Random Schrödinger Operators arising in the study of aperiodic media

Constandza ROJAS-MOLINA
Heinrich-Heine-Universität Düsseldorf
joint work with P. Müller (LMU)

Konstanz, July 2018
Outline

• Introduction
 • Random Schrödinger operators
 • Aperiodic media and Delone operators

• Results
 • Localization for Delone operators
Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

Example: a material with crystalline atomic structure (lattice).

- **Conductor**: Electrons propagate through the material.
- **Insulator**: Electrons do not propagate.

Electric current

Electrons can propagate in space as time evolves

\sim electronic transport
Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

What happens when there are impurities in the crystal?
Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

P.W. Anderson discovered in 1958 that disorder in the crystal was enough to suppress the propagation of electrons → Anderson localization (Nobel 1977)

Mathematics of electronic transport in a solid

An electron moving in a material is represented by a wave function \(\psi(t, x) \) in a Hilbert space \(\mathcal{H} \), where \(|\psi(t, x)|^2 \) represents the probability of finding the particle in \(x \) at time \(t \), therefore \(\int |\psi(t, x)|^2 = 1 \).

This function solves Schrödinger’s equation:

\[
\partial_t \psi(t, x) = -iH\psi(t, x),
\]

\[
\psi(t, x) = e^{-itH}\psi(0, x),
\]

where \(x \) is in a \(d \)-dimensional space and \(H = -\Delta + V \) is a one-particle self-adjoint Schrödinger operator acting on \(\mathcal{H} \).

\[
H = -\Delta + V
\]

- kinetic energy
- interaction with the environment

spectrum of \(H \)
- real energies
Mathematics of electronic transport in a disordered solid

The Anderson Model: on each point of the lattice we place a potential, which can be ● or ○.

We consider many possible configurations. Every configuration of the potential is a vector \(\omega \) in a probability space \((\Omega, P) \).

We get a random operator \(\omega \mapsto H_\omega = -\Delta + V_\omega \), where

\[
V_\omega(x) = \sum_{j \in \mathbb{Z}^d} \omega_j \delta_j(x),
\]

with \(\omega_j \in \{●, ○\} \) bounded, independent, identically distributed random variables.

For typical \(\omega \), \(\psi_\omega(t, x) \) does not propagate in space as \(t \) grows \(\sim \) absence of transport.
Mathematical theory of random Schrödinger operators

Localization (insulator)
bound state \(\psi_\omega(t, x) = e^{-itH_\omega} \psi(0, x) \) is confined in space for all times, for most \(\omega \).
\(H_\omega \) has *pure point spectrum*

Delocalization (conductor)
extended state \(\psi_\omega(t, x) \) propagates in space as time evolves.
continuous spectrum
Mathematical theory of random Schrödinger operators

Localization (insulator)
bound state $\psi_\omega(t, x) = e^{-i t H_\omega} \psi(0, x)$ is confined in space for all times, for most ω.
H_ω has pure point spectrum

Delocalization (conductor)
extended state $\psi_\omega(t, x)$ propagates in space as time evolves.
continuous spectrum

Methods to prove localization in arbitrary dimension combine functional analysis and probability tools to show the decay of eigenfunctions,

- Multiscale Analysis (Fröhlich-Spencer).
- Fractional Moment Method (Aizenman-Molchanov).
Mathematical theory of random Schrödinger operators

Localization (insulator)
bound state $\psi_\omega(t, x) = e^{-itH_\omega} \psi(0, x)$ is confined in space for all times, for most ω. H_ω has *pure point spectrum*

Delocalization (conductor)
extended state $\psi_\omega(t, x)$ propagates in space as time evolves. *continuous spectrum*

Methods to prove localization in arbitrary dimension combine functional analysis and probability tools to show *the decay of eigenfunctions*,

- Multiscale Analysis (Fröhlich-Spencer).
- Fractional Moment Method (Aizenman-Molchanov).

Ergodic properties: consequence of translation invariance on average of H_ω.

Energy spectrum of H_ω
Mathematical theory of random Schrödinger operators

Localization (insulator)

bound state $\psi_\omega(t, x) = e^{-i t H_\omega} \psi(0, x)$ is confined in space for all times, for most ω.

H_ω has pure point spectrum

Delocalization (conductor)

extended state $\psi_\omega(t, x)$ propagates in space as time evolves.

continuous spectrum

Methods to prove localization in arbitrary dimension combine functional analysis and probability tools to show the decay of eigenfunctions,

- Multiscale Analysis (Fröhlich-Spencer).
- Fractional Moment Method (Aizenman-Molchanov).

Ergodic properties: consequence of translation invariance on average of H_ω.

- The spectrum as a set is independent of the realization ω.
Localization

We say that the operator H_ω exhibits (dynamical) localization in an interval I if the following holds for any $\varphi \in \mathcal{H}$ with compact support, and any $p \geq 0$,

$$\mathbb{E} \left(\sup_t \left\| |X|^{p/2} e^{-itH_\omega} \chi_I(H_\omega)\varphi \right\|^2 \right) < \infty$$
Localization

We say that the operator H_ω exhibits \textit{(dynamical) localization} in an interval I if the following holds for any $\phi \in H$ with compact support, and any $p \geq 0$,

$$\mathbb{E} \left(\sup_t \left\| |X|^{p/2} e^{-itH_\omega} \chi_I(H_\omega) \phi \right\|^2 \right) < \infty$$

Theorem

Consider the operator $H_\omega = -\Delta + \lambda V_\omega$, with $\lambda > 0$. Then,

i. for $\lambda > 0$ large enough, H_ω exhibits localization throughout its spectrum.

ii. for fixed λ, H_ω exhibits localization in intervals I at spectral edges.
Localization

We say that the operator H_ω exhibits (dynamical) localization in an interval I if the following holds for any $\varphi \in \mathcal{H}$ with compact support, and any $p \geq 0$,

$$\mathbb{E} \left(\sup_t \| |X|^p/2 \ e^{-i t H_\omega} \chi_I(H_\omega) \varphi \|^2 \right) < \infty$$

Theorem

Consider the operator $H_\omega = -\Delta + \lambda V_\omega$, with $\lambda > 0$. Then,

i. for $\lambda > 0$ large enough, H_ω exhibits localization throughout its spectrum.

ii. for fixed λ, H_ω exhibits localization in intervals I at spectral edges.

