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L. Grigoryeva, J. Henriques, L. Larger, J.-P. Ortega ( Universität Konstanz, Germany, Université Bourgogne Franche-Comté, France, Centre National de la Recherche Scientifique (CNRS), France, Universität Sankt Gallen, Switzerland )TDDE in machine learning 1 / 54



Outline of the presentation

L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega. Stochastic time series
forecasting using time-delay reservoir computers: performance and universality. Neural
Networks, 55:59–71, 2014.

L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega. Optimal nonlinear information
processing capacity in delay-based reservoir computers. Scientific Reports,
5(12858):1–11, 2015.

L. Grigoryeva, J. Henriques, L. Larger, J.-P. Ortega, 2016. Nonlinear memory capacity
of parallel time-delay reservoir computers in the processing of multidimensional signals.
To appear in Neural Computation.

L. Grigoryeva, J. Henriques, J.-P. Ortega, 2015. Quantitative evaluation of the
performance of discrete-time reservoir computers in the forecasting, filtering, and
reconstruction of stochastic stationary signals. Preprint.

L. Grigoryeva, J.-P. Ortega, 2016. Ridge regression with homoscedastic residuals:
generalization error with estimated parameters. Preprint.
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Outline of the presentation

Outline

1 Reservoir computing: brain-inspired machine learning paradigm

2 Time-Delay Reservoir (TDR) computers:

Physical implementation with opto- and electronic systems
High-speed and excellent computational performance
Architecture of TDR computers

3 Preliminary empirical results:

Application of TDR to stochastic nonlinear time series
forecasting (multivariate VEC-GARCH models)
Parallel reservoir architectures and task-universality

4 Theoretical results on optimal TDR architecture:

Unimodality versus bimodality; stability of the TDR
VAR(1) model as the TDR approximating model
Nonlinear capacity as a quantative measure of performance

5 Further research
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Reservoir computing: brain-inspired machine learning paradigm

Machine learning and brain-inspired neural networks

Machine learning: construction and development of algorithms that can “learn” from the
data and are able to adaptively make decisions.

Neural networks: brain-inspired family of statistical models and algorithms that are repre-
sented as the collection of interconnected neurons-nodes that have task-adaptive features.
Proved to perform in estimation or approximation of functions that are generally unknown
(pattern recognition, classification, forecasting).

Figure 1: Conventional NN: the weights of the nodes and the activation function have
to be chosen at the training stage depending on the task. Disadvantages: convoluted
and sometimes ill-defined optimization algorithms for weights determining.
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Reservoir computing: brain-inspired machine learning paradigm

Reservoir computing: brain-inspired machine learning paradigm

Fundamentally new approach to neural computing
[Jae01, JH04, MNM02, VSDS07, LJ09]; defining features of RC: the
fading-memory, separation, and approximation properties [LJ09]

Modification of the traditional RNN in which the architecture and the
neuron weights of the network are created in advance (for example
randomly) and remain unchanged during the training stage

The output signal is obtained in the RC with a linear readout layer that is
trained using the teacher signal via a ridge (Tikhonov regularized) regression
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Reservoir computing: brain-inspired machine learning paradigm

Physical implementation: reservoir computing (RC) devices

A major feature of the RC is the possibility of constructing physical
realizations of reservoirs instead of simulating them (numerically)

Chaotic dynamical systems can be used to construct reservoirs that exhibit
the RC features: in [ASV+11] using chaotic electronic oscillators or using
optoelectronic devices like in [LSB+12]

Figure 3: Optoelectronic implementation of RC with a single nonlinear element
subject to delayed feedback [LSB+12]
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Reservoir computing: brain-inspired machine learning paradigm

Objectives

address the reservoir design and working principle problems

application of RC in the non-deterministic tasks: forecasting
of stochastic time series
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Construction of Time-Delay Reservoir (TDR) computers
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Figure 4: Diagram of architecture of the time-delay reservoir (TDR) and 3 modules of the

reservoir computer (RC): the input layer A, the time-delay reservoir B, and the readout layer C.
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Construction of Time-Delay Reservoir (TDR) computers

Input module

Construction of the input layer depends on the computational task of interest
and involves the values of the input signal at a given t and the input mask;
consists of multiplexing the input signal over the delay period and forcing its
mean to be zero.

