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Optimization Under Uncertainty

e just ignore, solve nominal problem

Frauke Liers | FAU Erlangen-Nirnberg | Robust Optimization and Air Traffic Management
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Optimization Under Uncertainty

e just ignore, solve nominal problem
e ex post: sensitivity analysis
e ex ante:

e stochastic optimization
e robust optimization
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Protection Against the Worst Case

e robust feasibility: solution has to be feasible for all inputs against protection is

sought
e beforehand, define uncertainty set U:

e based on scenarios, or
e intervals, etc.
® robust optimality: robust feasible solution with best guaranteed solution value

6 ——
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Robust versus Stochastic Optimization

robust optimization

stochastic optimization

worst-case

expected value

uncertainty sets

probability distributions

100 % protection
against pre-defined uncertainty set U

protection
with certain probability

when what?
distributions unknown

distributions known

“probably” is not enough

expectated value sufficient
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Robust versus Stochastic Optimization

robust optimization

stochastic optimization

worst-case

expected value

uncertainty sets

probability distributions

100 % protection
against pre-defined uncertainty set U

protection
with certain probability

when what?
distributions unknown

distributions known

“probably” is not enough

expectated value sufficient

evaluation with respect to
e mathematical tractability
e conservatism of the solution
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Firstenau (DLR), Heidt, Kapolke, Liers, Martin, Peter, Weiss (DLR)

Air Traffic Management

e continous growth of traffic demand
e possibilities of enlarging airport capacities are limited

source: tagaytayhighlands.net

— efficient utilization of existing capacities is crucial

Robust Optimization and Air Traffic Management

Optimization of runway utilization is one of the main challenges in ATM.

FAU Erlangen-Nirnberg |

Frauke Liers |



Outline

e pre-tactical and tactical planning planning: time-window assignment and
runway scheduling

e for both planning phases: affect of uncertainties, and
e protection against uncertainties using robust optimization
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Pre-tactical Planning
= a considerable amount of time prior to scheduled arrival times

— don’t need to determine exact times/sequence yet

assign several aircraft to one time window of a given size (e.g. 15 min)

— omit unnecessary information

— reduce complexity
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Nominal Problem: Time-Window Assignment
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Time-Window Assignment

e each aircraft has to receive exactly one time window

e each time window can be assigned to several aircraft

Questions:
1) Which time windows can be assigned to which aircraft?

2) How many aircraft fit in one time window?
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Which Time Windows can be Assigned to Which Aircraft?
Each aircraft has its individual...

ST = scheduled time of arrival (flight plan)
= earliest time of arrival (dependent on operational conditions)

ET
LT = |atest time of arrival (without holdings) (dependent on ET)
maxLT = maximal latest time of arrival (dependent on amount of fuel etc.)

.and thus can be assigned to time windows between ET and maxLT.



)

i DLR

Which Time Windows can be Assigned to Which Aircraft?
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Which Time Windows can be Assigned to Which Aircraft?
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Time-Window Assignment

e each aircraft has to receive exactly one time window

e each time window can be assigned to several aircraft

Questions:
1) Which time windows can be assigned to which aircraft?

2) How many aircraft can be assigned to one time window?
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How Many Aircraft can be Assigned to One Time Window?
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given a set of aircraft: do they fit in the same time window?
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How Many Aircraft can be Assigned to One Time Window?
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given a set of aircraft: do they fit in the same time window?
_ _ _
N == |- |—

satisfy distance requirements
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Time-Window Assignment Graph

| = =
e o ®

ET maxLT

e assignhment decisions: in b-matching problem
. . 1, if aircraft i is assigned to time window j
— binary variables x; = .
0, otherwise
| Robust Optimization and Air Traffic Management

