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Motivation

• Many interesting systems in physics can be described by models with a

large number of identical components whose microscopic behavior is

based on the fundamental laws of mechanics (Newton equations)

• Huge number of particles ⇒ behavior of the particles is too complicated

at the microscopic level and impossible to analyze

• Instead: Look at the collective behavior of the system on scales much

larger than the ones characterizing the micro dynamics

• On such macro scales the system is much simpler and is described by

integro-differential equations for which the analysis is more feasible

• The problem of deriving these equations from the microscopic dynamics

through suitable scaling limits is one of the central problems of

non-equilibrium statistical mechanics.
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N identical particles in the space R3 whose physical state is given by their
positions x1, . . . , xN and velocities v1, . . . , vN . N very large (N ∼ 1020)



Microscopic description Mesoscopic description
ẋj = vj

v̇j =
N∑

k=1
j 6=k

Fjk

Newtonian dynamics

kinetic limit
−→

(Markovian approximation)

(∂t + v · ∇x)f︸ ︷︷ ︸
transport

= Q(f , f )︸ ︷︷ ︸
collisions

Kinetic equations
(Boltzmann/Landau eq.)

• particles interact via a two-body interaction φ : R3 → R+

• φ spherically symmetric ⇒ the force Fjk = −∇φ(xj − xk) of particle j

acting on particle k is directed along xj − xk

• f : R+ × R3 × R3 → R+ probability density in the phase space

• Kinetic limit: suitable rescaling for the number of particles (N →∞)
and range/intensity of the potential
; finite/infinite no. of collisions for unit time
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Fjk

Newtonian dynamics

kinetic limit
−→

(Markovian approximation)

(∂t + v · ∇x)f︸ ︷︷ ︸
transport

= Q(f , f )︸ ︷︷ ︸
collisions

Kinetic equations
(Boltzmann/Landau eq.)

[Boltzmann 1872]

∂t f + v · ∇x f = Q(f , f ) on f (t, x , v) ≥ 0

Q(f , f )(v) =

∫
S2

∫
R3

B(v − v∗, ω)︸ ︷︷ ︸
collision kernel (≥ 0)

{f (v ′)f (v ′∗)︸ ︷︷ ︸
appearing

− f (v)f (v∗)︸ ︷︷ ︸
disappearing

}dω dv∗

[Lanford ’75 (hard-spheres); Pulvirenti, Saffirio, Simonella (smooth short-range potentials); Pulvirenti, Simonella
(hard-spheres); Gallagher, Saint-Raymond, Texier (smooth short-range potentials) . . . only for short times !! ]
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Postulates:

• particles interact via binary collisions (dilute regime)

• collisions are localized in space & time (the duration of a collision is very small)

• collisions are elastic (momentum and kinetic energy are preserved)

• collisions are microreversible (reversibility at microscopic level)

• Boltzmann chaos (velocities of two particles about to collide are uncorrelated)



From a many-body problem into an effective single-particle system

Test particle in a random configuration of obstacles c1, . . . , cN [Lorentz 1905]



Microscopic description Mesoscopic description{
ẋ = v
v̇ = −

∑
i ∇Φ(x − xi )

Newtonian dynamics
(Lorentz gas)

kinetic limit
−→

(Markovian approximation)

(∂t + v · ∇x)f︸ ︷︷ ︸
transport

= L(f )︸︷︷︸
collisions

Linear kinetic equations

Linear Boltzmann equation

(∂t + v · ∇x)f (t, x , v) =

∫
S2

dω B(ω, v) [f (t, x , v ′(ω))− f (t, x , v)]

v ′ = v − 2(ω · v)ω (collision rule)

Lorentz Gas: Poisson distribution of obstacles in Rd of intensity µ.
φ: short-range potential. ε > 0 micro-macro ratio.

