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What is traffic flow?

Definition

Traffic flow is the study of interactions between

travellers (pedestrians, cyclists, riders drivers and their vehicles)

infrastructure (highways, signage, and traffic control devices).
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Why is it so important?

Aims

Understanding and developing an optimal transport network with efficient
movement of traffic and minimal traffic congestion problems in order to:

improve the drivers’ safety,

reduce the travel time,

reduce the fuel consumption,

reduce the pollution related to the heavy traffic.
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Introduction

Framework

Mathematical modeling of traffic flow on a single road, by means of both

a microscopic (agent-based) follow-the-leader model based on a
system of ODEs

a MACROSCOPIC (fluid-dynamic) model based on conservation laws
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Introduction

Relevance

Multiscale models are useful for exploiting in a unique setting both
Eulerian (i.e., flux-based) and Lagrangian (i.e., GPS) real traffic data.
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Microscopic follow-the-leader models

Hypothesis:

N cars on a infinite road, overtaking not possible

Xk(t) position of car k at time t

Vk(t) velocity of car k at time t

Ak(t) acceleration of car k at time t

X1 < X2 < . . . < XN

X1 XN

Remark

Note that the N-th car (the leader) needs a special dynamic because has
no one in front of him.
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Microscopic follow-the-leader models

First-order {
Ẋk(t) = V (Xk(t),Xk+1(t)), k < N

ẊN(t) = Vmax

Main feature: Assume that accelerations are instantaneus and traffic
conditions are always at the equilibrium.

Second-order
Ẋk(t) = Vk(t), k ≤ N

V̇k(t) = A(Xk(t),Xk+1(t),Vk(t),Vk+1(t)), k < N

V̇N(t) = 0

Main feature: Consider bounded accelerations, so it’s closer to real
dynamics of drivers. They are also able to reproduce

some traffic phenomena like Stop & Go Waves.

E. Iacomini (SBAI, La Sapienza, Rome) A new multiscale model for traffic flow 9 / 43



Microscopic follow-the-leader models

First-order {
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Possible choices for the acceleration term

ARZ limit model

A(Xk ,Xk+1,Vk ,Vk+1) = Vref
Vk+1 − Vk

Xk+1 − Xk
+

Vdes(Xk+1 − Xk)− Vk

τ

Simplified Zhao-Zhang Model

A(Xk ,Xk+1,Vk ,Vk+1) =
vZZ (Xk+1 − XK )− V

τ

vZZ (∆) :=


0, ∆ ≤ ∆min,
α(∆−∆min), ∆min ≤ ∆ ≤ ∆min + Vmax/α,
Vmax, ∆ ≥ ∆min + Vmax/α.

Y. Zhao and H. M. Zhang, A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic,
Transportation Res. Part B, 105 (2017), 315–327.
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Stop & go waves with the Zhao-Zhang model
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Resume on Microscopic approach

Advantages

X is the natural way to describe traffic flow

X is easy to implement

X is really accurate

X is able to easily describe second order effect

But...

x requires a lot of time

x is expensive in terms of memory

x is impossible to use on a large network
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Macroscopic models

ρ(x , t) density of cars at point x and time t

v(x , t) velocity of cars at point x and time t

f (x , t) = ρ(x , t)v(x , t) flux of cars at point x and time t

Definition

The fundamental diagram establishes the relationship between the flux and
the density of vehicles, i.e. {(ρ(x , t), f (x , t)) : x ∈ R, t > 0}

f

f max

ρmax ρ
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Macroscopic models

First-order (LWR model)

∂tρ+ ∂x(ρv(ρ)) = 0, x ∈ R, t > 0

Typically v(ρ) = Vmax

(
1− ρ

ρmax

)

Second-order (e.g., ARZ model)

{
∂tρ+ ∂x(ρv) = 0, x ∈ R, t > 0

∂tv + v∂xv = a(ρ, v), x ∈ R, t > 0

Main feature: More realistic but it requires complex implementation.
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Resume on Macroscopic approach

Advantages

X is very cheap in terms of memory and time

X can be used also on large networks

But...

x First order model is not able to reproduce real traffic phenomena like
Stop &Go waves

x the second order model is very difficult to implement
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Existing multi-scale models (with fixed or mobile interface)

First-order FtL + LWRa

Second-order FtL + LWRb

Second-order FtL + Phase-Transition modelc

Second-order FtL + ARZd

a
R. M. Colombo and F. Marcellini, A mixed ODE-PDEmodel for vehicular traffic, Math. Meth. Appl. Sci., 38

(2015), 1292–1302.
b

M. Garavello and B. Piccoli, Boundary coupling of microscopic and first order macroscopic traffic model,
Nonlinear Differ. Equ. Appl., 24:43 (2017).

c
M. Garavello and B. Piccoli, Coupling of microscopic and phase transition models at boundary, Netw.