FAU Erlangen-Nurnberg

Frauke Liers
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Time-Window Assignment: Objective

maximize punctuality
i.e. minimize deviation from scheduled times (delay and earliness)

e carliness is penalized linearly

e delay is penalized quadratically, for reasons of fairness:
one aircraft with large delay is worse than two aircraft with little delay

e extra penalization term for time windows between LT and maxLT

costs: 2

ET ST LT maxLT
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Time-Window Assignment: Objective

maximize punctuality
i.e. minimize deviation from scheduled times (delay and earliness)

e carliness is penalized linearly

e delay is penalized quadratically, for reasons of fairness:
one aircraft with large delay is worse than two aircraft with little delay

e extra penalization term for time windows between LT and maxLT
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Time-Window Assignment: Objective

maximize punctuality
i.e. minimize deviation from scheduled times (delay and earliness)

e carliness is penalized linearly

e delay is penalized quadratically, for reasons of fairness:
one aircraft with large delay is worse than two aircraft with little delay

e extra penalization term for time windows between LT and maxLT

costs: 3% + 12

LT maxLT

ET ST
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min Z CiiXjj

(i,j)EE
s.t. Exactly one time window for each aircraft
Distance requirements in each time window
V(i.j)€E

x; €{0,1}

Robust Optimization and Air Traffic Management

| FAU Erlangen-Nirnberg |

Frauke Liers
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(ih))eE
st >y = VieA ()
JEW;
Distance requirements in each time window
x; € 10,1} V(i.j))€E

e basically yields a b-matching problem (with side constraints)
e ..when incorporating different separation times according to weight classes
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Z CipXij
(ij)eE
st Ylx = 1 VieA )

jW,

75 x; + 75 x; + 100 Y x; + 10021 < s4+100 View\{m} @
ieL; ien; icH;

75 x; + 75 x; + 100 ) x; + 12521 < s+100 Yiew\{m} @
i€L- iEM iGH'

75 x; + 75 x; + 100 Y x; + 15021 < s4100 View\{m} @)
/EL/ IEM IGHI

75 x; + 75 x5 + 100 ) . x; < s4+100 j=m )
= i, =

75> X + 75 x +502"+75 < s+75 Vjew\{m} (6
el ieM;

75> X + 75 x < s+7 j=m @
IEL IEM

Some more constraints to model the z-variables... (8-31)
x; €{0,1} V(i,j)€E

Frauke Liers | FAU Erlangen-Nirnberg | Robust Optimization and Air Traffic Management
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Tactical Planning: Runway Scheduling

problem description

e given
e set of aircraft with different weight classes
e carliest, schedule and latest times for each aircraft
e minimum separation times between two aircraft types

L

source: wikipedia

e task
e schedule aircraft as close as possible to their schedule times
e penalize if assigned time is later than latest time
e fair schedules
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Tactical Planning: Runway Scheduling

1-Matching with Side Constraints: (Dyer/Wolsey 1990)

n
min Z E Cjj* X

i=1 jET;
subject to
each aircraft has to be scheduled
each slot can be used at most once

minimum separation time
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Tactical Planning: Runway Scheduling

1-Matching with Side Constraints: (Dyer/Wolsey 1990)

X

i=1 jET;

min

subject to

Zx,jf1

JET;
ZX'/51
i=1

T3

X+ Z X S 1

I=j+1
x;; €{0,1}

D/K
Yie{l,...,

Yie{1,...,m}
VjeT
n}, Vi€ T, Vk#i
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Precendence Constraints on Runway: Structural

Investigation

in,j:1’ VIEA,
jeEwW

PETESH View,

i€A

Zxk = Zxkzj, Vae W\{max(W)}, (k;, k,) € Prec,
j=1

X € {0,1}, VieAjeWw.
a

Lk | K |
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One Precedence Constraint in Bipartite Matching

e poly-time problem if precedence constraint graph is series-parallel (Lawler
1978)

e In the general case bipartite matching with additional precedence constraints
is NP-hard
e First consider one precedence constraint only, assume |A| = |W| =n
e constraints remain feasible for several precendences
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Facets for Bipartite Matching with one Precendence

On the last n—a—+ 1 slots:
Forbid placing k; together with n— a aircraft occupying all slots behind a with

aircraft different from {k;, k. }.

a
|Fl=2> <2
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Facets for Bipartite Matching with one Precendence

