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Relevance of Uncertainties in Optimization
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Optimization Under Uncertainty

• just ignore, solve nominal problem

• ex post: sensitivity analysis

• ex ante:
• stochastic optimization
• robust optimization
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Protection Against the Worst Case

• robust feasibility: solution has to be feasible for all inputs against protection is
sought

• beforehand, define uncertainty set U:
• based on scenarios, or
• intervals, etc.

• robust optimality: robust feasible solution with best guaranteed solution value
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Robust versus Stochastic Optimization

robust optimization stochastic optimization
worst-case expected value
uncertainty sets probability distributions
100 % protection protection
against pre-defined uncertainty set U with certain probability
when what?
distributions unknown distributions known
“probably” is not enough expectated value sufficient

evaluation with respect to

• mathematical tractability

• conservatism of the solution
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Air Traffic Management
Fürstenau (DLR), Heidt, Kapolke, Liers, Martin, Peter, Weiss (DLR)

• continous growth of traffic demand
• possibilities of enlarging airport capacities are limited

source: tagaytayhighlands.net

→ efficient utilization of existing capacities is crucial

Optimization of runway utilization is one of the main challenges in ATM.
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Outline

• pre-tactical and tactical planning planning: time-window assignment and
runway scheduling

• for both planning phases: affect of uncertainties, and

• protection against uncertainties using robust optimization
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Pre-tactical Planning

= a considerable amount of time prior to scheduled arrival times

→ don’t need to determine exact times/sequence yet

Idea:

assign several aircraft to one time window of a given size (e.g. 15 min)

−→ omit unnecessary information

−→ reduce complexity

Frauke Liers | FAU Erlangen-Nürnberg | Robust Optimization and Air Traffic Management



Nominal Problem: Time-Window Assignment
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Time-Window Assignment

• each aircraft has to receive exactly one time window

• each time window can be assigned to several aircraft

Questions:

1) Which time windows can be assigned to which aircraft?

2) How many aircraft fit in one time window?
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Which Time Windows can be Assigned to Which Aircraft?

Each aircraft has its individual...

ST = scheduled time of arrival (flight plan)

ET = earliest time of arrival (dependent on operational conditions)

LT = latest time of arrival (without holdings) (dependent on ET)

maxLT = maximal latest time of arrival (dependent on amount of fuel etc.)

...and thus can be assigned to time windows between ET and maxLT.
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Which Time Windows can be Assigned to Which Aircraft?

maxLT ET 
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Time-Window Assignment

• each aircraft has to receive exactly one time window

• each time window can be assigned to several aircraft

Questions:

1) Which time windows can be assigned to which aircraft?

2) How many aircraft can be assigned to one time window?
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How Many Aircraft can be Assigned to One Time Window?

given a set of aircraft: do they fit in the same time window?

satisfy distance requirements
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Time-Window Assignment Graph

ET maxLT 

• assignment decisions: in b-matching problem

→ binary variables xij =

¨

1, if aircraft i is assigned to time window j

0, otherwise
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Time-Window Assignment: Objective

maximize punctuality

i.e. minimize deviation from scheduled times (delay and earliness)

• earliness is penalized linearly
• delay is penalized quadratically, for reasons of fairness:

one aircraft with large delay is worse than two aircraft with little delay
• extra penalization term for time windows between LT and maxLT

ET maxLT LT ST 

costs:  𝟐 
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min
∑

(i,j)∈E

cij xij

s.t. Exactly one time window for each aircraft

Distance requirements in each time window

xij ∈ {0, 1} ∀(i, j) ∈ E

• basically yields a b-matching problem (with side constraints)

• ...when incorporating different separation times according to weight classes...
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min
∑
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cij xij
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∑
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min
∑

(i,j)∈E

cij xij

s.t.
∑

j∈Wi

xij = 1 ∀i ∈ A (1)

