Random Schrödinger Operators arising in the study of aperiodic media

Constanza ROJAS-MOLINA Heinrich-Heine-Universität Düsseldorf joint work with P. Müller (LMU)

Konstanz, July 2018

Outline

- Introduction
 - Random Schrödinger operators
 - Aperiodic media and Delone operators
- Results
 - Localization for Delone operators

Introduction

Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

Example : a material with crystalline atomic structure (lattice).

electrons can propagate in space as time evolves \sim electronic transport

Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

What happens when there are impurities in the crystal?

Electronic transport in a material

Electrons in a material, as time evolves, can either propagate or not.

P.W. Anderson discovered in 1958 that disorder in the crystal was enough to suppress the propagation of electrons→ Anderson localization (Nobel 1977)

1958 "Absence of diffusion in certain random lattices", Phys. Rev.

Mathematics of electronic transport in a solid

An electron moving in a material is represented by a wave function $\psi(t, x)$ in a Hilbert space \mathcal{H} , where $|\psi(t, x)|^2$ represents the probability of finding the particle in *x* at time *t*, therefore $\int |\psi(t, x)|^2 = 1$.

This function solves Schrödinger's equation :

$$\partial_t \Psi(t, x) = -iH\Psi(t, x),$$

 $\Psi(t, x) = e^{-itH}\Psi(0, x),$

where *x* is in a *d*-dimensional space and $H = -\Delta + V$ is a one-particle *self-adjoint Schrödinger operator* acting on \mathcal{H} .

Mathematics of electronic transport in a disordered solid

The Anderson Model : on each point of the lattice we place a potential, which can be • or •.

We consider many possible configurations. Every configuration of the potential is a vector ω in a probability space (Ω, \mathbb{P}) .

We get a random operator $\omega \mapsto \mathcal{H}_{\omega} = -\Delta + \mathcal{V}_{\omega}$, where

$$V_{\omega}(x) = \sum_{j \in \mathbb{Z}^d} \omega_j \delta_j(x),$$

with $\omega_j \in \{\bullet, \bullet\}$ bounded, independent, identically distributed random variables.

For typical ω , $\psi_{\omega}(t, x)$ does not propagate in space as *t* grows ~ absence of transport

Introduction Random Operators

Mathematical theory of random Schrödinger operators

Localization (insulator) bound state $\psi_{\omega}(t, x) = e^{-itH_{\omega}}\psi(0, x)$ is confined in space for all times, for most ω . H_{ω} has *pure point spectrum*

Delocalization (conductor) extended state $\psi_{\omega}(t, x)$ propagates in space as time evolves. *continuous spectrum*

Mathematical theory of random Schrödinger operators

Localization (insulator) bound state $\psi_{\omega}(t, x) = e^{-itH_{\omega}}\psi(0, x)$ is confined in space for all times, for most ω . H_{ω} has *pure point spectrum*

Delocalization (conductor) extended state $\psi_{\omega}(t, x)$ propagates in space as time evolves. *continuous spectrum*

$$\bigvee$$

Methods to prove localization in arbitrary dimension combine functional analysis and probability tools to show *the decay of eigenfunctions*,

- Multiscale Analysis (Fröhlich-Spencer).
- Fractional Moment Method (Aizenman-Molchanov).

Mathematical theory of random Schrödinger operators

Localization (insulator) bound state $\psi_{\omega}(t, x) = e^{-itH_{\omega}}\psi(0, x)$ is confined in space for all times, for most ω . H_{ω} has *pure point spectrum*

Delocalization (conductor) extended state $\psi_{\omega}(t, x)$ propagates in space as time evolves. *continuous spectrum*

$$\bigvee$$

Methods to prove localization in arbitrary dimension combine functional analysis and probability tools to show *the decay of eigenfunctions*,

- Multiscale Analysis (Fröhlich-Spencer).
- Fractional Moment Method (Aizenman-Molchanov).

