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Symmetries of a vector space

Let k be a �eld and let V be a vector space over k .

Then Sym(V ) = GLk(V ) is the collection of maps α : V → V such

that:

• for all u, v ∈ V , one has α(u + v) = α(u) + α(v);

• for all λ ∈ k and v ∈ V , one has α(λv) = λα(v);

• the map α is bijective.

If V has �nite dimension n over k , then GLk(V ) ∼= GLn(k).
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Symmetries of �eld extensions

Let `/k be an extension of �elds.

Then Sym(`/k) = Autk(`) is the collection of maps α : `→ ` such
that:

• α ∈ GLk(`);

• for all x , y ∈ `, one has

α(xy) = α(x)α(y).

(⇒ for all x ∈ k , one has α(x) = x)

If the extension `/k is Galois, then Gal(`/k) = Autk(`).
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Let G be a group. Then Sym(G ) = Aut(G ) consists of all maps

α : G → G such that:

• for all g , h ∈ G , one has α(gh) = α(g)α(h);

• the map α is bijective.

Example:

• Aut({1}) = {id};
• Aut(Z) = {± id};
• Aut(Z/nZ) ∼= (Z/nZ)∗.
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Example 2

Let G be a �nitely generated group. Then

Aut(G ) is cyclic ⇒

G is one between

• Z/2Z;
• Z/4Z;
• Z/pkZ, for p odd and k ≥ 0;

• Z.



Example 3

Let G be a group and assume that

• G has cardinality 729 = 36.

• G is 2-generated.

• Aut(G ) has cardinality 104976.

Then G is unique up to isomorphism.



Non-Example 3

Let G be a group and assume that

• G has cardinality 729 = 36.

• G is 2-generated.

• Aut(G ) has cardinality 104976.

Then there are 100 possible isomorphism classes for G .
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PB: Does G even exist?
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Let G be a �nite group. An automorphism α of G is intense if

for all H ≤ G there exists g ∈ G such that α(H) = gHg−1.
Write α ∈ Int(G ).

Motivation: Intense automorphisms appear naturally as solutions

to a certain cohomological problem. They (surprisingly!) give rise

to a very rich theory.

Example:

• Every automorphism of a cyclic group is intense.

• Inner automorphisms are intense.
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Intense triples

An intense triple is a triple (p,G , α) such that

• p is a prime number.

• G is a �nite p-group.

• α 6= 1 belongs to C (or to a conjugate).

Intense triples are quite rare: if a group occurs in an intense triple,

then its structure is almost uniquely determined by p and its class.

There are no intense triples with p = 2.
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Equivalent triples

Example:

Let p be an odd prime and let n ∈ Z>0.
For all α ∈ F∗p \ {1}, the triple (p,Fn

p, α) is intense.

Two intense triples (p,G , α) and (q,G ′, β) are equivalent if there
exists an isomorphism σ : G → G ′ such that β = σασ−1. It follows
that p = q.

Let T = {[p,G , α] | p,G , α . . .} denote the set of equivalence

classes of intense triples.
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Abelian groups

Let p be a prime number and let Zp denote the ring of p-adic

integers. De�ne ω(F∗p) = {α ∈ Z∗p | αp−1 = 1}.
Note that ω(F∗p) ∼= F∗p and that every abelian p-group has a natural

structure of Zp-module.

Proposition

Assume that:

• p is odd.

• G 6= 1 is a �nite abelian p-group.

• α ∈ ω(F∗p) \ {1}. ( Example: α = −1 )

Then [p,G , α] ∈ T and int(G ) = p − 1.
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The lower central series

Let G be a �nite group.

• If x , y ∈ G , then [x , y ] = xyx−1y−1.

• If H,K ≤ G , then [H,K ] = 〈[x , y ] | x ∈ H, y ∈ K 〉.

The lower central series of G is given by

• G1 = G .

• Gi+1 = [G ,Gi ].