Low density limit: µε = ε−(d−1)µ, φ(x)→ φ
(
x
ε

)
(rarefied gas)

[Gallavotti ’69; Spohn ’78; Desvillettes, Pulvirenti ’99; Basile, N.,Pezzotti, Pulvirenti CMP’15; Marcozzi, N. JSP ’16]



Microscopic description Mesoscopic description{
ẋ = v
v̇ = −

∑
i ∇Φ(x − xi )

Newtonian dynamics
(Lorentz gas)

kinetic limit
−→

(Markovian approximation)

(∂t + v · ∇x)f︸ ︷︷ ︸
transport

= L(f )︸︷︷︸
collisions

Linear kinetic equations

Linear Landau equation

(∂t + v · ∇x)f (t, x , v) = k ∆v⊥ f (t, x , v)

∆v⊥ : Laplace Beltrami op. on S2; k > 0: diffusion coefficient

Weak-coupling limit: µε = ε−dµ, φ(x)→
√
εφ
(
x
ε

)
(high density, weak inter.)

[Kesten, Papanicolau ’78, Dürr, Goldstein, Lebowitz ’87, Desvillettes, Ricci ’01; Komorowski, Ryzhik ’06;

Basile, N., Pulvirenti JSP’14; Marcozzi, N. JSP ’16]



The Markovian approximation

• Linear Boltzmann equation

{v(t)}t≥0 Markov jump process, x(t) =

∫ t

0

v(s)ds

• Linear Landau equation

{v(t)}t≥0 Brownian motion on Sd
|v |, x(t) =

∫ t

0

v(s)ds

(Diffusion on the energy sphere)



The Markovian approximation

• Linear Boltzmann equation

{v(t)}t≥0 Markov jump process, x(t) =

∫ t

0

v(s)ds

• Linear Landau equation

{v(t)}t≥0 Brownian motion on Sd
|v |, x(t) =

∫ t

0

v(s)ds

Why a diffusion?

• Momentum transferred in a single scattering: O(
√
ε)

• Number of obstacles met by a test particle in the unit time: O( 1
ε )

• Total momentum variation in unit time: zero in the average,

variance 1
εO(
√
ε)2 = O(1)

|v | preserved (elastic collisions) ⇒ diffusion on Sd
|v |

Diffusion coefficient? Variance of the transferred momentum in each collision.



The Markovian approximation

Initial probability distribution f0 = f0(x , v).

fε(x , v , t) = Eε[f0(T−tcN (x , v))], T t
cN (x , v) Hamiltonian flow

Goal: fε(x , v , t)→ f (x , v , t) as ε→ 0 ?

Strategy: constructive approach [Gallavotti ’79]

Technical difficulty: some random configurations

; trajectories that “remember” too much
(unphysical trajectories)

Key tools: • suitable change of variables
; Markovian approximation (given by the Boltzmann eq.)

• control of memory effects:
the set of bad configurations (recollisions, interferences)
is negligible as ε→ 0 (quantitative estimates!)
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Pathological configurations in the Markovian approximation

Backward Interference

∃bj s.t. ξε(−s)∈ B(bj , ε)

for s ∈(ti+1, ti), j > i

Backward Recollision

∃bi s.t.for s ∈ (tj+1, tj), j > i ,

ξε(−s) ∈ ∂B(bi , ε)



Microscopic description Macroscopic description{
ẋ = v
v̇ = −

∑
i ∇Φ(x − xi )

Newtonian dynamics
(Lorentz gas)

=⇒
[Bunimovich and Sinai ’81]

∂t% = D∆%, % =

∫
f dv

Hydrodynamic equation
(diffusion equation)

↘ ↗

↗
kinetic limit

Mesoscopic description

(∂t+v ·∇x)f (x , v , t) ∼ µεεLf (x , v , t)
↖

fast relaxation limit

Scaling limit: φ(x)→ φ
(
x
ε

)
, µε →∞ s.t. µεε→∞ & µεε

2 → 0
(“Low density”)

Look at a longer time scale in which the equilibrium starts to evolve
=⇒ diffusion for the position variable

[Erdos, Salmhofer, Yau, ’08 (Quantum Boltzmann); [Bodineau, Gallagher, Saint-Raymond ’13 (Boltzmann);

Basile, N., Pulvirenti JSP’13 (Landau); Basile, N.,Pezzotti, Pulvirenti CMP’15 (Boltzmann; nonequilibrium; Fick Law)]



Short-range vs. long-range interactions.

