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Overview

1. Introduction to statistical mechanics:
Partition functions and statistical ensembles

2. Phase transitions: conjectures

3. Mathematical results:
a step in the right direction

4. Proof ideas



Mechanics — Thermodynamics — Statistical Mechanics

» Classical mechanics: ODEs for particle positions and velocities xi, . . .

Vi = )'<17...,VN = ).<N. E.g.:
%(t) = —zvv(x,-(t) —Xj(t)), i=1,...,N.
J#i

N interacting particles, pair potential v(x — y).

» Thermodynamics: No modelization of individual particles. Instead,
macroscopic quantities like pressure p, temperature T, energy, heat,

entropy...
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» Statistical mechanics: interpret macroscopic quantities of thermodynamics

as averages of microscopic quantities from mechanics. E.g. absolute

temperature (Kelvin, not Celsius!)

N
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Temperature T N<Z 5Xi2> average kinetic energy.
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Particle number N of the order of 10%: large.



Averages |: microcanonical ensemble

> Average over long periods of time:

1 /At N 1.,
— =X (s))ds, At— co.
LS )

Ergodic theory? Time average = space average 7 ...

» Average over invariant probability distribution for positions and velocities:
N particles in box A = [0, L]®. Energy

N
Hix,v) =Y %v,? Y vluex) () eAY x @)
i=1 1<i<j<N

Uniform distribution on energy shell E — E < H< E

N
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Q(E, N,A; §E) = Normalization constant = partition function.



Averages Il: canonical and grand-canonical ensemble

Box A = [0, L]® C R%.
> Microcanonical: Energy E fixed, particles number N fixed. Partition
function

Q(E, N, A; 6E) := %H(x, v) e AV x RV | E— 6E < H(x,v) < EH

Isolated system — no energy or particle exchanged with environment.
Other invariant measures (ensembles):

» Canonical: Energy E random, particle number N fixed. Partition function
Z(B, N, A) = /v|/ » exp(—ﬂH(X, v))dxdv.

B > 0 inverse temperature. Energy exchanged with heat bath...

» Grand-canonical: Energy E random, particle number N random. Part. fct.

=B, u,N) =1+ Z exp(ﬁ,uN exp(—ﬁH(x, v))dxdv.

AN xR3N

1 € R chemical potential. Heat bath + particle reservoir.



Thermodynamic limit. Entropy and free energy

Particle number N ~ 10% very large = approximate with limit N — occ.
Keep parameters 3, i and particle and energy densities fixed.

N—oo, |A=L =00, |El— oo,

B, i, p

E
, u= — fest.
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Asymptotics of partition functions define physically relevant quantities.
Boltzmann entropy S = klog W.

s(u,p) =lim ﬁ log Q(E, N,\;0E) entropy
f(B,p) = |M log Z(B, N,A\) free energy
p(B, 1) = ﬁI/\I log =(83, 1, \) pressure.

Limits exist under suitable assmptions on vV/(x; — x;).
Change of ensembles with Legendre transforms:

F(B,p) = inf (u—B""s(u,p)),  p(B,u) = ili%(”p — f(8,p))-

Convexity = inverse relations as well.



Derivatives vs. expected values

Observation:

19 _ 1 [ Hexp(—BH)dxdv

"IN 95 B A NN = R e o dxdy

= if limits and differentiation can be exchanged:

) . /H(x,v)
%([)’f(ﬁ,p)) N I|m< |A| >B,N,A

[-derivative <> average energy density. Similarly

0 N
o p(B, 1) = Ilm<|/\|>ﬁuA

p-derivative <> average particle density .

Kinetic energy in the canonical ensemble: H =" %v? + UCa,. ..

Integrals factorize, vi, ..., vy normally distributed,

"1, .
<Z§Vi>5/\//\ NB _7NT

B! o average kinetic energy — temperature.
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Formalism statistical mechanics (classical, equilibrium):
Description of finite systems by probability measures on phase space
(positions + velocities).

Different measures (ensembles) possible.
E.g. uniform distribution on energy shell.

Normalization constants (partition functions) are physically relevant.
Eg. S=klogW.