75
∑

i∈Lj

xij + 75
∑

i∈Mj

xij + 100
∑

i∈Hj

xij + 100zHH
j ≤ s + 100 ∀j ∈W \ {m} (2)

75
∑

i∈Lj

xij + 75
∑

i∈Mj

xij + 100
∑

i∈Hj

xij + 125zHM
j ≤ s + 100 ∀j ∈W \ {m} (3)
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∑

i∈Lj

xij + 75
∑

i∈Mj

xij + 100
∑

i∈Hj

xij + 150zHL
j ≤ s + 100 ∀j ∈W \ {m} (4)

75
∑

i∈Lj

xij + 75
∑

i∈Mj

xij + 100
∑

i∈Hj

xij ≤ s + 100 j = m (5)

75
∑

i∈Lj

xij + 75
∑

i∈Mj

xij + 50zML
j + 75 ≤ s + 75 ∀j ∈W \ {m} (6)

75
∑

i∈Lj

xij + 75
∑

i∈Mj

xij ≤ s + 75 j = m (7)

Some more constraints to model the z-variables... (8 - 31)

xij ∈ {0, 1} ∀(i, j) ∈ E
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Tactical Planning: Runway Scheduling

problem description

• given
• set of aircraft with different weight classes
• earliest, schedule and latest times for each aircraft
• minimum separation times between two aircraft types

source: wikipedia

• task
• schedule aircraft as close as possible to their schedule times
• penalize if assigned time is later than latest time
• fair schedules
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Tactical Planning: Runway Scheduling

1-Matching with Side Constraints: (Dyer/Wolsey 1990)

min
n
∑

i=1

∑

j∈Ti

cij · xi,j

subject to

each aircraft has to be scheduled

each slot can be used at most once

minimum separation time
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Tactical Planning: Runway Scheduling

1-Matching with Side Constraints: (Dyer/Wolsey 1990)

min
n
∑

i=1

∑

j∈Ti

cij · xi,j

subject to
∑

j∈Ti

xi,j = 1 ∀i ∈ {1, . . . , m}

n
∑

i=1

xi,j≤ 1 ∀j ∈ T

xi,j +

j+d
δi,k
∆t e

∑

l=j+1

xk ,l≤ 1 ∀i ∈ {1, . . . , n} ,∀j ∈ Ti ,∀k 6= i

xi,j ∈ {0, 1}
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Precendence Constraints on Runway: Structural
Investigation

∑

j∈W

xi,j = 1, ∀i ∈ A,

∑

i∈A

xi,j ≤ 1, ∀j ∈W ,

a
∑

j=1

xk1,j ≥
a
∑

j=1

xk2,j , ∀a ∈W\{max(W )}, (k1, k2) ∈ Prec,

xi,j ∈ {0, 1}, ∀i ∈ A, j ∈W .

a
k2 k1
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One Precedence Constraint in Bipartite Matching

• poly-time problem if precedence constraint graph is series-parallel (Lawler
1978)

• In the general case bipartite matching with additional precedence constraints
is NP-hard

• First consider one precedence constraint only, assume |A|= |W |= n
• constraints remain feasible for several precendences
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Facets for Bipartite Matching with one Precendence

On the last n− a + 1 slots:
Forbid placing k1 together with n− a aircraft occupying all slots behind a with
aircraft different from {k1, k2}.

a
x x x

︸︷︷︸

k1

|F |= 2,
∑

≤ 2.
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Facets for Bipartite Matching with one Precendence

On the last n− a + 1 slots and on y slots before a:
Forbid placing k1 together with n− a + y aircraft occupying all slots behind a and y
before a with aircraft different from {k1, k2}.

a
x x x x

︸︷︷︸

k1

|F |= 3,
∑

≤ 3.
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Facets for Bipartite Matching with one Precendence