Heterog. Media, 8 (2013), 649–661.
d

C. Lattanzio and B. Piccoli, Coupling of microscopic and macroscopic traffic models at boundaries, Math.
Models Methods Appl. Sci., 20 (2010), 2349–2370.
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The new multiscale approach

Main feature

The model we propose is characterized by the fact that no interface (either
fixed or mobile) it explicitly defined.
The macroscopic model is always and everywhere alive, while the
microscopic model is activated only where and when it is needed.
The microscopic model corrects (in full or in part) the macroscopic one.

This procedure is expected to be advantageous if one couples an
easy-to-use first-order macroscopic model with a more realistic but
still easy-to-use second-order microscopic model (used only in small
parts of the road).
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The multiscale model with complete information

A SIMPLE CASE:
Both micro and macro models always and everywhere active



∂t

∫ b

a
ρ(x , t)dx = θ

(
f (a, t)− f (b, t)

)
+

+ (1− θ)

(
N∑

k=1

`δa(Xk(t))−
N∑

k=1

`δb(Xk(t))

)
, ∀a, b ∈ R

Ẋk(t) = Vk(t), k ≤ N,

V̇k(t) = A(Xk(t),Xk+1(t),Vk(t),Vk+1(t)), k < N,

V̇N(t) = 0,

θ ∈ [0, 1], f = ρv , x 7→ δx0(x) Dirac delta function centred in x0, ∂t in
distributional sense.

E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale
Model. Simul., 9 (2011), 155–182.
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The multiscale model with complete information:
numerical approximation



ρm+1
j = ρmj + θλ

(
G(ρmj−1, ρ

m
j )− G(ρmj , ρ

m
j+1)
)

+ (1− θ)λ
(
Fm

j− 1
2
−Fm

j+ 1
2

)
,

Xm+1
k = Xm

k + ∆tVm
k , k ≤ N,

Vm+1
k = Vm

k + ∆tA(Xm
k ,X

m
k+1,V

m
k ,V

m
k+1), k < N,

Vm+1
N = Vm

N ,

with the classical Godunov’s numerical flux

G(ρ−, ρ+) :=


min{f (ρ−), f (ρ+)}, if ρ− ≤ ρ+

f (ρ−), if ρ− > ρ+ and ρ− < σ
f (σ), if ρ− > ρ+ and ρ− ≥ σ ≥ ρ+

f (ρ+), if ρ− > ρ+ and ρ+ > σ

(where σ := arg max
ρ∈[0,ρmax]

f (ρ)), and the microscopic flux

Fm
j± 1

2
:=

`

∆t
Card

{
k : xm

k < xj± 1
2
≤ xm+1

k

}
.
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The multiscale algorithm: Step 1

Moving from (ρm,Xm,Vm) to (ρm+1,Xm+1,Vm+1)

1. Activation of cars. For all j , if |ρmj+1 − ρmj | > δρ, put new cars in cell Ci

(unless the cell is already occupied), for i ∈ {j − 1, j , j + 1, j + 2}.
The number of cars to put in the cell Ci is proportional to ρmi and cars are
initially equispaced in the cell. Their velocity is set to v equilibrium(ρmi ) (the
corresponding macroscopic velocity at equilibrium).

ρ

X
Cj−1 Cj Cj+1 Cj+2

> δρ
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The multiscale algorithm: Step 2

2. Labeling. Find next(k) for all k . The rightmost car is labeled as leader
(next = 0).
Also, all cars h such that |Xm

next(h) − Xm
h | > ∆x are also labeled as leader

(every time a car has a free space of length ≥ ∆x in front of it, its
dynamics ceases to be dependent on the vehicle in front).

X
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The multiscale algorithm: Step 3

3. Deactivation of cars. Remove all followers k which are active since
more than δt units of time and such that∣∣∣Vk − v equilibrium

(
Xm
k ,X

m
next(k)

)∣∣∣ < δV

Note that, without the first condition new cars would immediately
deactivated since their velocity is initially at equilibrium. In this way,
instead, vehicles have enough time to fully exploit their second-order
dynamics.
After that, if and when they get close to the equilibrium velocity again,
they are deactivated.