Al

£

On the last n— a+ 1 slots and on y slots before a:
Forbid placing k; together with n— a + y aircraft occupying all slots behind aand y

before a with aircraft different from {k;, k,}.

a
|F|=3,>, <3

L [x]
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Facets for Bipartite Matching with one Precendence

Example: F ={1,2,3},a=4,y=1,S, ={2},S, = {4,5,6}

Xi2 T X4 + X5+ Xq 6
FXo0 +Xo4 T Xo5 1+ Xo6
X300+ X34 + X35+ X3¢

+ Xi, 4 T Xk, 5 <3

a
[x [ x ] x] IF|=3, 3 <s.

~—~—
K

[ x |
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Facets for Bipartite Matching with one Precendence

Letac{3,...,n—1}, y€1{0,...,a—3}, FC A\{k;, s} [Fl=n—a+y,

S eP({1,...,a—2\{2}) UP({2,...,a—2) with |S;| = y, and
S,={a,...,n},S;,S, c W
Then, the inequalities

ZZX”f+ Z Xk1,/+ZZXf,j <n—a+y

i€F jeS, j€S,\{n} ieF jes,

define a facet of Matching & One Precedence.

a
[x [ x ] x] IF|=3, Y <s.

~—~—
K

[ x |
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Facets for Bipartite Matching with one Precendence

A\

Lemma

Letae{8,...,n—1},y=0,ifa=n—1and y €{0,...,a— 3} otherwise,
ze{1,...,n—a}, F C A\{k, Ko}, with |[F|=n—a+y—z,

S eP({1,...,a—2\{2})) UP({2,...,a—2}) with |S;| = ,
S;eP({a+1,...,n\{n—1})uP({a+1,...,n—1}) with |S;| = z, and
S, ={a,...,n}\S;. Then the inequalities

DI UTIDWEIED 39 NS %) RILLEE
i€F j€S; j€SUS3\{n} i€F jeS; i€A J€S3
define a facet of Matching & One Precedence.

a
[ Ix] [x[-k—k[-k—k [x]

IFl=2% <4

ki
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Facets for Bipartite Matching with one Precendence

Letace {3,...,n—2},be{a+1,...,n—1},y=0ifb=a+1,y€{0,...,a—3},
F c A\{k;, k,}, with |F|=b—a+y—1, S, € P({1,...,a—2\{2})UP({2,...,a—2)
with |S| =y, S, ={a,...,b—1},and S; = {b, ..., n}. Then the inequalities

ZZX,,,-~I—ZX,“,,-+ZZX,,,+ Z 2Xk1’/+ZZX"J <n—a+y

I€F j€S; /€S> I€F j€S, jeSs\{n} i€A JE€S3

A\

define a facet of Matching & One Precedence.

a b
L Ix] [x|x]-k—k|-k—k |

|Fl=2% <4

S~~~ ~~—
K 2k,



Outline

e pre-tactical and tactical planning planning: time-window assignment and
runway scheduling

e for both planning phases: affect of uncertainties, and
e protection against uncertainties using robust optimization
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Uncertain Parameters
e disturbances affect ET, LT and maxLT of an aircraft
= each realization yields an interval [ET, maxLT] of feasible assignments

=

ET LT maxLT

Robust Optimization and Air Traffic Management

FAU Erlangen-Nirnberg |

Frauke Liers |



Uncertain Parameters
e disturbances affect ET, LT and maxLT of an aircraft
= each realization yields an interval [ET, maxLT] of feasible assignments

=

maxLT

o
(hy

Robust Optimization and Air Traffic Management

FAU Erlangen-Nirnberg |
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Uncertain Parameters
e disturbances affect ET, LT and maxLT of an aircraft
= each realization yields an interval [ET, maxLT] of feasible assignments

=

ET LT maxLT

Robust Optimization and Air Traffic Management

FAU Erlangen-Nirnberg |

Frauke Liers |



Impact of Uncertainties

- time windows of 10 minutes

- random disturbances (Gauss distribution, u = 1,0 = 1.5)