Ergodic properties : consequence of translation invariance on average of H_{ω} .

Mathematical theory of random Schrödinger operators

Localization (insulator) bound state $\psi_{\omega}(t, x) = e^{-itH_{\omega}}\psi(0, x)$ is confined in space for all times, for most ω . H_{ω} has *pure point spectrum*

Delocalization (conductor) extended state $\psi_{\omega}(t, x)$ propagates in space as time evolves. *continuous spectrum*

$$\bigvee$$

Methods to prove localization in arbitrary dimension combine functional analysis and probability tools to show *the decay of eigenfunctions*,

- Multiscale Analysis (Fröhlich-Spencer).
- Fractional Moment Method (Aizenman-Molchanov).

Ergodic properties : consequence of translation invariance on average of H_{ω} .

The spectrum as a set is independent of the realization ω.

Localization

We say that the operator H_{ω} exhibits (dynamical) localization in an interval *I* if the following holds for any $\phi \in \mathcal{H}$ with compact support, and any $p \ge 0$,

$$\mathbb{E}\left(\sup_{t}\left\||X|^{p/2}e^{-itH_{\omega}}\chi_{I}(H_{\omega})\varphi\right\|^{2}\right)<\infty$$

Localization

We say that the operator H_{ω} exhibits (dynamical) localization in an interval *I* if the following holds for any $\phi \in \mathcal{H}$ with compact support, and any $p \ge 0$,

$$\mathbb{E}\left(\sup_{t}\left\|\left|X\right|^{p/2}e^{-it\mathcal{H}_{\omega}}\chi_{l}(\mathcal{H}_{\omega})\varphi\right\|^{2}\right)<\infty$$

Theorem

Consider the operator $H_{\omega} = -\Delta + \lambda V_{\omega}$, with $\lambda > 0$. Then,

- i. for $\lambda > 0$ large enough, H_{ω} exhibits localization throughout its spectrum.
- ii. for fixed λ , H_{ω} exhibits localization in intervals I at spectral edges.

Localization

We say that the operator H_{ω} exhibits (dynamical) localization in an interval *I* if the following holds for any $\phi \in \mathcal{H}$ with compact support, and any $p \ge 0$,

$$\mathbb{E}\left(\sup_{t}\left\|\left|X\right|^{p/2}e^{-it\mathcal{H}_{\omega}}\chi_{I}(\mathcal{H}_{\omega})\varphi\right\|^{2}\right)<\infty$$

Theorem

Consider the operator $H_{\!\omega}=-\Delta+\lambda V_{\!\omega},$ with $\lambda>0.$ Then,

- i. for $\lambda > 0$ large enough, H_{ω} exhibits localization throughout its spectrum.
- ii. for fixed λ , H_{ω} exhibits localization in intervals I at spectral edges.

Proof based on resolvent estimates. Key idea : Suppose ψ satisfies " $H_{\omega}\psi = E\psi$ ". We split the space into a cube Λ , its complement Λ^c , and its boundary Υ_{Λ} ,

$$(H_{\omega,\Lambda} \oplus H_{\omega,\Lambda^c} - E)\psi = -\Upsilon_{\Lambda}\psi.$$

Therefore, for $x \in \Lambda$ we have

$$\begin{split} \Psi(x) &= -\left((H_{\omega,\Lambda} - E)^{-1}\Upsilon_{\Lambda}\Psi\right)(x) \\ &= -\sum_{\substack{(k,m) \in \partial \Lambda, \\ k \in \partial - \Lambda, m \in \partial - \Lambda}} \langle \delta_x, (H_{\omega,\Lambda} - E)^{-1}\delta_k \rangle \Psi(m), \end{split}$$

Break of lattice structure : aperiodic media

1984 ('82) D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, *"Metallic phase with long-range orientational order and no translation symmetry"*, Phys. Rev. Letters. (Schechtman : Nobel 2011).