X
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Numerical test: activation and deactivation
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The multiscale algorithm: Step 4

4. Update cars’ positions and velocities. We run the microscopic
second-order model

Xm+1
k = Xm

k + ∆tVm
k , ∀k ,

Vm+1
k = Vm

k + ∆tA(Xm
k ,X

m
next(k),V

m
k ,V

m
next(k)), if next(k) > 0,

Vm+1
k = v equilibrium(ρmjk+1), if next(k) = 0,

where jk is the cell occupied by the vehicle k .
The velocity of a leader is that of macroscopic cars located in the cell in
front of it.
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The multiscale algorithm: Step 5

5. Update cars’ density. We run the multiscale model, which reads as
follows (for θ = 0)

Γm
j := number of particles in cell j at time step m

ρm+1
j = ρmj +λ



Fm
j− 1

2

−Fm
j+ 1

2

if Γm
j−1, Γm

j , Γm
j+1 > 0

Fm
j− 1

2

− G(ρmj , ρ
m
j+1) if Γm

j−1, Γm
j > 0 & Γm

j+1 = 0

G(ρmj−1, ρ
m
j )−Fj+ 1

2
if Γm

j−1 = 0 & Γm
j , Γm

j+1 > 0

G (ρmj−1, ρ
m
j )− G (ρmj , ρ

m
j+1) otherwise.

ρ

X
Cj

Fj− 1
2

G(ρj , ρj+1)
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Mass conservation: ∆x
∑

j ρ
n
j = ∆x

∑
j ρ

0
j ∀n

Proof.

Denote by M+
n,j (M−

n,j) the mass gained (lost) by a generic cell Cj in one
time step n→ n + 1.

∆xρn+1
j = ∆xρnj +M+

n,j −M
−
n,j ∀j , ∀n,

and then let us simply prove that

M−
n,j =M+

n,j+1 ∀j , ∀n.

But looking at the numerical scheme, we can conclude that:

M−
n,j =M+

n,j+1 = ∆t ·

{
Fn
j+ 1

2

, if Γn
j , Γn

j+1 > 0,

G(ρnj , ρ
n
j+1), otherwise.
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Numerical tests

In the following numerical test we consider

Microscopic version of the ARZ model (micro, FtL, second-order)

A(Xk ,Xk+1,Vk ,Vk+1) = Vref
Vk+1 − Vk

Xk+1 − Xk
+

Vdes(Xk+1 − Xk)− Vk

τ

+
LWR model (macro, first-order)

A. Aw, A. Klar, T. Materne, M. Rascle, Derivation of continuum traffic flow models from microscopic
follow-the-leader models, SIAM Journal on Applied Mathematics 63.1 (2002), 259–278.
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Test 1: effect of τ (reactivity−1 of drivers)
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Test 2: self-sustaining perturbation
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Test 2: self-sustaining perturbation
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Numerical tests

In the following numerical test we consider

Minimalized Zhao & Zhang’s model (micro, second-order)

A(Xk ,Xk+1,Vk ,Vk+1) =
vZZ (Xk+1 − XK )− V

τ

vZZ (∆) :=


0, ∆ ≤ ∆min,
α(∆−∆min), ∆min ≤ ∆ ≤ ∆min + Vmax/α,
Vmax, ∆ ≥ ∆min + Vmax/α.

+
LWR model (macro, first-order)

Y. Zhao and H. M. Zhang, A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic,
Transportation Res. Part B, 105 (2017), 315–327.
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Test 3: Reproducing stop & go waves
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Conclusions

we get an easy-to-use algorithm able to reproduce second order effect,
avoiding complex implementations;

we save memory and time tracking the vehicles only where and when
it is needed;

we avoid any interface between the two scales.
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Future Perspective

studying the model analytically;

studying the impact of the parameters and making them depending
on the variables of the system;

making a deeper analysis of the second order effects, like the stop &
go waves.

E. Iacomini (SBAI, La Sapienza, Rome) A new multiscale model for traffic flow 41 / 43



References

E. Cristiani, E. Iacomini, An interface-free multi-scale multi-order model for
traffic flow, submitted.

E. Cristiani, Blending Brownian motion and heat equation, J. Coupled Syst.
Multiscale Dyn., 3 (2015), 351–356.

E. Cristiani, B. Piccoli, and A. Tosin, Multiscale modeling of granular flows
with application to crowd dynamics, Multiscale Model. Simul., 9 (2011),
155–182.

Y. Zhao and H. M. Zhang, A unified follow-the-leader model for vehicle,
bicycle and pedestrian traffic, Transportation Res. Part B, 105 (2017),
315–327.

E. Iacomini (SBAI, La Sapienza, Rome) A new multiscale model for traffic flow 42 / 43



...Thank you for your attention!
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