The role of correlations



Test particle in random force fields with long range interactions

dx

dt
= v ,

dv

dt
= Fε (x ;ω); x(0) = x0, v(0) = v0

Kinetic limit?

Main feature: Mixing properties of the random field (short-range potentials)
⇒ statistical independence of trajectories in the limit

Main difficulty: Slow decay of the correlations of the random field

• Construct the random field determined by a Poisson distr. of sources

generating potentials Φ(x) ∼ |x |−s , s > 1/2 (with different charges)

[Chandrasekhar ’43, Holtsmark ’19]

F (x ;ω) = lim
R→∞

F
(R)
U (x ;ω) = lim

R→∞

[
−
∑

xn∈RU

Qjn∇Φ (x − xn)

]

• Estimate the diffusive timescale and identify conditions for the vanishing of

correlations to obtain the correct Markovian approximation.

[N., Simonella, Velázquez RMP ’18]
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Kinetic description: φ(x) ∼ |x |−s for |x | large

Which is the fastest process determining particle deflections?

s > 1 s = 1 1/2 < s < 1

Boltzmann eq.
(TBG � TL)

Landau eq.
(TL � TBG )

Stochastic diff. eq. with correlations

x(τ + dτ)− x(τ) = v(τ)dτ

v(τ + dτ)− v(τ) = D(x(τ), v(τ); dτ)

D = O(dτβ) β ∈ (0, 1)

• binary collisions with single scatterers ⇒ linear Boltzmann eq.

• many small interactions before a binary collision ⇒ linear Landau eq.
(the deflections over times of order TL should be uncorrelated!!)

• if the lack of correlations does not take place ⇒ stochastic diff. eq.
(macroscopic deflections must be taken into account !)



Kinetic description: φ(x) ∼ |x |−s for |x | large

Which is the fastest process determining particle deflections?

s > 1 s = 1 1/2 < s < 1

Boltzmann eq.
(TBG � TL)

Landau eq.
(TL � TBG )

Stochastic diff. eq. with correlations

x(τ + dτ)− x(τ) = v(τ)dτ

v(τ + dτ)− v(τ) = D(x(τ), v(τ); dτ)

D = O(dτβ) β ∈ (0, 1)

Key tool: analysis of the correlations for the deflections

D(x0, v ; T̃L)=

∫ T̃L

0

∇xΦL (x0 + vt, ε)ω dt (T̃L = hTL)



Perspectives . . . . . .

• Rigorous derivation of the linear Landau eq. for Coulombian interactions

• Rigorous derivation of the linear Boltzmann eq. for φ(|x |) ∼ |x |−s , s > 1

• Extension to the analysis of long-range potentials in the nonlinear case.

• Analysis of the stochastic differential eq. with correlated noise (s ≤ 1
2
)



Coagulation vs. collision dynamics

Microscopic irreversibility vs. Microscopic reversibility

No Detailed Balance Detailed Balance



Coagulation processes in shear flows

• spherical particles in R3

• u (x) =
(
S̃x3, 0, 0

)
speed

S̃ = ∂u1
∂x3

shear coeff.

• position of particle center

x1 = x1,0 + Ux3t

• Collisions between pairs of particles with

different values of x3

⇒ instantaneous coalescence



Smoluchowski Equation in a shear flow (1916)

• Suitable rescaling for shear, particle density and volume fraction

(one collision for unit of time)

• The particle distribution in the space of positions and volumes f in the scaling

limit satisfies

∂t f (t, x , v) + Ux3∂x1 f (t, x , v) = 1
2

∫ v

0

K(v−w ,w)f (t, x , v−w)f (t, x ,w)dw

−
∫ ∞

0

K(v ,w)f (t, x , v)f (t, x ,w)dw

Coagulation kernel

K (v ,w) =
4

3
S(v

1
3 + w

1
3 )3

(collision frequency)

[Smoluchowski 1916]