Proof based on resolvent estimates. Key idea: Suppose ψ satisfies "$H_\omega \psi = E \psi". We split the space into a cube Λ, its complement Λ^c, and its boundary Γ_Λ,

$$(H_\omega,\Lambda \oplus H_\omega,\Lambda^c - E) \psi = -\Gamma_\Lambda \psi.$$

Therefore, for $x \in \Lambda$ we have

$$\psi(x) = -\left((H_\omega,\Lambda - E)^{-1} \Gamma_\Lambda \psi \right)(x)$$

$$= -\sum_{(k,m) \in \partial \Lambda, \ k \in \partial - \Lambda, \ m \in \partial - \Lambda} \langle \delta_x, (H_\omega,\Lambda - E)^{-1} \delta_k \rangle \psi(m),$$
Break of lattice structure: aperiodic media

A way to model quasicrystals is using a Delone set D of parameters (r, R): a discrete point set in space that is uniformly discrete (r) and relatively dense (R).
Electronic Transport in aperiodic media

A Delone set D of parameters (r, R) is a discrete point set in space that is uniformly discrete (r) and relatively dense (R).

A Delone set D of parameters (r, R) is a discrete point set in space that is uniformly discrete (r) and relatively dense (R).

![Delone set](image1.png) ![Penrose tiling](image2.png) ![lattice](image3.png)

Delone set Penrose tiling lattice

Al$_{71}$Ni$_{24}$Fe$_5$
Steinhardt et al. 2015
Electronic Transport in aperiodic media

A Delone set D of parameters (r, R) is a discrete point set in space that is uniformly discrete (r) and relatively dense (R).

The Delone operator:
models the energy of an electron moving in a material where atoms sit on a Delone set.

$$H_D = -\Delta + V_D, \quad V_D(x) = \sum_{\gamma \in D} \delta_\gamma(x),$$

Let \mathcal{D} be the space of Delone sets and consider $D \mapsto H_D$. The operator has generically singular continuous spectrum (e.g. Lenz-Stollmann’06, and collaborators).
What about \textit{localization} for Delone operators?
Is the "geometric diversity" in the space of Delone sets rich enough to produce pure point spectrum? and dynamical localization?
What about *localization* for Delone operators?

Is the "geometric diversity" in the space of Delone sets rich enough to produce pure point spectrum? and dynamical localization?

Theorem (Müller-RM)

Given a Delone set D, there exists a family of Delone sets D_n such that

1. D_n converges to D in the topology of Delone sets.
2. H_{D_n} converges to H_D in the sense of resolvents.
3. H_{D_n} exhibits localization at the bottom of the spectrum for all $n \in \mathbb{N}$.
Delone operators as random operators: Bernoulli r.v.

Let \mathcal{D} be the space of all Delone sets. Take $D \in \mathcal{D}$ and write $D = D_0 \cup D_1$, with $D_0, D_1 \in \mathcal{D}$.

We define the random potential

$$V_{D_1^\omega}(x) = \sum_{\gamma \in D_1} \omega_\gamma u(x - \gamma)$$

$x \in \mathbb{R}^d$, with $\omega_\gamma \in \{0, 1\}$, and consider the operator

$$H_{D^\omega} = -\Delta + V_{D_0} + V_{D_1^\omega} \text{ on } L^2(\mathbb{R}^d)$$

Theorem (Müller-RM)

Let $D \in \mathcal{D}$. There exists a set $\hat{\Omega} \subset \Omega$ of full probability measure such that H_{D^ω}, $\omega \in \hat{\Omega}$ exhibits localization at the bottom of the spectrum.
Key ingredient of the proof: a *Quantitative Unique Continuation Principle*.

Theorem (RM-Veselić’12)

For ψ eigenfunction of H_Λ and D a *Delone set* of parameters (r', R') and $B(\gamma, \delta)$ a ball around the point γ. There exists a constant $C_{UCP} > 0$, depending on R' but independent of Λ, such that,

$$\sum_{\gamma \in D \cap \Lambda} \| \psi \|_{B(\gamma, \delta)} \geq C_{UCP} \| \psi \|_{\Lambda}.$$

With large probability, $V_{\omega, \Lambda} \geq V_{\Lambda}$, V_{Λ} a Delone potential. Then, the effect of adding a Delone potential to $-\Delta + V_D$ is

$$\inf \sigma((-\Delta + V_0)_{\Lambda} + V_{\Lambda}) \geq \inf \sigma(-\Delta + V_0) + C_{UCP} \cdot C_u.$$

Consequence: H_{D_ω} restricted to a cube Λ with Dirichlet b.c. has a spectral gap above E_0, *with good probability*

\Rightarrow Decay of the resolvent by the Combes-Thomas estimate

\Rightarrow localization via the multiscale analysis.
Thank you!