Consider multi-dimensional time series as the input signal: in this case z(t) ∈ Rn

and for each t define I(t) := Cz(t) ∈ RN , where C ∈ MN,n is the input mask
[GHLO14]
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Construction of Time-Delay Reservoir (TDR) computers

Construction of the time-delay reservoir (TDR)

TDRs are based on the “interaction” of the discrete input signal z(t) ∈ R with
the solution space of a TDDE of the form

ẋ(t) = −x(t) + f (x(t − τ), I (t),θ), (1)

where f is a nonlinear smooth function (nonlinear kernel), θ ∈ RK is the
parameter vector, τ > 0 is the delay, x(t) ∈ R, and I (t) ∈ R is obtained
via temporal multiplexing of the input signal z(t) over the delay period; x ∈
C 1([−τ, 0],R) needs to be specified prior.

The choice of nonlinear kernel f is determined by the physical implementation;
consider two parametric sets of kernels:

the Mackey-Glass [MG77]: f (x , I ,θ) = η(x+γI )
1+(x+γI )p , θ = (η, γ, p)

the Ikeda [Ike79]: f (x , I ,θ) = η sin2 (x + γI + φ), θ = (η, γ, φ)

Used in the RC electronic [ASV+11] and optoelectronic [LSB+12] realizations.
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Construction of Time-Delay Reservoir (TDR) computers

Continuous time model of TDR

Consider the regular sampling of solution x(t) of (1) during a given time-delay
interval and define xi (t) the value of the ith neuron of the reservoir at time
tτ as

xi (t) := x(tτ − (N − i)d), i ∈ {1, . . . ,N}, t ∈ Z,

where τ := dN, d the separation between neurons and we also say that
xi (t) is the ith neuron value of the tth layer of the reservoir.

L. Grigoryeva, J. Henriques, L. Larger, J.-P. Ortega ( Universität Konstanz, Germany, Université Bourgogne Franche-Comté, France, Centre National de la Recherche Scientifique (CNRS), France, Universität Sankt Gallen, Switzerland )TDDE in machine learning 11 / 54



Construction of Time-Delay Reservoir (TDR) computers

Discrete time model of TDR

Consider the Euler time-discretization of (1) with integration step d := τ/N:

(x(t)− x(t − d))/d = −x(t) + f (x(t − τ), I (t),θ). (2)

Define neuron layers x(t) and input layers I(t), t ∈ Z by setting

xi (t) := x(tτ−(N−i)d), Ii (t) := I (tτ−(N−i)d), i ∈ {1, . . . ,N}, t ∈ Z,

where xi (t) is the ith neuron value of the tth layer of the reservoir. Then
the solutions of (2) are given by

xi (t) := e−ξxi−1(t)+(1−e−ξ)f (xi (t−1), Ii (t),θ), x0(t) := xN (t−1), ξ := log(1+d),

A smooth map F : RN × RN × RK → RN specifies the neuron values as a
recursion via

x(t) = F (x(t − 1), I(t),θ), (3)

where F is constructed out of the nonlinear kernel map f ; F is referred to as
the reservoir map.
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Construction of Time-Delay Reservoir (TDR) computers

Output module

Let the training be carried out with the input layers I := {I(1), . . . , I(T ∗)}, that
is, for each input layer I(t) := (I1(t), . . . , IN (t)), t ∈ {1, . . . ,T ∗}, there is a
corresponding teaching signal y(t) ∈ Rn (in general, N � n).

Readout Wout is given by the solution of the following ridge (or Tikhonov [Tik43])
linear regression problem

Wout := argmin
W∈MN,n

(
T∗∑
t=1

‖W> · x(t)− y(t)‖2 + λ‖W ‖2
Frob

)
, (4)

whose solution is given by

Wout = (XX T + λIN )−1XY , (5)

where X ∈ MN,T∗ is the reservoir output given by Xi,j := xi (j) and Y ∈ MT∗,n

is the teaching matrix containing the vectors y(t), t ∈ {1, . . . ,T ∗}, organized by
rows, λ ∈ R is a regularization parameter (usually obtained via cross-validation).
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Construction of Time-Delay Reservoir (TDR) computers

Stochastic nonlinear time series forecasting with TDR

We propose a TDR based non-parametric approach to forecasting of the stochastic time
series which has the following salient advantages:

1 The model selection and estimation stages are incorporated into the training of
the TDR with the observed historical data

