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Overview

1. Introduction to statistical mechanics:
Partition functions and statistical ensembles

2. Phase transitions: conjectures

3. Mathematical results:
a step in the right direction

4. Proof ideas



Mechanics – Thermodynamics – Statistical Mechanics

I Classical mechanics: ODEs for particle positions and velocities x1, . . . , xN ,
v1 = ẋ1, . . . , vN = ẋN . E.g.:

ẍi (t) = −
∑
j 6=i

∇V
(
xi (t)− xj(t)

)
, i = 1, . . . ,N.

N interacting particles, pair potential v(x − y).

I Thermodynamics: No modelization of individual particles. Instead,
macroscopic quantities like pressure p, temperature T , energy, heat,
entropy...

I Statistical mechanics: interpret macroscopic quantities of thermodynamics
as averages of microscopic quantities from mechanics. E.g. absolute
temperature (Kelvin, not Celsius!)

Temperature T ∝ 1

N

〈 N∑
i=1

1

2
ẋ2
i

〉
average kinetic energy.

Particle number N of the order of 1023: large.



Averages I: microcanonical ensemble

I Average over long periods of time:

1

∆t

∫ ∆t

0

( N∑
i=1

1

2
ẋ2
i (s)

)
ds, ∆t →∞.

Ergodic theory? Time average = space average ? ...

I Average over invariant probability distribution for positions and velocities:
N particles in box Λ = [0, L]3. Energy

H(x , v) :=
N∑
i=1

1

2
v 2
i +

∑
1≤i<j≤N

v(xi − xj), (x , v) ∈ ΛN × (R3)N .

Uniform distribution on energy shell E − δE ≤ H ≤ E

〈 N∑
i=1

1

2
v 2
i

〉
E ,N,Λ;δE

:=
1

Ω(E ,N,Λ; δE)
× 1

N!

∫
Λ×R3N

( N∑
i=1

1

2
v 2
i

)
1{E−δE≤H(x,v)≤E}dxdv .

Ω(E ,N,Λ; δE) = Normalization constant = partition function.



Averages II: canonical and grand-canonical ensemble

Box Λ = [0, L]3 ⊂ R3.

I Microcanonical: Energy E fixed, particles number N fixed. Partition
function

Ω(E ,N,Λ; δE) :=
1

N!

∣∣∣{(x , v) ∈ ΛN × R3N
∣∣∣E − δE ≤ H(x , v) ≤ E

}∣∣∣.
Isolated system – no energy or particle exchanged with environment.

Other invariant measures (ensembles):

I Canonical: Energy E random, particle number N fixed. Partition function

Z(β,N,Λ) =
1

N!

∫
ΛN×R3N

exp
(
−βH(x , v)

)
dx dv .

β > 0 inverse temperature. Energy exchanged with heat bath...

I Grand-canonical: Energy E random, particle number N random. Part. fct.

Ξ(β, µ,Λ) = 1 +
∞∑
N=1

exp(βµN)

N!

∫
ΛN×R3N

exp
(
−βH(x , v)

)
dx dv .

µ ∈ R chemical potential. Heat bath + particle reservoir.



Thermodynamic limit. Entropy and free energy
Particle number N ≈ 1023 very large ⇒ approximate with limit N →∞.
Keep parameters β, µ and particle and energy densities fixed.

N →∞, |Λ| = L3 →∞, |E | → ∞,

β, µ, ρ =
N

|Λ| , u =
E

|Λ| fest.

Asymptotics of partition functions define physically relevant quantities.
Boltzmann entropy S = k logW .

s(u, ρ) = lim
1

|Λ| log Ω(E ,N,Λ; δE) entropy

f (β, ρ) = − lim
1

β|Λ| logZ(β,N,Λ) free energy

p(β, µ) = lim
1

β|Λ| log Ξ(β, µ,Λ) pressure.

Limits exist under suitable assmptions on vV (xi − xj).
Change of ensembles with Legendre transforms:

f (β, ρ) = inf
u∈R

(
u − β−1s(u, ρ)

)
, p(β, µ) = sup

ρ>0

(
µρ− f (β, ρ)

)
.

Convexity ⇒ inverse relations as well.



Derivatives vs. expected values

Observation:

− 1

|Λ|
∂

∂β
logZ(β,N,Λ) =

1

|Λ|

∫
H exp(−βH)dxdv∫
exp(−βH)dxdv

.

⇒ if limits and differentiation can be exchanged:

∂

∂β

(
βf (β, ρ)

)
= lim

〈H(x , v)

|Λ|

〉
β,N,Λ

β-derivative ↔ average energy density. Similarly

∂

∂µ
p(β, µ) = lim

〈 N

|Λ|

〉
β,µ,Λ

µ-derivative ↔ average particle density .

Kinetic energy in the canonical ensemble: H =
∑

1
2
v 2
i + U(x1, . . . , xN) ⇒

Integrals factorize, v1, . . . , vN normally distributed,

〈 N∑
i=1

1

2
v 2
i

〉
β,N,Λ

=
3

2
Nβ−1 =

3

2
NT

β−1 ∝ average kinetic energy → temperature.