A coalescing particle in a random background

• Random distribution of obstacles: {xj}j∈N positions, {ṽj}j∈N volumes

• Average no. of particles for unit of volume is 1. Volume fraction φ > 0

• {xk} ∼ P1 in R3 and {vk} ∼ G(v) prob. distr. in [0,∞). G(v) ∼ v−σ



A coalescing particle in a random background

• The tagged particle moves freely with speed Ũ along e1 = (1, 0, 0)

• (Ỹ0, Ṽ0) initial configuration. Ỹ (t) = X̃ (t)− Ũte1 (moving background)

• Merging dynamics: new volume Ṽ +
∑

j ṽj ; new position in the center of mass.



Kinematic of coalescing processes

Binary coagulation: [tagged particle with a single obstacle]

V = 4
3
πR3, v = 4

3
πr 3

−→

V ′ = V + v , R ′ = (r 3 + R3)
1
3

Multiple coagulation: merging operator M

M(Y ,V ;ω) =

(
VY +

∑
k∈J xkvk

V +
∑

k∈J vk
,V +

∑
k∈J

vk ;ω \ J

)



Linear Smoluchowski Equation in a shear flow

• Suitable rescaling for the speed of the tagged particle, position and sizes

(one collision for unit of time)

• The distribution function f for the particle position and volume in the scaling

limit satisfies

∂t f (Y ,V , t) =U

∫ π
2

0

dθ

∫ 2π

0

dϕ
[ ∫ V

0

dv K(V − v , v , θ)f (Y − v

V − v
R n(θ, ϕ),V − v , t)

−
∫ ∞

0

dv K(V , v , θ)f (Y ,V , t)
]
≡ Q[f ](Y ,V , t)

R =
(

3V
4π

) 1
3 , n (θ, ϕ) = (cos θ, sin θ cosϕ, sin θ sinϕ)

K(V , v , θ) =

(
3

4π

) 2
3

sin θ cos θG(v)(V
1
3 + v

1
3 )2 (coagulation kernel)



Features of the model

Main source of technical difficulties:

• coalescing particles could trigger sequences of coagulation events

(formation of an infinite cluster)

• the free flights between coagulation events become shorter

due to the increasing volume of the tagged particle

(runaway growth of the tagged particle in finite time)

Main feature of the CTP model:

• The displacement of the center of the tagged particle is not too large

as the size increases ; no finite time blow-up with probability one !



Main results

Global well-posedness

• If the coalescence events have a finite no. of steps with probability one

• If the total length of the free flights of the tagged particle is infinite with

probability one (
∑

j lj =∞)

⇒ the motion of the tagged particle is defined globally in time
with probability one.

Rigorous validation of the kinetic equation

f0(Y ,V ) : initial probability distribution f0 ∈ P(R3 × R+)

fφ(Y ,V , t) : sol. of the microscopic process fφ ∈ L∞([0,T );M+(R3×R+))

f (Y ,V , t) : weak sol. of the linear Smoluchowski equation

⇒ fφ(Y ,V , t)→ f (Y ,V , t) as φ→ 0



Main results

Global well-posedness
⇒ the motion of the tagged particle is defined globally in time

with probability one.

Rigorous validation of the kinetic equation

⇒ fφ(Y ,V , t)→ f (Y ,V , t) as φ→ 0

Asymptotic behavior of solutions for different values of the power law σ

Self-similarity for 5
3
< σ < 2: [Niethammer, N., Throm, Velázquez JDE ’18]

• Existence and uniqueness of self-similar profiles • Stability

Conjectures:

I σ ≤ 5
3
: instantaneous explosive growth of the volume of the tagged particle

I σ > 2: the volume of the tagged particle increases like t3 as t →∞
(critical exponents for the “fluctuations”)



Perspectives . . . . . .

• Characterization of the asymptotic behavior for the solutions (for different σ)

• Rigorous derivation of the nonlinear Smoluchowski eq. in a laminar shear flow

• Rigorous derivation of the Smoluchowski eq. for Brownian particles

(in the mass-dependent diffusivity and interaction radius case)



Thank you for your attention !!!
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