A way to model quasicrystals is using a Delone set *D* of parameters (r, R): a discrete point set in space that is uniformly discrete (r) and relatively dense (R).

Electronic Transport in aperiodic media

A Delone set *D* of parameters (r, R) is a discrete point set in space that is uniformly discrete (r) and relatively dense (R).

 $Al_{71}Ni_{24}Fe_5$ Steinhardt et al. 2015

Electronic Transport in aperiodic media

A Delone set *D* of parameters (r, R) is a discrete point set in space that is uniformly discrete (r) and relatively dense (R).

 $Al_{71}Ni_{24}Fe_5$ Steinhardt et al. 2015

The Delone operator :

models the energy of an electron moving in a material where atoms sit on a Delone set.

$$H_D = -\Delta + V_D, \quad V_D(x) = \sum_{\gamma \in D} \delta_{\gamma}(x),$$

Let \mathbb{D} be the space of Delone sets and consider $D \mapsto H_D$. The operator has generically singular continuous spectrum (e.g. Lenz-Stollmann'06, and collaborators).

What about *localization* for Delone operators?

Is the "geometric diversity" in the space of Delone sets rich enough to produce pure point spectrum? and dynamical localization?

What about *localization* for Delone operators?

Is the "geometric diversity" in the space of Delone sets rich enough to produce pure point spectrum? and dynamical localization?

Theorem (Müller-RM)

Given a Delone set D, there exists a family of Delone sets D_n such that

- i. D_n converges to D in the topology of Delone sets.
- ii. H_{D_n} converges to H_D in the sense of resolvents.
- iii. H_{D_n} exhibits localization at the bottom of the spectrum for all $n \in \mathbb{N}$.

Results

Delone operators as random operators : Bernoulli r.v.

Let \mathbb{D} be the space of all Delone sets. Take $D \in \mathbb{D}$ and write $D = D_0 \cup D_1$, with $D_0, D_1 \in \mathbb{D}$.

We define the random potential

$$V_{D_1^{\omega}}(x) = \sum_{\gamma \in D_1} \omega_{\gamma} u(x-\gamma)$$

 $x \in \mathbb{R}^d$, with $\omega_\gamma \in \{0,1\}$, and consider the operator

$$H_{D^{\omega}} = -\Delta + V_{D_0} + V_{D_1^{\omega}} \quad \text{on } L^2(\mathbb{R}^d)$$

Theorem (Müller-RM)

Let $D \in \mathbb{D}$. There exists a set $\hat{\Omega} \subset \Omega$ of full probability measure such that $H_{D^{\omega}}, \omega \in \hat{\Omega}$ exhibits localization at the bottom of the spectrum.

Key ingredient of the proof : a Quantitative Unique Continuation Principle.

Theorem (RM-Veselić'12)

For ψ eigenfunction of H_{Λ} and D a Delone set of parameters (r',R') and $B(\gamma, \delta)$ a ball around the point γ . There exists a constant $C_{UCP} > 0$, depending on R' but independent of Λ , such that,

$$\sum_{\boldsymbol{\gamma} \in D \cap \Lambda} \| \boldsymbol{\Psi} \|_{B(\boldsymbol{\gamma}, \delta)} \geq C_{UCP} \| \boldsymbol{\Psi} \|_{\Lambda}.$$

With large probability, $V_{\omega,\Lambda} \ge V_{\Lambda}$, V_{Λ} a Delone potential. Then, the effect of adding a Delone potential to $-\Delta + V_{D_0}$ is

$$\inf \sigma((-\Delta + V_0)_{\Lambda} + V_{\Lambda}) \geq \inf \sigma(-\Delta + V_0) + C_{UCP} \cdot C_u.$$

Consequence : $H_{D^{(0)}}$ restricted to a cube Λ with Dirichlet b.c. has a spectral gap above E_0 , with good probability

- \Rightarrow Decay of the resolvent by the Combes-Thomas estimate
- \Rightarrow localization via the multiscale analysis.

Thank you !