Example: F = {1, 2, 3}, a = 4, y = 1, S1 = {2}, S2 = {4, 5, 6}

x1,2 + x1,4 + x1,5 + x1,6

+x2,2 + x2,4 + x2,5 + x2,6

+x3,2 + x3,4 + x3,5 + x3,6

+ xk1,4 + xk1,5 ≤ 3

a
x x x x

︸︷︷︸

k1

|F |= 3,
∑

≤ 3.
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Facets for Bipartite Matching with one Precendence

Lemma

Let a ∈ {3, . . . , n− 1}, y ∈ {0, . . . , a− 3}, F ⊂ A\{k1, k2} |F |= n− a + y ,
S1 ∈ P({1, . . . , a− 2}\{2})∪P({2, . . . , a− 2) with |S1|= y , and
S2 = {a, . . . , n}, S1, S2 ⊂W
Then, the inequalities

∑

i∈F

∑

j∈S1

xi,j +
∑

j∈S2\{n}

xk1,j +
∑

i∈F

∑

j∈S2

xi,j ≤ n− a + y

define a facet of Matching & One Precedence.

a
x x x x

︸︷︷︸

k1

|F |= 3,
∑

≤ 3.
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Facets for Bipartite Matching with one Precendence

Lemma

Let a ∈ {3, . . . , n− 1}, y = 0, if a = n− 1 and y ∈ {0, . . . , a− 3} otherwise,
z ∈ {1, . . . , n− a}, F ⊂ A\{k1, k2}, with |F |= n− a+ y − z,
S1 ∈ P({1, . . . , a− 2}\{2})∪P({2, . . . , a− 2}) with |S1|= y ,
S3 ∈ P({a+ 1, . . . , n}\{n− 1})∪P({a+ 1, . . . , n− 1}) with |S3|= z, and
S2 = {a, . . . , n}\S3. Then the inequalities

∑

i∈F

∑

j∈S1

xi,j +
∑

j∈S2∪S3\{n}

xk1 ,j +
∑

i∈F

∑

j∈S2

xi,j +
∑

i∈Ã

∑

j∈S3

xi,j ≤ n− a+ y

define a facet of Matching & One Precedence.

a
x x −k1 − k2 −k1 − k2 x

︸ ︷︷ ︸

k1

|F |= 2,
∑

≤ 4.
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Facets for Bipartite Matching with one Precendence

Lemma

Let a ∈ {3, . . . , n− 2}, b ∈ {a+ 1, . . . , n− 1}, y = 0 if b = a+ 1, y ∈ {0, . . . , a− 3},
F ⊂ A\{k1, k2}, with |F |= b− a+ y − 1, S1 ∈ P({1, . . . , a− 2}\{2})∪P({2, . . . , a− 2)
with |S1|= y , S2 = {a, . . . , b− 1}, and S3 = {b, . . . , n}. Then the inequalities

∑

i∈F

∑

j∈S1

xi,j +
∑

j∈S2

xk1 ,j +
∑

i∈F

∑

j∈S2

xi,j +
∑

j∈S3\{n}

2xk1 ,j +
∑

i∈Ã

∑

j∈S3

xi,j ≤ n− a+ y

define a facet of Matching & One Precedence.

a b
x x x −k1 − k2 −k1 − k2

︸︷︷︸

k1

︸︷︷︸

2k1

|F |= 2,
∑

≤ 4.
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Outline

• pre-tactical and tactical planning planning: time-window assignment and
runway scheduling

• for both planning phases: affect of uncertainties, and

• protection against uncertainties using robust optimization
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Uncertain Parameters

• disturbances affect ET, LT and maxLT of an aircraft

⇒ each realization yields an interval [ET, maxLT] of feasible assignments:

ET maxLT LT 
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Impact of Uncertainties
- time windows of 10 minutes

- random disturbances (Gauss distribution, µ= 1,σ= 1.5)

Number
of

Aircraft

Time
Horizon

(hrs)

Runtime
(sec)

Objective
Value

Delayed
Aircraft

(%)

