on the behavior of the
kernel

» The kernel is related to the eigenvalues and the ground state of
the problem



Elliptic operators with unbounded coefficients

We consider elliptic operators with unbounded coefficients of the form

N

N
Au(x) = Z aji(x)Dyu(x) + Z bi(x)Dju(x) + V(x)u(x).
i j=1 =1

The realisation A of A in Cp(RN) with maximal domain

Dmax(A) = {u € Co(RN) N (7] Wl (RY) : Au € Cp(RY)}

loc
1<p<oo

Au = Au.



{ owu(t,x) = Au(t,x) t>0, xeRN

u(0, x) = f(x) x € RV,

with f € Cb(RN).
To have solution we assume that for some « € (0, 1),

(1) aj, bj, V € C/O(‘)C(RN), Vijj=1,...,N;
(2) a; = a; and

(a(x)&, &) = Za,,(x &i&j > k(x)I€)°

x,& € RN, k(x) > 0;

(3) dcg € R s.1.
V(X) < Cp, X € RN,



Consider the problem on bounded domains

[ Oiup(t, x) = Aug(t, x) t>0, x¢cBp
¢ up(t,x)=0 t >0, xe0dBpg (3)
| ur(0,x) = f(x) x € B,

with f € Cp(RN).
Then A is uniformly elliptic on compacts of RV and (3) admits unique
classical solution

UF?(ta X) — TR(t)f(X)a [ > 07 X € ER

with Tg(t) analytic semigroup in C(Bg).
The infinitesimal generator of (Tg(t)) is (A, Dr(A)),

Dr(A)={uec Cy(Br)N (| W3>P(Bg),: Au c C(Bg)}.

1<p<oo



Theorem 1

(i) (Tgr(t)) has the integral representation

Tr(f(x) = | pa(t,x,y)f(y)dy, fe C(Bg),t>0,x€Bg
Br
with strictly positive kernel pg € C((0,+00) x Bgr x Bg).
(ii) Tr(t) € L(LP(BR)) perognit > 0 e perognil < p < +oo;
(iii) Tg(t) is contractive in C(BR);

(iv) for all fixed y € Bg, pPgr(-,-,y) € C'*22%%([s, ty] x BRg) for all
0<s<iyand

Opr(t, x,y) = Apr(t, X, y), V(t x) € (0,+00) x Bp.



fe C(Bgr) + (iv), gives

ug € C'*22%%([s, ty] x Bp).

Proposition 1

Letf € Cp(RN) and t > 0; then it exists

T(t)f(x) = Slim Tr(H)f(x), VxeRN

and (T(t)) is a positive semigroup in Cp(RN).




Schauder interior estimates

M T
HUR”C1+a/2,2+a([5,7']><§,q_1) < CHURHLOO((O,T)XBR) < Ce™ HfHoo

Theorem 2
Let f € Cp(RN), then the function

u(t,x) = T(t)f(x)

1+ 3,2+«
Cloc

belongs to ((0, +00) x RN) and it solves

ur(t,x) = Au(t,x) t>0,x e RV,
u(0, x) = f(x) x € RN,




The operator

Forc>0,bcR,a>2and S > a— 2 we consider on LP(RV)
A:=(1+|x|YA + b|x|*2x -V — ¢c|x]|°.

Aim.
» Solvability of \u — Au=f
» Properties of the maximal domains
» Generation of positive analytic semigroup



>

>

Related results

b = ¢ = 0: Unbounded Diffusion: A= (1 + |x|*)A

[G. Metafune, C. Spina,’10] a>2,p> 5ty

b= 0: Schrddinger-Type Operator: A= (1 + |x|*)A — ¢|x|’

[L. Lorenzi, A. Rhandi,15] 0<a<2,6>0
[A. Canale, A. Rhandi, C.Tacellij16] o >2,8 > «a —2

¢ = 0:Unbounded Diffusion & Drift: A= (1 + [x|*)A + b|x|*?x -V

[S. Fornaro, L. Lorenzi 071 0<a<?2
[Metafune, Spina, Tacelli/14]o.>2,b>2— N — p > 55—

Complete : A= |x|*A + b|x|*"*x - Vx — c|x|*~*

[G. Metafune, N. Okazawa, M. Sobajima, C. Spina, 16]
N/p e (s +min{0,2 — a},so + max{0,2 —a}),c+s(N—-2+b—-5)=0



A:=(1+|x]%)A + b|x|*2x -V — c|x|°.

Remark

» (1 +|x]|*)A and b|x|*~ i - V are homogeneous at infinity. They
have the same “influence ” on the behaviour of A. ( possible

dependence on coefficient b);

» |x|? with 8 > o — 2 is super homogeneous.
No critical exponent, but strong unboundedness with respect to
diffusion and drift. A different approach is required,;

> b|x|* ﬁ . V is not a small perturbation of (1 4 |x|*)A — c|x|’.