2 Various non-parametric approaches proved to be efficient in the forecasting of
specific time series and are applied in a vast range of forecasting tasks

3 The global reservoir parameters can be optimized in a flexible way to give the
best performance with respect to the chosen criteria (in the case of time series
forecasting it may be the mean square forecasting error)

Goal

To show the pertinence of using the TDRs in the nonlinear forecasting of stochastic
time series compared to the standard parametric Box-Jenkins approach. The
nonlinear VEC-GARCH (generalized autoregressive conditionally heteroscedastic)
models proposed by Bollerslev et al [BEW88] are used as data generating process.
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Construction of Time-Delay Reservoir (TDR) computers The vector volatility GARCH models

Motivation behind the choice of the VEC-GARCH models

The VEC-GARCH family is widely used in financial econometrics as a tool to
forecast volatility; captures the specific properties of time series: leptokurticity,
volatility clustering, and asymmetric response to volatility shocks. The reasons
to choose the VEC-GARCH model as a benchmark include:

1 The model is difficult to calibrate; n-dimensional VEC(1,1) model requires
estimating of n(n + 1)(n(n + 1) + 1)/2 parameters subjected to specific
constraints imposed by the model

2 The explicit expression of the optimal volatility forecast is available, hence
the associated error can be computed and used to asses the performance
of the TDR

3 The functional dependence between the time series elements that generate
the information set and the forecast based on that information set, is
nonlinear
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Construction of Time-Delay Reservoir (TDR) computers The vector volatility GARCH models

General setup

Consider the n-dimensional conditionally heteroscedastic discrete-
time process

zt = H
1/2
t εt, {εt} ∼ IIDN(0, In).

The VEC-GARCH(1,1) model is determined by

ht = c + Aηt−1 + Bht−1, (6)

where ht := vech(Ht), ηt := vech(ztzT
t ), c ∈ RN , and A,B ∈ MN

with N := n(n + 1)/2.
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Construction of Time-Delay Reservoir (TDR) computers The vector volatility GARCH models

Volatility forecasting

The volatility forecasting task at time T with a forecasting horizon of h time steps

consists of providing an estimate ĤT +h of the conditional covariance matrix HT +h

based on the information set FT := σ(z0, . . . , zT ). This estimate is produced
by minimizing the mean square forecasting error (MSFE) defined as

MSFE(h) := E

[(
hT +h − ĥT +h

)(
hT +h − ĥT +h

)T
]
,

where hT +h := vech(Ht+h) and ĥT +h := vech(Ĥt+h).

The optimal forecast ĥT +h for hT +h is given by:

ĥT +h := argmin
˜hT +h|FT

E

[(
hT +h − ˜hT +h|FT

)(
hT +h − ˜hT +h|FT

)T
]

= E [hT +h | FT ] .

(7)
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Construction of Time-Delay Reservoir (TDR) computers The vector volatility GARCH models

The optimal forecast for VEC(1,1) model

The optimal forecast ĥT +h for the VEC(1,1) model can be computed explicitly via the
following recursion :

ĥT +1 = hT +1 = c + AηT + BhT ,

ĥT +2 = c + (A + B)ĥT +1,

... (8)

ĥT +i = c + (A + B)ĥT +i−1,

...

ĥT +h = c + (A + B)ĥT +h−1.

The functional dependence between the forecast ĥT +h and the elements {z0, . . . , zT}
that generate the information set FT is nonlinear.

The MSFE associated to the optimal forecast can be also computed explicitly as we
use it as a benchmark to assess the performance of the TDR with the same forecasting
task assigned to it.
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Construction of Time-Delay Reservoir (TDR) computers TDR based volatility forecasting

Parameter optimization of a TDR

No universal set of optimal parameters (θ, γ, η) that offers top performance of a
reservoir for any task assigned to it

In the case of VEC volatility forecasting the lack of optimality is evidenced when:
(i) the forecasting is carried out for different processes (different sets of parameters
c, A, and B), (ii) the forecasting horizon changes, that is, different horizons have
different optimal reservoir parameters

Two important implications:

Numerical cost: the parameter optimization is carried out via a computational
expensive cross validation procedure

Parallel reading inefficiency: in the particular case of the forecasting problem
parallel reading can be useful at the time of simultaneously predicting at various
horizons out of a single input signal; however, this is only feasible if there is a set
of reservoir parameters for which the forecasting performance is acceptable for all
the horizons of interest
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Parallel reservoir computing and universality.
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Parallel reservoir computing and universality.

