Phase transitions for particles in $\ensuremath{\mathbb{R}}^3$

Sabine Jansen LMU Munich

Konstanz, 29 May 2018

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Overview

1. Introduction to statistical mechanics: Partition functions and statistical ensembles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 2. Phase transitions: conjectures
- Mathematical results: a step in the right direction
- 4. Proof ideas

Mechanics - Thermodynamics - Statistical Mechanics

• Classical mechanics: ODEs for particle positions and velocities x_1, \ldots, x_N , $v_1 = \dot{x}_1, \ldots, v_N = \dot{x}_N$. E.g.:

$$\ddot{x}_i(t) = -\sum_{j \neq i} \nabla V \Big(x_i(t) - x_j(t) \Big), \quad i = 1, \dots, N.$$

N interacting particles, pair potential v(x - y).

- Thermodynamics: No modelization of individual particles. Instead, macroscopic quantities like pressure p, temperature T, energy, heat, entropy...
- Statistical mechanics: interpret macroscopic quantities of thermodynamics as <u>averages</u> of microscopic quantities from mechanics. E.g. absolute temperature (Kelvin, not Celsius!)

Temperature
$$T \propto rac{1}{N} \Big\langle \sum_{i=1}^N rac{1}{2} \dot{x}_i^2 \Big
angle$$
 average kinetic energy.

<u>Particle number N of the order of 10^{23} : large.</u>

Averages I: microcanonical ensemble

Average over long periods of time:

$$rac{1}{\Delta t}\int_{0}^{\Delta t}\Bigl(\sum_{i=1}^{N}rac{1}{2}\dot{x}_{i}^{2}(s)\Bigr)\mathrm{d}s,\quad\Delta t
ightarrow\infty.$$

Ergodic theory? Time average = space average ? ...

Average over invariant probability distribution for positions and velocities:
 N particles in box Λ = [0, L]³. Energy

$$H(\boldsymbol{x},\boldsymbol{v}) := \sum_{i=1}^{N} \frac{1}{2} v_i^2 + \sum_{1 \leq i < j \leq N} v(x_i - x_j), \quad (\boldsymbol{x},\boldsymbol{v}) \in \Lambda^N \times (\mathbb{R}^3)^N.$$

Uniform distribution on energy shell $E - \delta E \leq H \leq E$

$$\begin{split} \Big\langle \sum_{i=1}^{N} \frac{1}{2} \mathsf{v}_{i}^{2} \Big\rangle_{E,N,\Lambda;\delta E} \\ &:= \frac{1}{\Omega(E,N,\Lambda;\delta E)} \times \frac{1}{N!} \int_{\Lambda \times \mathbb{R}^{3N}} \Big(\sum_{i=1}^{N} \frac{1}{2} \mathsf{v}_{i}^{2} \Big) \mathbf{1}_{\{E-\delta E \leq H(\mathbf{x},\mathbf{v}) \leq E\}} \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{v}. \end{split}$$

 Averages II: canonical and grand-canonical ensemble

Box $\Lambda = [0, L]^3 \subset \mathbb{R}^3$.

Microcanonical: Energy E fixed, particles number N fixed. Partition function

$$\Omega(E, N, \Lambda; \delta E) := \frac{1}{N!} \Big| \Big\{ (\mathbf{x}, \mathbf{v}) \in \Lambda^N \times \mathbb{R}^{3N} \, \Big| \, E - \delta E \leq H(\mathbf{x}, \mathbf{v}) \leq E \Big\} \Big|.$$

Isolated system – no energy or particle exchanged with environment. Other invariant measures (ensembles):

► Canonical: Energy *E* random, particle number *N* fixed. Partition function

$$Z(\beta, N, \Lambda) = \frac{1}{N!} \int_{\Lambda^N \times \mathbb{R}^{3N}} \exp\left(-\beta H(\boldsymbol{x}, \boldsymbol{\nu})\right) \mathrm{d} \boldsymbol{x} \, \mathrm{d} \boldsymbol{\nu}.$$

 $\beta > 0$ inverse temperature. Energy exchanged with heat bath...

▶ Grand-canonical: Energy *E* random, particle number *N* random. Part. fct.

$$\Xi(\beta,\mu,\Lambda) = 1 + \sum_{N=1}^{\infty} \frac{\exp(\beta\mu N)}{N!} \int_{\Lambda^N \times \mathbb{R}^{3N}} \exp\left(-\beta H(\boldsymbol{x},\boldsymbol{v})\right) \mathrm{d} x \, \mathrm{d} v.$$

 $\mu \in \mathbb{R}$ chemical potential. Heat bath + particle reservoir.