Number Time Runtime | Objective | Delayed Infeasible
of Horizon (sec) Value Aircraft Assignments
Aircraft (hrs) (%) (%)
100 25 0.43 48.00 33.60 23.80
200 2.41 53.40 25.80 25.50
400 10 >170.86'| 149.33' 34.83' 2717

e most runtimes are very low
=> approaches can be used in practice

e about 20% of the aircraft are assigned to infeasible time windows
=> enrich approaches by protection against uncertainties is crucial

140% of the instances exceeded time limit (15 min); averages taken over the 60% that could be solved to optimality
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Impact of Uncertainties
- time windows of 10 minutes

- random disturbances (Gauss distribution, u = 1,0 = 1.5)

Number Time Runtime | Objective | Delayed Infeasible
of Horizon (sec) Value Aircraft Assignments
Aircraft (hrs) (%) (%)
100 25 0.43 48.00 33.60 23.80
200 5 2.41 53.40 25.80 25.50
400 10 >170.86'| 149.33' 34.83' 2717

e most runtimes are very low
=> approaches can be used in practice

e about 20% of the aircraft are assigned to infeasible time windows
=> enrich approaches by protection against uncertainties is crucial

140% of the instances exceeded time limit (15 min); averages taken over the 60% that could be solved to optimality

Frauke Liers | FAU Erlangen-Nirnberg | Robust Optimization and Air Traffic Management
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Strict Robustness
a;
[ ] [ J L ] [ ] [ ] [ ] [ ]
S1 S S3S4 S5 Sg S; Sg Sg Sy
possible LT slots
e strict robustness
=> delete all uncertain arcs

possible ET slots

Robust Optimization and Air Traffic Management

FAU Erlangen-Nirnberg |

Frauke Liers |



Simulation

Optimization of
(robust) model

new input data:
adapted et, It

deliverstarget * uncertainties added to etand It
time tt » window of et, It decreases

* check for go-around, holding,
departure drops

Frauke Liers | FAU Erlangen-Nirnberg | Robust Optimization and Air Traffic Management
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e 3 scenarios

e 20 runs each
e 50 different randomly chosen aircraft per run

e high/med traffic (50 acft in 50mins/ 50acft 80 mins)

e high/low uncertainty
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Scenario 1: High Traffic Demand, Low Uncertainty

Table : Results scenario 1: RTIM vs. TIM (slot size 75s)

Measurements RTIM TIM TIM - RTIM
GoAround 0.2 1.8 1.6
Dep. drop 0.15 0.4 0.25
Makespan [s] 3064 3144 80
TIM/RTIM
Changed Pos / SimStep 0.29 0.69 2.38
Changed TT / acft [min] 1.95 3.24 1.67
Obj. func. value / acft [s] 276.5 359 1.29
Comp. runtime [s] 12.5 13.1 1.05
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Scenario 2: High Traffic Demand, High Uncertainty

Table : Results scenario 2: RTIM vs. TIM (slot size 75s)

Measurements RTIM TIM TIM - RTIM
GoAround 0 2.4 2.4
Dep. drop 0 0.9 0.9
Makespan [s] 3269 3274 5
TIM/RTIM
Changed Pos / SimStep 1.26 3.13 2.48
Changed TT / acft [min] 6.67 8.56 1.28
Obj. func. value / acft [s] 484.7 484.6 1.0
Comp. runtime [s] 31.8 26.4 0.83




Consequences

stable plans: less replannings

less go-arounds

(strict) robustification is not costly

and can be computed very fast



iy Eoom 4#7
: DLR

Less Conservative Concept: Recoverable Robustness
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e consider nominal solutions (instead of strict robust solutions)

— may become infeasible by disturbances
e ensure that feasibility can be "recovered" with minimal effort

(by a certain recovery action)

— developed for timetabling in railways

— not found in ATM context yet
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Recoverable Robustness
in our application (taking it as b-matching)
Recovery Action

Infeasible Assignment
¥\ v

e @ O Q @ © @ @
ET ET ET
(nominal) (dlsturbed) (nominal) (disturbed)