Solvability in Co(RN)

First consider the operator (A, Dmax(A)) on Cp(RN) where

Dmax(A) = {u € Co®R)n (] WZP®RN): Au € Co(RY)}.

loc
1<p<oo

It is known that we can associate to the parabolic problem

ur(t, x) = Au(t,x) x e RN, t >0, 5
{ u(0,x) = f(x) xRN fe Cy(RM) (6)

a semigroup of bounded operators ( Tpin(t))s=0 in Cp(RN) generated
by Amin = (A, D), where D C Dpax -



Solvability in Co(RN)

The unigueness relies on the existence of suitable Lyapunov function
for A, i.e.

30 < ¢ e C3(RN) : lim ¢(x) = +o0, Ap—Ap <0, \>0.

| X| =00

Proposition 2

Assume thata > 2,6 > a—2. Then¢ =1+ |x|7 :~ > 2 is Lypunov
function for A.

Proposition 3

Tmin(1) is generated by (A, Dmax(A)) N Co(RN), is compact, preserves
Co(RM).




Solvability of \u — Au = f in LP

The transformation v = uv/¢ where ¢ = (1 + \xla)g gives

NW—-Au=f & —(A-U)v=Ff:= f\/a.
—— T+ x|
H

1A¢+A+CM5 c|x|?
2 ¢ T+xl* 14 x)e

U:

K3

For A\ > \o we have 0 < U € L] _then there exists G(x, y) such that

loc

~

v(x) = G(x,y)f(y)dy solves —Hv=f

RN

u(x) = LF(X) := /R N Cj/(’l) 1Vj’(;”a

We study the LP-boundedness of the operator L by estimates of G.

y)dy solves \u—Au=f



Green function estimates of A — U

Since U(0) = A > 0 and U behaves like |x|°~ as |x| — oo we have
the following estimates

Ci(1+x[77) S U< C(1 + |x77%) if > (7)

1 1
< U<
Cs U < Coq s

ifa —2
5 [P = if o < B <«

for some positive constants Cy, Co, C3, Cs.

Z. Shen '95, gives estimate of G(x, y) if the potential belong to the
reverse Holder class By if g > §.



Green function estimates of A — U

f > 0is said to be in By if

1 1/q 1
3C > 0 : (—/fqu) gC(—/fdx> vB e RN,
Bl Js Bl /s

If 3 —a > 0then [x|°~* € B.. If =& < (8 —a) < 0then [x|°~* € B,
» 0>a—2= Uec Bx
2
> 5§Oz—2:>U§§BN
2



Green function estimates of A — U

For every k > 0 there is some constant C(k) > 0 such that

Cx | 1
(1 +m(x)|x — yDk |x—y[N-2

G(x,y)| <

—— =8SuUpRr: = Uydy <1}, xeRN
m(x) r>€{ rN=2 /B(x,r) W)dy < }

Proposition 4

m(x) > C(1 + |x|)2°, B>a—2C=C(a,B,N)

Sketch of Proof. Observe that U > CV.



Green function estimates of A — U

Lemma 3

ife>a—2

G(x,y) < Cx 1 L

14 |x —ylk (14 |x|) 2 X ="

Finally we can prove the boundedness of L in LP(RN).

Theorem 4
3C = C(\): Vy€0,8] and f € LP(RN)

Ix[7Lllp < ClIf][p.

For every f ¢ C°(RN) the function u solves \u — Au = f



Closedness & Invertibility of A\ — Ap in Dp max(A)

Theorem 5

Dp max(A) = {u € LP(RN) N W2P(RN) : Au e LP(RM)}.

loc

» Assume thatN >2,a>2andp > a—2. Forp € (1,00) the
following holds

Dy max(A) = {u € WAP(RN) : Au e LP(RM)}.

» The operator A — A, is closed and invertible. Moreover
1C = C(A\) >0 :Vy € [0,0] and XA > \g, we have
- ["ulle = CllAu = Apullp, VU € Dpmax(A) -

» The inverse of A\ — A, is a positive operator VA > \g. Moreover, if
fe LPNCythen (\—Ap)~'f=(\—A)~f.




Weighted gradient and second derivative estimates

Dp(A) == {uec W2P[RN) : Vu, (14+|x|*" "Vu, (1+|x|*)D?u € LP(RM)}
Lemma 6
3C > 0: Vu € Dp(A) we have

(1 + X2 Vullp < C(I|Asullp + llullp) ,

|(1 + 1xI*)D2ullp < C([lApullp + llullp) -

The space C(RN) is dense in D,(A) endowed with the norm

1Ullppay = llullo + [ Vellp + [1(1 + [XI*"DIVulllp + [1(1 + [x|%) 1 D%ulllp-




Generation of Analytic Semigroup

Theorem 7

(A, Dp(A)) generates a analytic semigroup in LP(RN).
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