Thermodynamic limit. Entropy and free energy

Particle number $N \approx 10^{23}$ very large \Rightarrow approximate with limit $N \rightarrow \infty$. Keep parameters β, μ and particle and energy densities fixed.

$$\begin{split} N \to \infty, \quad |\Lambda| = L^3 \to \infty, \quad |E| \to \infty, \\ \beta, \ \mu, \ \rho = \frac{N}{|\Lambda|}, \ u = \frac{E}{|\Lambda|} \text{ fest.} \end{split}$$

Asymptotics of partition functions define physically relevant quantities. Boltzmann entropy $S = k \log W$.

$$s(u, \rho) = \lim \frac{1}{|\Lambda|} \log \Omega(E, N, \Lambda; \delta E) \quad \text{entropy}$$
$$f(\beta, \rho) = -\lim \frac{1}{\beta |\Lambda|} \log Z(\beta, N, \Lambda) \quad \text{free energy}$$
$$p(\beta, \mu) = \lim \frac{1}{\beta |\Lambda|} \log \Xi(\beta, \mu, \Lambda) \quad \text{pressure.}$$

Limits exist under suitable assmptions on $vV(x_i - x_j)$. Change of ensembles with Legendre transforms:

$$f(\beta,\rho) = \inf_{u \in \mathbb{R}} (u - \beta^{-1} s(u,\rho)), \qquad p(\beta,\mu) = \sup_{\rho > 0} (\mu \rho - f(\beta,\rho)).$$

Convexity \Rightarrow inverse relations as well.

Derivatives vs. expected values

Observation:

$$-\frac{1}{|\Lambda|}\frac{\partial}{\partial\beta}\log Z(\beta,N,\Lambda) = \frac{1}{|\Lambda|}\frac{\int H\exp(-\beta H)\mathrm{d}x\mathrm{d}v}{\int\exp(-\beta H)\mathrm{d}x\mathrm{d}v}.$$

 \Rightarrow if limits and differentiation can be exchanged:

$$\frac{\partial}{\partial\beta} \big(\beta f(\beta,\rho)\big) = \lim \Big\langle \frac{H(x,v)}{|\Lambda|} \Big\rangle_{\beta,N,\Lambda}$$

 β -derivative \leftrightarrow average energy density. Similarly

$$\frac{\partial}{\partial \mu} p(\beta, \mu) = \lim \left\langle \frac{N}{|\Lambda|} \right\rangle_{\beta, \mu, \Lambda}$$

 $\mu\text{-derivative}\leftrightarrow$ average particle density .

Kinetic energy in the canonical ensemble: $H = \sum \frac{1}{2}v_i^2 + U(x_1, \dots, x_N) \Rightarrow$ Integrals factorize, v_1, \dots, v_N normally distributed,

$$\left\langle \sum_{i=1}^{N} \frac{1}{2} v_i^2 \right\rangle_{\beta,N,\Lambda} = \frac{3}{2} N \beta^{-1} = \frac{3}{2} N T$$

 $\beta^{-1} \propto$ average kinetic energy \rightarrow temperature.

・ロト・西ト・モン・モー うへぐ

Formalism statistical mechanics (classical, equilibrium): Description of finite systems by probability measures on phase space (positions + velocities).

Different measures (ensembles) possible. E.g. uniform distribution on energy shell.

Normalization constants (partition functions) are physically relevant. E.g. $S = k \log W$.

Micro-macro:

For a given pair potential $V(x_i - x_j)$, the entropy, free energy and pressure are uniquely defined by asymptotics of high-dimensional integrals.

 \Rightarrow microscopic definition of macroscopic thermodynamic potentials.

2 Phase transitions

Question: are the entropy, free energy and pressure analytic functions? Kinks? strictly convex (concave) or with affine pieces?

Interpretation: Non-analyticity = Phase transition. From ice to liquid water to vapor. Small increase of temperature near boiling point $100^{\circ}C$ \rightarrow abrupt change of material properties.

Can only happen in the limit $N, |\Lambda| \to \infty$!

Math: open.

Existence of phase transitions proven for

- ▶ Particle on lattices / Ising model on \mathbb{Z}^2 PEIERLS '36
- ▶ Widom-Rowlinson model: multi-body interaction RUELLE '71
- Four-body interaction + pair potential, van der Waals theory LEBOWITZ, MAZEL, PRESUTTI '99

Low temperature and density: conjectures

Conjecture I: $\exists \rho_0 > 0$ und curve $\rho_{sat}(\beta)$ with

 $\rho_{\rm sat}(\beta) \approx \exp(-{\rm const}\beta) \rightarrow 0 \text{ at } \beta \rightarrow \infty \ (T \rightarrow 0)$

such that $\rho \mapsto f(\beta, \rho)$

- analytic and strictly convex in $\rho < \rho_{\text{sat}}(\beta)$,
- affine in $\rho_{\text{sat}}(\beta) \leq \rho \leq \rho_0$.

Phase transition at $\rho = \rho_{sat}(\beta)$. Free energy as a function of density ρ has affine piece.