2nd-stage-assignment: y

=1, jinfeasible in scenario k =



Recoverable Robustness
minimize delay costs of nominal solution
+ worst case costs for recovery action
determine feasible assignment "as close as possible" to current assignment

— costs in scenario k:
(squared) distances of nominal assigned time windows

minimum
to time windows feasible in scenario k
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Recoverable Robustness

ZZC,IX,]—f—maxmmZ Z/ Zl~yi’,‘

€A jeW; i€A \ jeW; lewk
s.t. Z xj = 1 VieA
jew;
Zx,-j < b View
icA;
>, yeo= 1 VieA YkeK
jewk

2

icak
IEAI

Vie W, Yke K

IN
o

{0, 1}

m

k
Xij> Vi

x : first stage assignment (for nominal scenario)

yk : second stage (recovery) assignment in scenario k

Wl.(k) : feasible time windows (in scenario k)
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Recoverable Robustness - Simplifications
e consider linear recovery term
1, x;=0andyf =1
rep k . k __ > ij i
m|n ZZ CijXjj + max m|n Z Z I], with zl.]. = {0, otherwise. i
i€A jeW,; i€A jewsk

e consider recovery to strict robust solution

2

min D, D400 + 2| 20 = 21

i€A jeW,; i€A \ jeW,; /EVV,k

e consider recovery to strict robust solution with linear recovery term

1, x;=0andy; =1
X P v 0, otherwise.

i€EA jJEW,; i€A |e W/k
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Recoverable Robustness - Simplifications

Linear recovery term:

1, x;=0andyf=1
min ZZ cjx; + max m|n Z Z czf, with zff = i =P andy;
X y y 0, otherwise.

i€A jeW,; i€A jewk ’

e count replanned aircraft with general replanning cost factor (not considering
distances between x- and y*-assignments)

— don’t consider different weight classes (yields general b-Matching problem)

k __ .
= second-stage constraints: Zkyif =1 VieA
jew;
totally unimodular P
. s < b View
(x and k fixed) ny/ /
IEA/.
— relax integrality, dualize yE— 2K < x Vij € EX
if i =

— min-max structure i 2k € (0,1} VieEX
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Recoverable Robustness - Simplifications

Recovery to strict robust solution with linear recovery term:

. 1, x;,=0andy, =1
win ST o+ 315 6%, thz,,._{ ) =0andy,

X,z herwise.
iEA jEW,; i€A lewk 0, otherwise

Sy v

Al

¢

e considers only nominal case and strict robust scenario
— only two assignment problems with linear objective function to solve

— no "min max min"-structure anymore

e requires feasibility of strict robust approach
e count replanned aircraft with general replanning cost factor (not considering

distances between x- and y-assignments)

— no fairness assured
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Recoverable Robustness - Simplifications

Recovery to strict robust solution:

n;'p ZZCI‘/X// + Z Z/'Xij - Z/',Vi/

icA jeW, icA \ jew, lewk

e considers only nominal case and strict robust scenario (i.e., for each aircraft
take smallest possible time window)

— no "minmax min"-structure anymore
— assignment problems with quadratic objective function to solve

e requires feasibility of strict robust approach

e algorithmically: Reformulation-Linearization Technique RLT
e Balas, Ceria, Cornuéjols (1993)
e |ovasz, Schrijver (1991)
e Sherali, Adams (1990)
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Recoverable Robustness - Simplifications

Recovery to strict robust solution - RLT

min
X

s.t.

DR +z(z/.x,,,_ 5 ,.y,.,)z

i€A jeW, i€A \ jew; lewR
i

Zx,»/»:1

jew;

ZXUSb

i€A;

Z}’ﬂ =1

lewf
Z,Vil = b
ieAfl

xp vy € {0,1}

VieA

View

VieA

View
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Recoverable Robustness - Simplifications

Recovery to strict robust solution - Reformulation & Linearization:

min
X

s.t.