Infeasible
Assignments

(%)

100 2.5 0.43 48.00 33.60 23.80

200 5 2.41 53.40 25.80 25.50

400 10 >170.861 149.331 34.831 27.171

• most runtimes are very low
⇒ approaches can be used in practice

• about 20% of the aircraft are assigned to infeasible time windows
⇒ enrich approaches by protection against uncertainties is crucial

140% of the instances exceeded time limit (15 min); averages taken over the 60% that could be solved to optimality
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Strict Robustness

• strict robustness
⇒ delete all uncertain arcs
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Simulation
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Test Runs

• 3 scenarios

• 20 runs each

• 50 different randomly chosen aircraft per run

• high/med traffic (50 acft in 50mins/ 50acft 80 mins)

• high/low uncertainty
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Scenario 1: High Traffic Demand, Low Uncertainty

Table : Results scenario 1: RTIM vs. TIM (slot size 75s)

Measurements RTIM TIM TIM - RTIM
GoAround 0.2 1.8 1.6
Dep. drop 0.15 0.4 0.25

Makespan [s] 3064 3144 80
TIM/RTIM

Changed Pos / SimStep 0.29 0.69 2.38
Changed TT / acft [min] 1.95 3.24 1.67

Obj. func. value / acft [s] 276.5 359 1.29
Comp. runtime [s] 12.5 13.1 1.05
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Scenario 2: High Traffic Demand, High Uncertainty

Table : Results scenario 2: RTIM vs. TIM (slot size 75s)

Measurements RTIM TIM TIM - RTIM
GoAround 0 2.4 2.4
Dep. drop 0 0.9 0.9

Makespan [s] 3269 3274 5
TIM/RTIM

Changed Pos / SimStep 1.26 3.13 2.48
Changed TT / acft [min] 6.67 8.56 1.28

Obj. func. value / acft [s] 484.7 484.6 1.0
Comp. runtime [s] 31.8 26.4 0.83
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Consequences

...we found

• stable plans: less replannings

• less go-arounds

• (strict) robustification is not costly

• and can be computed very fast
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Less Conservative Concept: Recoverable Robustness

• consider nominal solutions (instead of strict robust solutions)
→ may become infeasible by disturbances

• ensure that feasibility can be "recovered" with minimal effort
(by a certain recovery action)

→ developed for timetabling in railways

→ not found in ATM context yet
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Recoverable Robustness

...in our application (taking it as b-matching):

xij = 1, j infeasible in scenario k ⇒ 2nd-stage-assignment: yk
il = 1
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Recoverable Robustness

objective

minimize delay costs of nominal solution
+ worst case costs for recovery action

recovery action

determine feasible assignment "as close as possible" to current assignment

→ costs in scenario k :

minimum (squared) distances of nominal assigned time windows
to time windows feasible in scenario k
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Recoverable Robustness

min
x

∑

i∈A

∑

j∈Wi

cij xij + max
k∈K

min
yk

∑

i∈A





∑

j∈Wi

j · xij −
∑

l∈W k
i

l · yk
il





2

s.t.
∑

j∈Wi

xij = 1 ∀i ∈ A

∑

i∈Aj

xij ≤ b ∀j ∈W

∑

j∈W k
i

yk
ij = 1 ∀i ∈ A, ∀k ∈ K

∑

i∈Ak
j

yk
ij ≤ b ∀j ∈W , ∀k ∈ K

xij , yk
ij ∈ {0, 1}

x : first stage assignment (for nominal scenario)

yk : second stage (recovery) assignment in scenario k

W
(k)
i : feasible time windows (in scenario k)
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Recoverable Robustness - Simplifications

• consider linear recovery term

min
x

∑

i∈A

∑

j∈Wi

cijxij + max
k∈K

min
zk

∑

i∈A

∑

j∈W k
i

crep
i zk

ij , with zk
ij =

�

1, xij = 0 and y k
ij = 1

0, otherwise.