Micro-macro:
For a given pair potential V(x; — x;), the entropy, free energy and pressure are
uniquely defined by asymptotics of high-dimensional integrals.

= microscopic definition of macroscopic thermodynamic potentials.



2 Phase transitions

Question: are the entropy, free energy and pressure analytic functions?
Kinks? strictly convex (concave) or with affine pieces?

Interpretation: Non-analyticity = Phase transition.

From ice to liquid water to vapor.

Small increase of temperature near boiling point 100°C
— abrupt change of material properties.

Can only happen in the limit N, |A] — oo !
Math: open.
Existence of phase transitions proven for
» Particle on lattices / Ising model on Z? PriERLS '36

» Widom-Rowlinson model: multi-body interaction RurLLE 71

» Four-body interaction + pair potential, van der Waals theory
LEBOWITZ, MAZEL, PRESUTTI 99



Low temperature and density: conjectures

Conjecture I: 3py > 0 und curve pgsat(8) with
psat(B) ~ exp(—constf) — 0 at § — oo (T — 0)

such that p — f(, p)
> analytic and strictly convex in p < psat(3),
> affine in psat(B) < p < po.

Phase transition at p = psat(8).
Free energy as a function of density p has affine piece.

Conjecture 11: 30 > 0 and curve pisat(8) such that p— p(B, 1)
> analytic in u < psas(8)
> analytic in psat(B8) < p < o
> u %Z(B’M) has jump discontinuity at psat(5).

Phase transition at p1 = pigat (3).
Pressure as function of p has a kink.



3 Low temperature and low density: a partial result

Under suitable assumptions on pair potential V(x — y):

1
ex = lim — |nf Z V(xi — xj) € (=00, 0).
N=oo N o,y er? 1<i<j<N

Theorem (J '12)
Jv* > 0 such that as B — oo (u fixed):

0 -
Vi < e 5, (51) = Olexp(—pv")) 0
Vi > e : Iiminf@(ﬁ,p) > po > 0.

o

Step towards kink of p+— p(8, 1) at p ~ ex.

Theorem (J '12)
Suppose there is a phase transition at psat(3) — 0. Then

Nsat(ﬁ) = € + 0(571 IogIB) (ﬁ — OO)

Tells us where to look for phase transitions.



4 Proof ingredient |: cluster expansions
Set z = exp(Bu). Remember:

P(B, )— |/\| log (1 +Z N //\N o exp(— ,6H)dxdv> .

Right-hand side is power series in z:

p(B.) = lim > ban(B)2"s 2 = exp(Bp).
n=1

Mayer expansion, cluster expansion. Known:
» For every fixed box, radius of convergence Ra(3) > 0.

» Bounds that are uniform in A —

R(B) = I|m inf RA(B) >

[A| =0

» Pressure is analytic in z = exp(Su) < R(3).

Asymptotics of coefficients and radius of convergence J’ 12

|
I!Brilorlf 3 log R(8) = ew.



Proof ingredient II: droplet sizes
Assume: pair potential v has compact support. Variational representation

F(8.0) = inf {£ (8., (piJucr) | 2 ki < .

k=1

f(8, p, (pk)) = restricted free energy

o1 1 Ni(x) —BH(x,v)
=— ——log— [ 1(Vk: = dxd
(8, p, (pk)) lim BN og N!/ (V A pk)e xdv
Ni(x1,...,xn) = number of droplets with k particles.
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At low temperature and low density: have good bounds for restricted free
energy, deduce bounds for free energy (8, p).
J., KONIG, METZGER '11; J., KONIG "12

Sator, Phys. Rep. 376 (2003)



Summary & Outlook

Summary:
Asymptotics of high-dimensional, parameter-dependent integrals
= functions of parameters. Analytic?

Question still open, but partial mathematical results consistent with physics.

Connections:
> Probability theory: large deviations, Gibbs measures, point processes,
percolation...
> Analysis: energy minimizers and energy landscape, crystallization, Wulff
shapes.

» Combinatorics: cluster expansions related to counting connected graphs;
random combinatorial structures.

Also:
Dynamics of phase transitions: nucleation barriers? Metastability? e.g. for
Markov processes with prescribed invariant measure.



