
Random Schrödinger Operators arising in the
study of aperiodic media

Constanza ROJAS-MOLINA
Heinrich-Heine-Universität Düsseldorf

joint work with P. Müller (LMU)

Konstanz, July 2018

0 / 12



Outline

• Introduction
• Random Schrödinger operators
• Aperiodic media and Delone operators

• Results
• Localization for Delone operators

1 / 12



Introduction

Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

electric current

electrons propagate

electrons do not propagate

through the material

conductor

insulator

Example : a material with crystalline atomic structure
(lattice).

electrons can propagate in space as time evolves
∼ electronic transport
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Introduction Random Operators

Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

electric current

electrons propagate

electrons do not propagate

through the material

conductor

insulator

What happens when there are impurities in the crystal ?
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Introduction Random Operators

Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

electric current

electrons propagate

electrons do not propagate

through the material

conductor

insulator

P.W. Anderson discovered in 1958 that disorder in the
crystal was enough to suppress the propagation of

electrons→ Anderson localization (Nobel 1977)
1958 “Absence of diffusion in certain random lattices”, Phys. Rev.
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Introduction Random Operators

Mathematics of electronic transport in a solid

An electron moving in a material is represented by a wave function ψ(t,x) in
a Hilbert space H , where |ψ(t,x)|2 represents the probability of finding the
particle in x at time t , therefore

∫ |ψ(t,x)|2 = 1.

This function solves Schrödinger’s equation :

∂t ψ(t,x) =−iHψ(t,x),

ψ(t,x) = e−itH
ψ(0,x),

where x is in a d-dimensional space and H =−∆ + V is a one-particle
self-adjoint Schrödinger operator acting on H .

H = −∆ + V

kinetic energy
interaction with
the environment

real energies

spectrum of H
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Introduction Random Operators

Mathematics of electronic transport in a disordered solid

The Anderson Model : on each point of the lattice we
place a potential, which can be • or •.

We consider many possible configurations.
Every configuration of the potential is a
vector ω in a probability space (Ω,P).

We get a random operator ω 7→ Hω =−∆ + Vω, where

Vω(x) = ∑
j∈Zd

ωjδj (x),

with ωj ∈ {•,•} bounded, independent, identically distributed random
variables.

For typical ω, ψω(t,x) does not propagate in
space as t grows ∼ absence of transport
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Introduction Random Operators

Mathematical theory of random Schrödinger operators

Localization (insulator)
bound state ψω(t,x) = e−itHω ψ(0,x) is
confined in space for all times, for most ω.
Hω has pure point spectrum

Delocalization (conductor)
extended state ψω(t,x) propagates
in space as time evolves.
continuous spectrum

Methods to prove localization in arbitrary dimension combine functional
analysis and probability tools to show the decay of eigenfunctions,

• Multiscale Analysis (Fröhlich-Spencer).

• Fractional Moment Method (Aizenman-Molchanov).

Ergodic properties : consequence of translation invariance on average of Hω.

spectrum of Hω

Energy
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analysis and probability tools to show the decay of eigenfunctions,

• Multiscale Analysis (Fröhlich-Spencer).

• Fractional Moment Method (Aizenman-Molchanov).

Ergodic properties : consequence of translation invariance on average of Hω.

• The spectrum as a set is independent of the realization ω.
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Introduction Random Operators

Localization
We say that the operator Hω exhibits (dynamical) localization in an interval I if
the following holds for any ϕ ∈H with compact support, and any p ≥ 0,

E
(

sup
t

∥∥∥|X |p/2 e−itHω χI(Hω)ϕ

∥∥∥
2
)
< ∞

Theorem
Consider the operator Hω =−∆ + λVω, with λ > 0. Then,

i. for λ > 0 large enough, Hω exhibits localization throughout its spectrum.

ii. for fixed λ, Hω exhibits localization in intervals I at spectral edges.

Proof based on resolvent estimates. Key idea : Suppose ψ satisfies "Hωψ = Eψ". We
split the space into a cube Λ, its complement Λc , and its boundary ΥΛ,

(Hω,Λ⊕Hω,Λc −E)ψ =−ΥΛψ.