• consider recovery to strict robust solution

min
x ,y

∑

i∈A

∑

j∈Wi

cijxij +
∑

i∈A





∑

j∈Wi

j · xij −
∑

l∈W k
i

l · yil





2

• consider recovery to strict robust solution with linear recovery term

min
x ,z

∑

i∈A

∑

j∈Wi

cijxij +
∑

i∈A

∑

l∈W k
i

crep
i zij , with zij =

�

1, xij = 0 and yij = 1

0, otherwise.
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Recoverable Robustness - Simplifications
Linear recovery term:

min
x

∑

i∈A

∑

j∈Wi

cijxij + max
k∈K

min
zk

∑

i∈A

∑

j∈W k
i

crep
i zk

ij , with zk
ij =

�

1, xij = 0 and y k
ij = 1

0, otherwise.

• count replanned aircraft with general replanning cost factor (not considering
distances between x- and yk -assignments)

→ don’t consider different weight classes (yields general b-Matching problem)

⇒ second-stage constraints:

totally unimodular
(x and k fixed)

→ relax integrality, dualize

→ min-max structure

∑

j∈W k
i

yk
ij = 1 ∀i ∈ A

∑

i∈Ak
j

yk
ij ≤ b ∀j ∈W

yk
ij − zk

ij ≤ xij ∀ij ∈ Ek

yk
ij , zk

ij ∈ {0, 1} ∀ij ∈ Ek
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Recoverable Robustness - Simplifications

Recovery to strict robust solution with linear recovery term:

min
x ,z

∑

i∈A

∑

j∈Wi

cijxij +
∑

i∈A

∑

l∈W k
i

crep
i zij , with zij =

�

1, xij = 0 and yij = 1

0, otherwise.

• considers only nominal case and strict robust scenario
→ only two assignment problems with linear objective function to solve
→ no "min max min"-structure anymore

• requires feasibility of strict robust approach

• count replanned aircraft with general replanning cost factor (not considering
distances between x- and y -assignments)
→ no fairness assured
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Recoverable Robustness - Simplifications

Recovery to strict robust solution:

min
x ,y

∑

i∈A

∑

j∈Wi

cijxij +
∑

i∈A





∑

j∈Wi

j · xij −
∑

l∈W k
i

l · yil





2

• considers only nominal case and strict robust scenario (i.e., for each aircraft
take smallest possible time window)
→ no "min max min"-structure anymore
→ assignment problems with quadratic objective function to solve

• requires feasibility of strict robust approach

• algorithmically: Reformulation-Linearization Technique RLT
• Balas, Ceria, Cornuéjols (1993)
• Lovász, Schrijver (1991)
• Sherali, Adams (1990)
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Recoverable Robustness - Simplifications

Recovery to strict robust solution - RLT

min
x

∑

i∈A

∑

j∈Wi

cij xij +
∑

i∈A





∑

j∈Wi

j · xij −
∑

l∈W R
i

l · yil





2

s.t.
∑

j∈Wi

xij = 1 ∀i ∈ A

∑

i∈Aj

xij ≤ b ∀j ∈W

∑

l∈W R
i

yil = 1 ∀i ∈ A

∑

i∈AR
l

yil ≤ b ∀l ∈W

xij , yil ∈ {0, 1}
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Recoverable Robustness - Simplifications

Recovery to strict robust solution - Reformulation & Linearization:

min
x

∑

i∈A

∑

j∈Wi

cij xij +
∑

i∈A





 

∑

j∈Wi

j · xij

!2

+





∑

l∈W R
i

l · yil





2

− 2
∑

j∈Wi

∑

l∈W R
i

jl · xij yil





s.t.
∑

j∈Wi

xij = 1 ∀i ∈ A

∑

i∈Aj

xij ≤ b ∀j ∈W

∑

l∈W R
i

yil = 1 ∀i ∈ A

∑

i∈AR
l

yil ≤ b ∀l ∈W

xij , yil ∈ {0, 1}
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Recoverable Robustness - Simplifications