Formalism statistical mechanics (classical, equilibrium):
Description of finite systems by probability measures on phase space
(positions + velocities).

Different measures (ensembles) possible.
E.g. uniform distribution on energy shell.

Normalization constants (partition functions) are physically relevant.
E.g. S = k logW .

Micro-macro:
For a given pair potential V (xi − xj), the entropy, free energy and pressure are
uniquely defined by asymptotics of high-dimensional integrals.

⇒ microscopic definition of macroscopic thermodynamic potentials.



2 Phase transitions

Question: are the entropy, free energy and pressure analytic functions?
Kinks? strictly convex (concave) or with affine pieces?

Interpretation: Non-analyticity = Phase transition.
From ice to liquid water to vapor.
Small increase of temperature near boiling point 100◦C

→ abrupt change of material properties.

Can only happen in the limit N, |Λ| → ∞ !

Math: open.

Existence of phase transitions proven for

I Particle on lattices / Ising model on Z2 Peierls ’36

I Widom-Rowlinson model: multi-body interaction Ruelle ’71

I Four-body interaction + pair potential, van der Waals theory
Lebowitz, Mazel, Presutti ’99



Low temperature and density: conjectures

Conjecture I: ∃ρ0 > 0 und curve ρsat(β) with

ρsat(β) ≈ exp(−constβ)→ 0 at β →∞ (T → 0)

such that ρ 7→ f (β, ρ)

I analytic and strictly convex in ρ < ρsat(β),

I affine in ρsat(β) ≤ ρ ≤ ρ0.

Phase transition at ρ = ρsat(β).
Free energy as a function of density ρ has affine piece.

Conjecture II: ∃µ0 > 0 and curve µsat(β) such that µ 7→ p(β, µ)

I analytic in µ < µsat(β)

I analytic in µsat(β) ≤ µ ≤ µ0

I µ 7→ ∂p
∂µ

(β, µ) has jump discontinuity at µsat(β).

Phase transition at µ = µsat(β).
Pressure as function of µ has a kink.



3 Low temperature and low density: a partial result

Under suitable assumptions on pair potential V (x − y):

e∞ := lim
N→∞

1

N
inf

x1,...,xN∈R3

∑
1≤i<j≤N

V (xi − xj) ∈ (−∞, 0).

Theorem (J ’12)

∃ν∗ > 0 such that as β →∞ (µ fixed):

∀µ < e∞ :
∂p

∂µ
(β, µ) = O(exp(−βν∗))→ 0

∀µ > e∞ : lim inf
∂p

∂µ
(β, µ) ≥ ρ0 > 0.

Step towards kink of µ 7→ p(β, µ) at µ ≈ e∞.

Theorem (J ’12)

Suppose there is a phase transition at ρsat(β)→ 0. Then

µsat(β) = e∞ + O(β−1 log β) (β →∞).

Tells us where to look for phase transitions.



4 Proof ingredient I: cluster expansions
Set z = exp(βµ). Remember:

p(β, µ) = lim
|Λ|→∞

1

β|Λ| log

(
1 +

∞∑
N=1

zN

N!

∫
ΛN×R3N

exp(−βH)dx dv

)
.

Right-hand side is power series in z :

p(β, µ) = lim
|Λ|→∞

∞∑
n=1

bn,Λ(β)zn, z = exp(βµ).

Mayer expansion, cluster expansion. Known:

I For every fixed box, radius of convergence RΛ(β) > 0.

I Bounds that are uniform in Λ →

R(β) = lim inf
|Λ|→∞

RΛ(β) > 0.

I Pressure is analytic in z = exp(βµ) < R(β).

Asymptotics of coefficients and radius of convergence J’ 12

lim inf
β→∞

1

β
logR(β) = e∞.



Proof ingredient II: droplet sizes
Assume: pair potential v has compact support. Variational representation

f (β, ρ) = inf
{
f
(
β, ρ, (ρk)k∈N

)
|
∞∑
k=1

kρk ≤ ρ
}
.

f (β, ρ, (ρk)) = restricted free energy

f
(
β, ρ, (ρk)

)
= − lim

1

β|Λ| log
1

N!

∫
1
(
∀k :

Nk(x)

|Λ| ≈ ρk
)
e−βH(x,v)dx dv

Nk(x1, . . . , xN) = number of droplets with k particles.

Sator, Phys. Rep. 376 (2003)

At low temperature and low density: have good bounds for restricted free
energy, deduce bounds for free energy f (β, ρ).
J., König, Metzger ’11; J., König ’12



Summary & Outlook

Summary:
Asymptotics of high-dimensional, parameter-dependent integrals
⇒ functions of parameters. Analytic?

Question still open, but partial mathematical results consistent with physics.

Connections:

I Probability theory: large deviations, Gibbs measures, point processes,
percolation...

I Analysis: energy minimizers and energy landscape, crystallization, Wulff
shapes.

I Combinatorics: cluster expansions related to counting connected graphs;
random combinatorial structures.

Also:
Dynamics of phase transitions: nucleation barriers? Metastability? e.g. for
Markov processes with prescribed invariant measure.