Therefore, for x ∈ Λ we have

ψ(x) =−
(
(Hω,Λ−E)−1ΥΛψ

)
(x)

=− ∑
(k ,m)∈∂Λ,

k∈∂−Λ,m∈∂−Λ

〈δx ,(Hω,Λ−E)−1
δk 〉ψ(m),
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Introduction Aperiodic media

Break of lattice structure : aperiodic media

1984 (’82) D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, “Metallic phase
with long-range orientational order and no translation symmetry”, Phys. Rev.
Letters. (Schechtman : Nobel 2011).

A way to model quasicrystals is using a Delone set D of parameters (r ,R) : a
discrete point set in space that is uniformly discrete (r ) and relatively dense
(R).
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Introduction Aperiodic media

Electronic Transport in aperiodic media
A Delone set D of parameters (r ,R) is a discrete point set in space that is
uniformly discrete (r ) and relatively dense (R).

Delone set Penrose tiling lattice

ΛR Λr

Al71Ni24Fe5
Steinhardt et al. 2015

The Delone operator :
models the energy of an electron moving in a material
where atoms sit on a Delone set.

HD =−∆ + VD, VD(x) = ∑
γ∈D

δγ(x),

Let D be the space of Delone sets and consider D 7→ HD . The operator has
generically singular continuous spectrum (e.g. Lenz-Stollmann’06, and
collaborators).

9 / 12



Introduction Aperiodic media

Electronic Transport in aperiodic media
A Delone set D of parameters (r ,R) is a discrete point set in space that is
uniformly discrete (r ) and relatively dense (R).

Delone set Penrose tiling lattice

ΛR Λr

Al71Ni24Fe5
Steinhardt et al. 2015

The Delone operator :
models the energy of an electron moving in a material
where atoms sit on a Delone set.

HD =−∆ + VD, VD(x) = ∑
γ∈D

δγ(x),

Let D be the space of Delone sets and consider D 7→ HD . The operator has
generically singular continuous spectrum (e.g. Lenz-Stollmann’06, and
collaborators).

9 / 12



Results

What about localization for Delone operators ?

Is the "geometric diversity" in the space of Delone sets rich enough to
produce pure point spectrum ? and dynamical localization ?

Theorem (Müller-RM)
Given a Delone set D, there exists a family of Delone sets Dn such that

i. Dn converges to D in the topology of Delone sets.

ii. HDn converges to HD in the sense of resolvents.

iii. HDn exhibits localization at the bottom of the spectrum for all n ∈ N.
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Results

Delone operators as random operators : Bernoulli r.v.

Let D be the space of all Delone sets.
Take D ∈ D and write D = D0∪D1,
with D0,D1 ∈ D.
We define the random potential

VDω
1

(x) = ∑
γ∈D1

ωγu(x− γ)

x ∈ Rd , with ωγ ∈ {0,1}, and
consider the operator

HDω =−∆ + VD0 + VDω
1

onL2(Rd )

D0

D1

D = D0
⋃
D1

Theorem (Müller-RM)
Let D ∈ D. There exists a set Ω̂⊂ Ω of full probability measure such that
HDω , ω ∈ Ω̂ exhibits localization at the bottom of the spectrum.
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Results

Key ingredient of the proof : a Quantitative Unique Continuation Principle.

Theorem (RM-Veselić’12)
For ψ eigenfunction of HΛ and D a Delone set of parameters (r’,R’) and
B(γ,δ) a ball around the point γ. There exists a constant CUCP > 0,
depending on R′ but independent of Λ, such that,

∑
γ∈D∩Λ

‖ψ‖B(γ,δ) ≥ CUCP‖ψ‖Λ.

With large probability, Vω,Λ ≥ VΛ, VΛ a Delone potential. Then, the effect of
adding a Delone potential to −∆ + VD0 is

infσ((−∆ + V0)Λ + VΛ)≥ infσ(−∆ + V0) + CUCP ·Cu.

Consequence : HDω restricted to a cube Λ with Dirichlet b.c. has a spectral
gap above E0, with good probability
⇒ Decay of the resolvent by the Combes-Thomas estimate
⇒ localization via the multiscale analysis.
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Thank you !
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