Advantages of parallel reservoirs

Advantages of parallel reservoirs compared to a single optimized reservoir with
the same number of neurons

1 Limited computational effort: the parallel reservoirs will be constructed by
putting together pools of reservoirs with randomly chosen parameter values
and by keeping the pool that yields the best performance in an
out-of-sample testing step

2 Better performance for smaller training sample sizes

3 Improved universality with respect to changes in the forecasting
horizon and in the model specification: the optimal parameters for the
prediction task are not the same neither for different forecasting horizons nor
for different data generating processes. This variability is reduced by the use
of a parallel array of TDR computers
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Empirical results

Empirical results

Four configurations were considered:

(i) TDR with 400 neurons and grid optimized parameters

(ii) TDR with 400 neurons and random optimized parameters

(iii) Random optimal parallel array of 40 reservoirs with 10 neurons each

(iv) Random optimal parallel array of 80 reservoirs with 5 neurons each
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Empirical results

Figure 6: Comparison of the sMSFE committed for different training sample sizes by a single grid optimized TDR with 400
neurons and by a parallel array of 40 reservoirs with 10 neurons each.
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Empirical results

Figure 7: Comparison of the forecasting performances obtained by using horizon adapted parameter configurations and constant
parameters (appear more frequently in the tables).
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Empirical results

Figure 8: Forecasting performance under model misspecification. In the left hand side outliers are eliminated using the Grubbs
test with a significance level of 5%; in the right hand side the quantiles under 0.1% and above 99.9% are eliminated.
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Empirical results

Figure 9: Average realized volatility forecasting performance using RC and VEC(1,1) models
estimated via maximum likelihood (MLE). The sMSFE reported is obtained with the estimated
parametric models. All the TDRs considered have been generated using the nonlinear
Mackey-Glass kernel with p = 2.
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Empirical results

Main contributions of the empirical work [GHLO14]

Demonstrate the pertinence of using non-parametric TDR
method in the nonlinear forecasting of the multivariate
discrete time stochastic time series compared to the standard
Box-Jenkins parametric approach (model selection, estimation,
diagnostic checking, forecasting)

Present the evidence of shortfall in task-universality of a single
reservoir; given a time-delay reservoir architecture, a set of
optimal reservoir parameters θ for a specific assigned task is
not universal

Use parallel pools of TDRs to overcome the deficiency of the
task-universality for an individually operating reservoir

Application of TDRs to forecasting based on the time series of
the real financial market data
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Optimal performance: stability and unimodality

Figure 10. Behavior of the reservoir performance in a quadratic memory task as a function of
the c̄ and var(c). The top panels show how the performance degrades very quickly as soon
as c̄ and var(c) separate from zero. The bottom panels depict the reservoir performance as a
function of the various output means and variances. We have indicated with red markers the
cases in which the reservoir visits the stability basin of a contiguous stable equilibrium hence
showing how unimodality is associated to optimal performance.
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Stability analysis

Basic facts

Let τ ∈ R+ be a fixed delay and consider a time-delay map

X : C 1([−τ, 0],R)× R −→ R
(γ, t) 7−→ X (γ, t).

(9)

Additionally, for any t ∈ R define the shift operator

St : C 1([−τ + t, t],R) −→ C 1([−τ, 0],R)
γ 7−→ γ ◦ λt ,

(10)

where λt is the translation operator by t ∈ R: λt(s) := s + t, for any s ∈ R.
Let γ ∈ C 1([−τ,+∞),R). We say that γ is a solution of the TDDE determined by X
when

γ̇(t) = X (St ◦ γ|[−τ+t,t], t) for any t ∈ [0,+∞). (11)

Note that the TDDE
ẋ(t) = −x(t) + f (x(t − τ), I (t),θ), (12)

is given by

X : C 1([−τ, 0],R)× R −→ R
(γ, t) 7−→ −γ(0) + f (γ(−τ), I (t),θ).