PP

€A JEW; i€A
D = 1

JEW;
>

i€A;

Zyﬂ = 1

lewf

Z Yil

icAf

IA
o

IA
o

{o,1}

Xip Vi €

(2]

+ Z /',V//
lewf

:

—23 > i

JEW: jewf

|

VieA

View

VieA

View
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Recoverable Robustness - Simplifications

Recovery to strict robust solution - RLT

min ZZC//XU+Z ij-x,jJr le-y,,—222/l x,/y,,

s.t.

Wi lewf

i€A jeW; icA | jew; ewr
i 7ZW

ZX"/ = 1 |y View?

JEW;

Z Xj

i€A;

Sivi = 1 lx View,

lewf

Z Yil

icAR
€A

IA
o

IA
o

{0,1}

m

Xijs Vil

VieA

View

VieA

View
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Recoverable Robustness - Simplifications

Recovery to strict robust solution - RLT

min ZZC/'/’X/'I + Z ij'xf/ + Z Py — Z Z 2z

Sl epom
[ - Mathematic

ol

i€A jew; ieA \ jew; lew? JEW; jewR
1 1
s.t. Zx,-j = 1 VieA
jew;
Zzij/ = Y V/eW,.R, VieA
jew;
Dix; < b View
i€A;
sz/, = X VieW, VieA
rewf
Z yi < b View
ieAfl

xj, Yo € {0,1}, z; 20
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Computational Results

Approach | Runtime ObjVal delayed | infeasible replanned max mean quadratic
(delay) Acft Ass. Acft replan replan recovery
dist. dist. term
nominal 2.95 53.4 51.6 51.2 - - - -
strict 4.28 546.4 200 10.4 - - - -
robust
recovery 85.98 274.8 159.4 20.0 115.4 2.0 0.60 129.8
to strict
quadratic
recovery 5.95 193.6 117.6 28.6 88.2 8.8 1.11 963.2
to strict
linear
recovery 28.88 199.2 117.4 28.0 113.2 2.0 0.97 356.2
to strict
linear,
restricted
Tested 5 instances: 200 acft on 10min-windows, normally distributed disturbances ("restricted": max replan dist. < 2)

Uncertainty set: u+k-o (u=1,0=15k=1)

* scheduled time window not contained in chosen uncertainty set
® recoverable approaches: ObjVal / infeasible Ass. between nominal and strict robust (closer to nominal)

® quadratic recovery: least infeasible Ass.
® linear recovery: low runtime, little replanned aircraft, but rather unfair (max replan dist./quadratic recovery term)
°

restricted linear recovery: still not as fair as quadratic (quadratic recovery term)
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Further Approaches for Protection Against Uncertainties

e (two-stage) stochastic approach
e mixed robust-stochastic model, in which protection against uncertainties can

be tuned according to needs



i DLR

Modeling of Arrival Delay / Statistical Analysis of Empirical
Data

e we analyzed empirical delay data from a large German airport

e we applied a I'-distribution model to the delay statistics of a single day (all
flights) as well as a 6-month period (single flights):
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5 scale b = 5.0952 L 003 scale b =7.4116
003 1a
é Zoo02s &
Foos H
9 mean hist = 23,3466 9 oo mean hist = 28.8189 4
£ ooz st hist = 10.5314 Ik std hist = 15.7311
Zoots 1 298
2 2
001 2 001
wﬁ/ M |
. ! S5 ; ;
2 40 60 80 100 120 0
AIBT - STA + 24 /min

40 60
AIBT - STA + 16 /min

Frauke Liers | FAU Erlangen-Nirnberg |  Robust Optimization and Air Traffic Ma




i DLR

Summary

e mathematical approaches for pre-tactical and tactical planning in ATM

yields b-matching problem (plus further constraints)

polyhedral description of bipartite matching with 1 precendence

protection against uncertainties with (recoverable) robust optimization, one
step and within simulation

analysis of delay statistics



Conclusions

e uncertainties in input occur in many practical applications
e they can be treated already in the mathematical model
e “Often” the resulting optimization problems are “not much more” difficult.
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Thank you for your attention!
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