Recovery to strict robust solution - RLT

min
x

∑

i∈A

∑

j∈Wi

cij xij +
∑

i∈A







∑

j∈Wi

j2 · xij +
∑

l∈W R
i

l2 · yil −
∑

j∈Wi

∑

l∈W R
i

2jl · xij yil
︸︷︷︸

=zijl







s.t.
∑

j∈Wi

xij = 1 | · yil ∀l ∈W R
i ∀i ∈ A

∑

i∈Aj

xij ≤ b ∀j ∈W

∑

l∈W R
i

yil = 1 | · xij ∀j ∈Wi ∀i ∈ A

∑

i∈AR
l

yil ≤ b ∀l ∈W

xij , yil ∈ {0, 1}
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Recoverable Robustness - Simplifications

Recovery to strict robust solution - RLT

min
x

∑

i∈A

∑

j∈Wi

cij xij +
∑

i∈A





∑

j∈Wi

j2 · xij +
∑

l∈W R
i

l2 · yil −
∑

j∈Wi

∑

l∈W R
i

2jl · zijl





s.t.
∑

j∈Wi

xij = 1 ∀i ∈ A

∑

j∈Wi

zijl = yil ∀l ∈W R
i , ∀i ∈ A

∑

i∈Aj

xij ≤ b ∀j ∈W

∑

l∈W R
i

zijl = xij ∀j ∈Wi , ∀i ∈ A

∑

i∈AR
l

yil ≤ b ∀l ∈W

xij , yil ∈ {0, 1} , zijl ≥ 0
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Computational Results

Approach Runtime ObjVal
(delay)

delayed
Acft

infeasible
Ass.

replanned
Acft

max
replan
dist.

mean
replan
dist.

quadratic
recovery

term

nominal 2.95 53.4 51.6 51.2 - - - -
strict

robust
4.28 546.4 200* 10.4 - - - -

recovery
to strict
quadratic

85.98 274.8 159.4 20.0 115.4 2.0 0.60 129.8

recovery
to strict

linear

5.95 193.6 117.6 28.6 88.2 8.8 1.11 963.2

recovery
to strict
linear,

restricted

28.88 199.2 117.4 28.0 113.2 2.0 0.97 356.2

Tested 5 instances: 200 acft on 10min-windows, normally distributed disturbances ("restricted": max replan dist. ≤ 2)
Uncertainty set: µ± k ·σ (µ= 1, σ= 1.5, k = 1) * scheduled time window not contained in chosen uncertainty set
• recoverable approaches: ObjVal / infeasible Ass. between nominal and strict robust (closer to nominal)
• quadratic recovery: least infeasible Ass.
• linear recovery: low runtime, little replanned aircraft, but rather unfair (max replan dist./quadratic recovery term)
• restricted linear recovery: still not as fair as quadratic (quadratic recovery term)
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Further Approaches for Protection Against Uncertainties

• (two-stage) stochastic approach

• mixed robust-stochastic model, in which protection against uncertainties can
be tuned according to needs
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Modeling of Arrival Delay / Statistical Analysis of Empirical
Data

• we analyzed empirical delay data from a large German airport

• we applied a Γ -distribution model to the delay statistics of a single day (all
flights) as well as a 6-month period (single flights):
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Summary

• mathematical approaches for pre-tactical and tactical planning in ATM

• yields b-matching problem (plus further constraints)

• polyhedral description of bipartite matching with 1 precendence

• protection against uncertainties with (recoverable) robust optimization, one
step and within simulation

• analysis of delay statistics
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Conclusions

• uncertainties in input occur in many practical applications

• they can be treated already in the mathematical model

• “Often” the resulting optimization problems are “not much more” difficult.
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Thank you for your attention!
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