(13)
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Stability analysis

Definition

We say that the time-delay map X is locally Lipschitzian on the open set
Ω ⊂ C 1([−τ, 0],R)× R if it is Lipschitzian in any compact subset of Ω, that is, for any
compact subset Ω0 of Ω there exists a constant K ∈ R+ such that for all (γ1, t) and
(γ2, t) in Ω0 one has

|X (γ1, t)− X (γ2, t)| < K ||γ1 − γ2||∞. (14)

Theorem (Existence and uniqueness of solutions)

Let X be a continuous and locally Lipschitzian time-delay map in C 1([−τ, 0],R)× R.
Then, for any φ ∈ C 1([−τ, 0],R) there exists a unique Γφ ∈ C 1([−τ,+∞),R) s.t.{

Γφ(t) = φ(t), for any t ∈ [−τ, 0]

Γ̇φ(t) = X (St ◦ Γφ|[−τ+t,t], t), for any t ∈ (0,+∞].
(15)

We say that Γφ is the solution of the TDDE determined by X with initial condition φ,
or simply the solution through φ. The associated flow is defined as the map

F : [−τ,+∞)× C 1([−τ, 0],R) −→ R
(t, φ) 7−→ Γφ(t)

(16)

and note that F·(φ) ∈ C 1([−τ,+∞),R).
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Stability analysis

We now recall also some basic notions of stability of common use in the TDDE
context; see [Hal77] and [WHS10] for details.

Let x0 ∈ R and let φx0 ∈ C 1([−τ, 0],R) be the constant curve at x0. We say that
the point x0 is an equilibrium of the TDDE determined by the time-delay map
and with flow F whenever Ft(φx0 ) = x0, for any t ∈ [−τ,+∞).

The equilibrium x0 is said to be stable (respectively asymptotically stable) if for
any ε > 0 there exists a δ(ε) > 0 such that for any φ ∈ C 1([−τ, 0],R) with
‖φ− φx0‖∞ < δ(ε), we have that |Ft(φ)− x0| < ε, for any t ∈ [−τ,+∞)
(respectively lim

t→∞
Ft(φ) = x0).
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Stability analysis

Lyapunov-Krasovskiy stability theorem

Theorem (Lyapunov-Krasovskiy stability theorem)

let x0 ∈ R be an equilibrium of the time-delay differential equation with flow
F : [−τ,+∞)×C 1([−τ, 0],R)) −→ R. Let u, v , w : R+ −→ R+ be continuous
nondecreasing functions such that u(0) = v(0) = 0 and u(t), v(t),w(t) > 0 for
any t ∈ (0,+∞). If there exists a continuously differentiable functional V

V : C 1([−τ,+∞),R)× R −→ R (17)

such that for any φ ∈ C 1([−τ, 0],R)) and any t ∈ [0,+∞) satisfies that

(i) u(|φ(0)|) ≤ V (F·(φ), t) ≤ v(||φ||∞),

(ii) V̇ (F·(φ), t) :=
d

dt
V (F·(φ), t) ≤ −w(|φ(0)|),

then x0 is asymptotically stable. If w(t) ≥ 0 then x0 is just stable. A functional
V that satisfies these conditions is called a Lyapunov-Krasovskiy functional.
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Stability analysis

Stability of the TDR: continuous time model

Use Lyapunov-Krasovskiy stability theorem [Kra63] to establish sufficient condi-
tions for the stability of the equilibria of the TDDE

ẋ(t) = x(t) + f (x(t − τ), I (t),θ). (18)

where f is the nonlinear kernel function, θ ∈ RK is the reservoir parameters
vector, τ > 0 is the delay, x(t) ∈ R, and I (t) ∈ R is obtained via temporal
multiplexing over τ of the input signal z(t).

The main tool in the application of that result is the use of a Lyapunov-Krasovskiy
functional of the form

V : C 1([−τ,+∞],R)× R −→ R

(xφ, t) 7−→ 1

2
xφ(t)2 + m

∫ t

t−τ xφ(s)2ds,
(19)

where m ∈ R+ and xφ = F·(φ) for some initial curve φ ∈ C 1([−τ, 0],R).
See [Kra63], [Hal77] and [WHS10] for extensive discussion.
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Stability analysis

Theorem (Grigoryeva, Henriques, Larger, Ortega, 2014)

Let x0 be an equilibrium of the time-delay differential equation (18) in
autonomous regime, that is, when I (t) = 0, and suppose that there exists
ε > 0 and kε ∈ R such that one of the following conditions holds

(i) f (x + x0, 0,θ) ≤ kεx + x0 for all x ∈ (−ε, ε)

(ii)
f (x + x0, 0,θ)− x0

x
≤ kε for all x ∈ (−ε, ε).

