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Computability

Describe what is a computation.
Describe what runs a computation.

2 / 44



Compute? Infinite time Turing machines Some particularities of infinite time Conclusion

Ordinals: counting through the infinite
We denote ω the set of all natural numbers. But ω is not the only
infinite…

We can carry on counting!
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Compute

Sequence of instructions:
finite;
not ambiguous;
allows to solve a
problem.

Definition (Algorithm).

⇝
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Example: compute the n first terms of the hailtstone
sequence (Collatz conjecture)

Variables: counter k
for k from 0 to n do

if m is even then
m← m/2 ;

else
m← m× 3 + 1 ;

end
k← k + 1 ;

end
With n = 7 and m = 10 we obtain the sequence 10, 5, 16, 8, 4, 2,
1.
Open question (conjecture, 1952): for all m, does we always reach
a 1?
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Compute

theory

1936

Turing machine.

q0start

q1 H

0 | 1 ▶ 1 | 1 ◀0 | 1 ◀

1 | 1 ▶

0 . . . 0 0 1 1 1 0 0 . . .
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Timeline
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architecture

1936 1945

9 / 44



Compute? Infinite time Turing machines Some particularities of infinite time Conclusion

Timeline

theory

architecture

computer

1936 1945 1949

10 / 44



Compute? Infinite time Turing machines Some particularities of infinite time Conclusion

Timeline

theory

architecture

computer theory∞

1936 1945 1949 2000

11 / 44



Compute? Infinite time Turing machines Some particularities of infinite time Conclusion

theory∞

2000

Solve the Collatz conjecture.
For all the natural numbers, apply the algorithm.
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Motivations: build links between Computer Science and
Logic

Ordinals as time for computation.
Peculiar ordinal properties.
Proof of mathematical properties from an algorithmic point of
view.
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Ordinals

Transitive well-ordered set for the membership relation.

Definition (Ordinal).

0 := ∅
1 := {0} = {∅}

…
ω := {0, 1, 2, 3, · · · }

ω + 1 := {0, 1, 2, 3, · · · , ω}
…

ω.2 := {0, 1, 2, · · · , ω, ω +
1, ω + 2 . . . }

If α is an ordinal, then α ∪ {α},
denoted α+ 1 is called
successor of α and is an ordinal;
let A be a set of ordinal
numbers, then α =

∪
β∈A β is a

limit ordinal.
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Encoding countable ordinals

Countable ordinal = well order on N.

Let < be an order on the natural numbers.
The real r is a code for the order-type of < if, for i = ⟨x, y⟩,
the i-th bit of r is 1 if and only if x < y.

Codage 1 (Encoding countable ordinals by reals).

Example: ω.2 = ω + ω ⇝ even integers lower than odd integers.

0 = ⟨0, 0⟩ 1 = ⟨0, 1⟩ · · · r = 00110203041506171819110 · · ·
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Structure of infinite time Turing machines (ITTM)

3 right-infinite tapes
a single head
binary alphabet {0, 1}

additional special limit state
lim
computation steps are
indexed by ordinals

Configuration

input 0 1 0 0 1 0 0 . . .

q0

work 0 0 0 0 0 0 0 . . .

output 0 0 0 0 0 0 0 . . .
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Operating an ITTM

Configuration at α+ 1.

⇝

Configuration at α.

t = 420 0 1 0 0 1 0 0 . . .

q1

…

t = 007 0 0 1 1 1 0 0 . . .

q3
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Operating an ITTM

Configuration limit:
head: initial
position;
state: lim;
each cell: lim sup
of cell values
before.

t = ω 0 1 1 0 1 0 0 . . .
lim

↑↑ ↑↑ ↑ ↑ ↑ lim sup

t = 420 0 1 0 0 1 0 0 . . .

q1

…

t = 007 0 0 1 1 1 0 0 . . .

q3
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Halting

Machines halt when they reach the halting state.
We consider the strong stabilisation of cells at 0.

Either an ITTM halts in a countable numer of steps, either it
begins looping in a countable number of steps.

Theorem 1 (Hamkins, Lewis [HL00]).

We focus on the halting problem on 0.
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Clockable and writable ordinals

Two natural notions:

α clockable: there exists an ITTM that halts on input 000 . . .
in exactly α steps of computation.

Definition (Clockable ordinal).

α writable: there exists an ITTM that writes a code for α
on input 000 . . . and halts.

Definition (Writable ordinal).
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Supremum

The supremum of the clockable ordinals is equal to the supre-
mum of the writable ordinals. It is called λ.

Theorem 2 (Welch [Wel09]).

λ is a rather large countable ordinal…
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Let’s count!

Count with a clockable ordinal ⇝ Clock.
Like an hourglass, execute operations while clocking the desired
ordinal.

If p halts on 0 in α+n steps, then there exists p′ which halts
on 0 in α steps (and computes the same). ⇝ limit ordinals

Speed-up lemma (Hamkins, Lewis [HL00]).

Count with a writable ordinal ⇝ Empty an order.
It is about counting through the encoding of an ordinal.
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…

What about the particularities of these ordinals?
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Gap

There exist writable ordinals that are not clockable such that:
they form intervalles;
these intervalles have limit sizes.

Intervalles of not clockable ordinals.

Definition (Gap).
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Proof of gap existence

0 α β β + ω …

gap checking

p

…

…

…

Simulation of all programs on input 0.
In blue: halting programs. In red: limit step, begins a gap?
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Proof of gap existence

But …does the algorithm halt?

Halting of the algorithm, proof by contradiction:
Above λ, by definition, there are no clockable ordinals.
If no gaps before λ, thus beginnning of gap detected at λ.
Contradiction.
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What can we say about gaps?
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ωω

α

β0

· · ·

· · ·

· · ·

0

β0

λ

regular structure}
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ωω

α

β0

· · ·

· · ·

· · ·

· · ·

0

β0

λ

admissible = beginning of gaps}
gaps containing admissible ordinals}

36 / 44



Compute? Infinite time Turing machines Some particularities of infinite time Conclusion

infinite time Turing machines
=

model for algorithms proving logical properties
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Thank you for your attention.
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Computational power of ITTM

decidable

decidable∞
Σ1
1

Σ1
2

Π1
1

Π1
2

∆1
1

arithmetic

∆1
2

s.d.∞ co s.d.∞

Figure: Projective hierarchy
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Admissible ordinals

A limit ordinal α is admissible if and only if there doesn’t
exist a function f from γ < α to α such that:

f is unbounded (no greatest element in α) and
f is Σ1-definable in Lα.

Proposition 3.
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Constructible hierarchy

L0 = ∅;
Lα+1 = def(Lα);
if α is a limit ordinal, Lα =

∪
β<α Lβ;

Definition (Constructible hierarchy L).

Application: reals of Lλ are the writable reals.
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Definability

Let M be a set and F be the set of the formulas of the language
{∈}.

X is definable on a model (M,∈) if:
there exists a formula φ ∈ F,
there exists a1, . . . , an ∈ M

such that X = {x ∈ M : φ(x, a1, . . . , an) is true in (M,∈)}.

Definition (Definability).

def(M) = {X ⊂ M : X is definable on (M,∈)}.
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