If G is a p-group, there exists k such that Gk = 1 and the

(nilpotency) class of G is

c = #{i | Gi 6= Gi+1} = −1+min{k | Gk = 1}.
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Strategy

For all c ∈ Z≥0, let T [c] = {[p,G , α] ∈ T | G has class c}.

Then:

• T =
⊔

c T [c].

• T [0] = ∅.

• T [1] = {[p,G , α] as in the Proposition}.

• T [c] for c = 2 ?

• T [c] for c ≥ 3 ?



Class 2

Let p be an odd prime and let n ∈ Z>0. De�ne (ES(p, n), ∗) as
• ES(p, n) = Fp × Fn

p × Fn
p.

• (z1, y1, x1) ∗ (z2, y2, x2) = (z1 + z2 + x1 · y2, y1 + y2, x1 + x2).

Exercise:

• (ES(p, n), ∗) has order p2n+1 and class 2.

• Let λ ∈ F∗p. Then αλ : (z , y , x) 7→ (λ2z , λy , λx) is an intense

automorphism of (ES(p, n), ∗).

Proposition

T [2] = {[p, (ES(p, n), ∗), αλ] | p is odd, n ∈ Z>0, λ ∈ F∗p \ {1}}.
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Class at least 3

Given a p-group G , let (Gi )i≥1 be its lower central series. Let

(fi )i≥1 be the sequence, with values in Z≥0, such that the order of

Gi/Gi+1 is equal to pfi .

Proposition

Let c ≥ 3 and assume [p,G , α] ∈ T [c]. The following hold.

• The order of α is equal to 2 and int(G ) = 2.

• For all i , the quotient Gi/Gi+1 is a vector space over Fp and α
induces multiplication by (−1)i on it.

• (fi )i≥1 = (2, 1, 2, 1, . . . , 2, 1, f , 0, 0, 0, . . .) with f ∈ {0, 1, 2}.
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An intense graph

Fix p and de�ne Tp = {[p,G , α] | G , α, . . .}.

There is a well-de�ned sequence of sets

. . . −→ Tp[c + 1]
πc+1−−−→ Tp[c]

πc−→ Tp[c − 1] −→ . . .

where, for all c , the map πc is de�ned by

πc : [p,G , α] 7→ [p,G/Gc , α].

We de�ne a graph Gp = (Ep,Vp), where

• Vp = Tp.
• (v ,w) ∈ Ep if there exists c such that πc(v) = w .
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The graph for p = 3



Example 3

Let G be a group. Assume that

• G has cardinality 729 = 36.

• G is 2-generated.

• Aut(G ) has cardinality 104976.

Then G is unique up to isomorphism.



The graph for p > 3



The in�nite case

Theorem
Let p be an odd prime and let c ∈ Z>0. Then the following hold.

• If c ≥ 3, then Tp[c] is �nite.

• Tp[c] = ∅ ⇐⇒ p = 3 and c ≥ 5.

• If p > 3, then # lim←−
c

Tp[c] = 1.

If lim←−
c

Tp[c] = {[p,G (c), α(c)]}c>0, we want to determine the

pro-p-group Glim = lim←−
c

G (c) and the automorphism αlim of Glim

that is induced by the automorphisms α(c).
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A pro�nite example

Let p > 3 be a prime and let t ∈ Zp satisfy ( t
p
) = −1. Set

Ap = Zp + Zpi+ Zpj+ Zpij with de�ning relations i2 = t, j2 = p,

and ji = −ij. Then Ap is a non-commutative local ring such that

Ap/jAp
∼= Fp2 . The involution · : Ap → Ap is de�ned by

a = s + ti+ uj+ v ij 7→ a = s − ti− uj− v ij.

Let G = {a ∈ A∗p | aa = 1 and a ≡ 1 mod jAp} and, for all a ∈ G ,

de�ne α(a) = iai−1.

Theorem
G is a pro-p-group and α is topologically intense, i.e. for any closed

subgroup H of G there exists g ∈ G such that α(H) = gHg−1.
Moreover, (G , α) ∼= (Glim, αlim).