If |kε| < 1 then x0 is asymptotically stable. If |kε| ≤ 1 then x0 is stable.

Corollary (Grigoryeva, Henriques, Larger, Ortega, 2014)

Let x0 be an equilibrium of the TDDE (18) and suppose that the nonlinear
reservoir kernel function f is continuously differentiable at x0. If
|∂x f (x0, 0,θ)| < 1 (respectively, |∂x f (x0, 0,θ)| ≤ 1), then x0 is asymptotically
stable (respectively, stable).
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Stability analysis

Corollary (Stability of the equilibria of the Mackey-Glass TDDE; Grigoryeva,
Henriques, Larger, Ortega, 2014)

Consider the TDDE (18) in the autonomous regime constructed with the
Mackey-Glass kernel with p = 2, that is,

f (x , 0,θ) =
ηx

1 + x2
. (20)

This TDDE exhibits two families of equilibria depending on the values of η:

(i) The trivial solution x0 = 0, for any η ∈ R. The equilibrium
x0 = 0 is asymptotically stable (respectively, stable) if |η| < 1
(respectively, |η| ≤ 1).

(ii) The non-trivial solutions x0 = ±
√
η − 1, for any η > 1. The

equilibria x0 = ±
√
η − 1 are asymptotically stable (respectively,

stable) whenever 1 < η < 3 (respectively, 1 < η ≤ 3).
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Stability analysis

Corollary (Stability of the equilibria of the Ikeda TDDE; Grigoryeva, Henriques,
Larger, Ortega, 2014)

Consider the TDDE (18) in autonomous regime based on the Ikeda kernel,

f (x , 0,θ) = η sin2(x + φ). (21)

The Ikeda nonlinear TDDE exhibits two families of equilibria:

(i) The trivial solution x0 = 0 for any η ∈ R and φ = πn, n ∈ Z.
The equilibium x0 = 0 is asymptotically stable for any η ∈ R.

(ii) The non-trivial equilibria x0 are obtained as solutions of the
equation x0 = η sin2(x0 + φ), for any η ∈ R and φ 6= πn, n ∈ Z.
These equilibria are asymptotically stable (respectively, stable) if

| sin(2x0 + 2φ)| < 1

|η|
(respectively, | sin(2x0 + 2φ)| ≤ 1

|η|
).

(22)
When |η| < 1 (respectively, |η| ≤ 1), there exists only one
non-trivial equilibrium that is always asymptotically stable
(respectively, stable).
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Stability analysis

Stability of the TDR: discrete time approximation

The discrete time approximation of the TDR is

xi (t) = e−iξxN (t − 1) + (1− e−ξ)
i−1∑
j=0

e−jξf (xi−j (t − 1), Ii−j (t),θ), (23)

which corresponds to x(t) = F (x(t − 1), I(t),θ) that uniquely determines the reservoir
map F : RN × RN × RK −→ RN .
Let x0 ∈ R and x0 := x0iN ∈ RN . Let A(x0,θ) := DxF (x0, 0N ,θ) be referred to as the
connectivity matrix of the reservoir at the point x0:

A(x0,θ) =


Φ 0 . . . 0 e−ξ

e−ξΦ Φ . . . 0 e−2ξ

e−2ξΦ e−ξΦ . . . 0 e−3ξ

...
...

. . .
...

...
e−(N−1)ξΦ e−(N−2)ξΦ . . . e−ξΦ Φ + e−Nξ

, (24)

where Φ := (1−e−ξ)∂x f (x0, 0,θ) and ∂x f (x0, 0,θ) is the first derivative of the nonlinear
kernel f with respect to the first argument and computed at the point (x0, 0,θ).
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Stability analysis

Proposition (Grigoryeva, Henriques, Larger, Ortega, 2014)

The point x0 ∈ R is an equilibrium of the time-delay differential equation (18)
in autonomous regime, that is when I (t) = 0, if and only if the vector
x0 := x0iN is a fixed point of the N-dimensional discretized nonlinear
time-delay reservoir

ẋ(t) = F (x(t − 1), I(t),θ) (25)

in autonomous regime, that is, when I(t) = 0N .