Conjecture II: $\exists \mu_0 > 0$ and curve $\mu_{sat}(\beta)$ such that $\mu \mapsto p(\beta, \mu)$

- ► analytic in μ < μ_{sat}(β)
- analytic in $\mu_{\text{sat}}(\beta) \leq \mu \leq \mu_0$
- $\mu \mapsto \frac{\partial p}{\partial \mu}(\beta, \mu)$ has jump discontinuity at $\mu_{\text{sat}}(\beta)$.

Phase transition at $\mu = \mu_{sat}(\beta)$. Pressure as function of μ has a kink.

3 Low temperature and low density: a partial result

Under suitable assumptions on pair potential V(x - y):

$$e_{\infty} := \lim_{N \to \infty} \frac{1}{N} \inf_{x_1, \dots, x_N \in \mathbb{R}^3} \sum_{1 \le i < j \le N} V(x_i - x_j) \in (-\infty, 0).$$

Theorem (J '12) $\exists \nu^* > 0$ such that as $\beta \to \infty$ (μ fixed):

$$\begin{split} \forall \mu < \mathbf{e}_{\infty} : & \frac{\partial \boldsymbol{p}}{\partial \mu}(\beta, \mu) = O(\exp(-\beta\nu^*)) \to \mathbf{0} \\ \forall \mu > \mathbf{e}_{\infty} : & \text{lim inf } \frac{\partial \boldsymbol{p}}{\partial \mu}(\beta, \mu) \ge \rho_0 > \mathbf{0}. \end{split}$$

Step towards kink of $\mu \mapsto p(\beta, \mu)$ at $\mu \approx e_{\infty}$.

Theorem (J '12)

Suppose there is a phase transition at $\rho_{sat}(\beta) \rightarrow 0$. Then

$$\mu_{\text{sat}}(\beta) = e_{\infty} + O(\beta^{-1} \log \beta) \quad (\beta \to \infty).$$

Tells us where to look for phase transitions.

4 Proof ingredient I: cluster expansions

Set $z = \exp(\beta \mu)$. Remember:

$$p(\beta,\mu) = \lim_{|\Lambda| \to \infty} \frac{1}{\beta |\Lambda|} \log \left(1 + \sum_{N=1}^{\infty} \frac{z^N}{N!} \int_{\Lambda^N \times \mathbb{R}^{3N}} \exp(-\beta H) \mathrm{d} \mathbf{x} \, \mathrm{d} \mathbf{v} \right).$$

Right-hand side is power series in z:

$$p(\beta,\mu) = \lim_{|\Lambda| \to \infty} \sum_{n=1}^{\infty} b_{n,\Lambda}(\beta) z^n, \quad z = \exp(\beta \mu).$$

Mayer expansion, cluster expansion. Known:

- For every fixed box, radius of convergence $R_{\Lambda}(\beta) > 0$.
- \blacktriangleright Bounds that are uniform in $\Lambda \rightarrow$

$$R(\beta) = \liminf_{|\Lambda| \to \infty} R_{\Lambda}(\beta) > 0.$$

• Pressure is analytic in $z = \exp(\beta \mu) < R(\beta)$.

Asymptotics of coefficients and radius of convergence $J^{\prime} \ 12$

$$\liminf_{\beta\to\infty}\frac{1}{\beta}\log R(\beta)=e_{\infty}$$

Proof ingredient II: droplet sizes

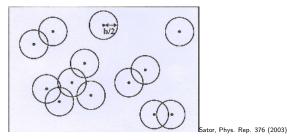
Assume: pair potential v has compact support. Variational representation

$$f(\beta, \rho) = \inf \Big\{ f\big(\beta, \rho, (\rho_k)_{k \in \mathbb{N}}\big) \mid \sum_{k=1}^{\infty} k \rho_k \leq \rho \Big\}.$$

 $f(\beta, \rho, (\rho_k)) =$ restricted free energy

$$f\big(\beta,\rho,(\rho_k)\big) = -\lim \frac{1}{\beta|\Lambda|} \log \frac{1}{N!} \int \mathbf{1} \Big(\forall k : \ \frac{N_k(\mathbf{x})}{|\Lambda|} \approx \rho_k \Big) e^{-\beta H(\mathbf{x},\mathbf{v})} \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{v}$$

 $N_k(x_1, \ldots, x_N)$ = number of droplets with k particles.



At low temperature and low density: have good bounds for restricted free energy, deduce bounds for free energy $f(\beta, \rho)$. J., KÖNIG, METZGER '11; J., KÖNIG '12

Summary & Outlook

Summary:

Asymptotics of high-dimensional, parameter-dependent integrals \Rightarrow functions of parameters. Analytic?

Question still open, but partial mathematical results consistent with physics.

Connections:

- Probability theory: large deviations, Gibbs measures, point processes, percolation...
- Analysis: energy minimizers and energy landscape, crystallization, Wulff shapes.
- Combinatorics: cluster expansions related to counting connected graphs; random combinatorial structures.

Also:

Dynamics of phase transitions: nucleation barriers? Metastability? e.g. for Markov processes with prescribed invariant measure.