Theorem (Grigoryeva, Henriques, Larger, Ortega, 2014)

Let x0 = x0iN be a fixed point of the N-dimensional recursion
x(t) = F (x(t − 1), I(t),θ) in autonomous regime. Then, x0 ∈ RN is
asymptotically stable (respectively stable) if |∂x f (x0, 0,θ)| < 1 (respectively,
|∂x f (x0, 0,θ)| ≤ 1).
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Stability analysis

Optimal performance: stability and unimodality

Conclusions: Optimal TDR performance is attained when the TDR operates
in a unimodal regime around an asymptotically stable state. We find common
stability conditions for the continuous and discrete time systems.
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The approximating model and the nonlinear memory capacity

Approximating model and nonlinear memory capacity

(1) We construct an approximation of the TDR via its partial linearization at
the equilibrium point with respect to the delayed self feedback term and
respecting the nonlinearity of the input injection.
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The approximating model and the nonlinear memory capacity

The approximating model

Consider a stable equilibrium x0 ∈ R of the autonomous system associated
to (1) or, equivalently, a stable fixed point x0 := (x0, . . . , x0)> ∈ RN of (3). We
construct the approximation of (3) by using its linearization at x0 with respect
to the delayed self-feedback and its Rth-order Taylor expansion with respect to
its dependence on the signal injection:

x(t) = F (x0, 0N ,θ) + A(x0,θ)(x(t − 1)− x0) + ε(t), (26)

where A(x0,θ) := DxF (x0, 0N ,θ) and ε(t) is given by:

ε(t) = (1− e−ξ) (qR (z(t), c1) , . . . , qR (z(t), c1, . . . , cN ))> ,

with

qR (z(t), c1, . . . , cr ) :=
R∑

i=1

z(t)i

i !
(∂

(i)
I f )(x0, 0,θ)

r∑
j=1

e−(r−j)ξc i
j ,

and (∂
(i)
I f )(x0, 0,θ) the ith order partial derivative of the nonlinear kernel f with

respect to I (t) evaluated at (x0, 0,θ).
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The approximating model and the nonlinear memory capacity

(2) For statistically independent input signals the approximation (26) allows
us to visualize the TDR as a N-dimensional vector autoregressive
stochastic process of order one (VAR(1), [L0̈5]).
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The approximating model and the nonlinear memory capacity

Let the input signal be {z(t)}t∈Z ∼ IID(0, σ2
z ), then {I(t)}t∈Z ∼ IID(0N ,ΣI ), with

ΣI := σ2
z c>c, and {ε(t)}t∈Z ∼ IID(µε,Σε) with

µε = (1− e−ξ) (qR (µz , c1) , . . . , qR (µz , c1, . . . , cN ))> ,

where µi
z := E

[
z(t)i

]
and Σε := E

[
(ε(t)− µε)(ε(t)− µε)>

]
∈ SN with the entries

given by:

(Σε)ij =(1− e−ξ)2((qR (·, c1, . . . , ci ) · qR (·, c1, . . . , cj ))(µz )

− qR (µz , c1, . . . , ci )qR (µz , c1, . . . , cj )), i , j = 1, . . . ,N.

The process (26) is a VAR(1) model

x(t)− µx = A(x0,θ)(x(t − 1)− µx ) + (ε(t)− µε) (27)

with µx = (IN − A(x0,θ))−1(F (x0, 0N ,θ) − A(x0,θ)x0 + µε) and an autocovariance

function Γ(k) := E
[
(x(t)− µx ) (x(t − k)− µx )>

]
, k ∈ Z, recursively determined by

the Yule-Walker equations [L0̈5]:

vec(Γ(0)) = (IN2 − A(x0,θ)⊗ A(x0,θ))−1 vec(Σε),

Γ(k) = A(x0,θ)Γ(k − 1), Γ(−k) = Γ(k)>.
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The approximating model and the nonlinear memory capacity

The nonlinear memory capacity estimations

(3) The approximation (26) allows us to write the nonlinear capacities of the
TDR as the function of the intrinsic architecture parameters θ and the
input mask c.
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The approximating model and the nonlinear memory capacity

The nonlinear memory capacity estimations

A h-lag memory task is determined by a function H : Rh+1 → R (in general
nonlinear) that is used to generate y(t) := H(z(t), z(t − 1), . . . , z(t − h)) ∈ R
out of the reservoir input {z(t)}t∈Z.

Recall, that the optimal linear readout Wout adapted to the memory task H is
given by the solution of a ridge (or Tikhonov [Tik43]) linear regression problem

(Wout, aout) := argmin
W∈RN ,a∈R

(
E
[
(W> · x(t) + a− y(t))2

]
+ λ‖W‖2

)
. (28)

Using the fact that {x(t)}t∈Z is the unique stationary solution of VAR(1) ap-
proximating system (27) for the TDR (27) obtain

Wout =(Γ(0) + λIN )−1Cov(y(t), x(t)), (29)

aout =E [y(t)]−W>outµx , (30)

where µx , Γ(0) ∈ SN are provided in (27), and Cov(y(t), x(t)) is a vector in RN

that has to be determined for every specific memory task H.
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The approximating model and the nonlinear memory capacity

The error committed by the reservoir when using the optimal readout is

MSEH = var (y(t))− Cov(y(t), x(t))>(Γ(0) + λIN )−1(Γ(0) + 2λIN )

× (Γ(0) + λIN )−1Cov(y(t), x(t)).

Using the VAR(1) approximating model (27) of RC, the corresponding H-memory
capacity is

CH (θ, c, λ) =Cov(y(t), x(t))>(Γ(0) + λIN )−1(Γ(0) + 2λIN ) (31)

× (Γ(0) + λIN )−1Cov(y(t), x(t))/var(y(t)). (32)

Additionally,
0 ≤ CH (θ, c, λ) ≤ 1.

Once a specific reservoir and task H have been fixed, the capacity function CH (θ, c, λ)
can be explicitly written down and it can hence be used to find reservoir parameters
θopt and an input mask copt that maximize it, by solving the optimization problem

(θopt, copt) := argmax
θ∈RK ,c∈RN

CH (θ, c, λ). (33)
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The approximating model and the nonlinear memory capacity

Optimal nonlinear capacity

The h-lag quadratic memory task. Take a quadratic task function of the form
H(zh(t)) := zh(t)>Qzh(t), for some symmetric h + 1-dimensional matrix Q. In

this case var(y(t)) = (µ4
z − σ4

z )
∑h+1

i=1 Q2
ii + 4σ4

z

∑h+1
i=1

∑h+1
j>i Q2

ij , and

Cov(y(t), xi (t)) = (1− e−ξ)
h+1∑
j=1

N∑
r=1

Qjj (Aj−1)ir

× (sR (µz , c1, . . . , cr )− σ2
z qR (µz , c1, . . . , cr )),

where the polynomial sR on the variable x is defined as sR (x , c1, . . . , cr ) :=
x2 · qR (x , c1, . . . , cr ).
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The approximating model and the nonlinear memory capacity

Figure 11. Error exhibited by a TDR computer with a Mackey-Glass kernel in a 3-lag quadratic
memory task as a function of the separation between neurons d and the parameter γ, respec-
tively. The points in the surfaces of the middle and right panels are the result of Monte Carlo
evaluations of the NMSE exhibited by the discrete and continuous time TDRs, respectively.
The left panel was constructed modeling the reservoir with an approximating VAR(1) model.
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The approximating model and the nonlinear memory capacity

Figure 12. Error exhibited by a TDR computer with a Mackey-Glass kernel in a 6-lag quadratic
memory task as a function of the separation between neurons d and the parameter η. The
points in the surfaces of the middle and right panels are the result of Monte Carlo evaluations of
the NMSE exhibited by the discrete and continuous time TDRs, respectively. The left panel was
constructed modeling the reservoir with an approximating VAR(1) model.
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The approximating model and the nonlinear memory capacity

Conclusions: The quality of the approximation (26) at the time of evaluating the
memory capacities of the original system is excellent and the resulting function
(nonlinear capacity) can be hence used for RC optimization purposes regarding
the intrinsic TDR architecture parameters θ and the input mask c.
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The approximating model and the nonlinear memory capacity

Perspectives

1 Modeling of the reservoir computing working principle and the design of
optimal architectures

Extension to non-independent and multivariate signals
Theoretical treatment of classification problems
Modeling parallel reservoir computers [GHLO14] and their properties
Use of the reservoir model to establish the reservoir computing
defining features

2 Technological implementation of optimal reservoir architectures

3 Applications to classification tasks for biomedical signals (like Hi-Res EEG)

4 Real-time information processing with reservoir computing
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