INTENSE AUTOMORPHISMS OF GROUPS

Mima Stanojkovski

FRAUEN IN DER MATHEMATIK Konstanz, 24 January 2017

▲ロト ▲■ト ▲ヨト ▲ヨト ニヨー のへで

Joint work with

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Hendrik Lenstra (UL)

Andrea Lucchini (UniPD)

★ロト ★課 ト ★注 ト ★注 ト 二注

Jon González Sánchez (EHU)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

э

Groups and symmetries

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Let X be an object and let Sym(X) be the group of its symmetries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let X be an object and let Sym(X) be the group of its symmetries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• D_{2n}

Let X be an object and let Sym(X) be the group of its symmetries.

▲ロト ▲■ト ▲ヨト ▲ヨト ニヨー のへで

- S_n
- D_{2n}
- GL(*V*)

Let X be an object and let Sym(X) be the group of its symmetries.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

- S_n
- D_{2n}
- GL(*V*)
- $Gal(\ell/k)$

Let X be an object and let Sym(X) be the group of its symmetries.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

- S_n
- D_{2n}
- GL(*V*)
- Gal (ℓ/k)
- Aut(*G*)

- •
- - .
 - - •

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ のへで

▲□▶ ▲■▶ ▲≡▶ ▲≡▶ = 差 = のへで

▲□▶ ▲■▶ ▲≡▶ ▲≡▶ = 差 = のへで

◆□ > ◆■ > ◆目 > ◆目 > ○ ● ○ ○ ○ ○

▲□▶ ▲■▶ ▲≡▶ ▲≡▶ = 差 = のへで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- •
- - _

• •

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The group of symmetries is $Sym(X) = S_6$

The group of symmetries is $Sym(X) = S_6$ which has 720 elements.

イロト 不得 トイヨ トイヨ ト シック

◆□> ◆檀> ◆注> ◆注> 二注

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

Э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

The group of symmetries is $Sym(X) = D_{12}$

The group of symmetries is $Sym(X) = D_{12}$ which has 12 elements.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

The group of symmetries is $Sym(X) = {id_X, \rho}.$

イロト 不得 トイヨ トイヨ ト シック

The group of symmetries is $Sym(X) = {id_X, \rho}.$

イロト 不得 トイヨ トイヨ ト シック

The group of symmetries is $Sym(X) = {id_X}.$

Symmetries of a vector space

Let k be a field and let V be a vector space over k.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Symmetries of a vector space

Let k be a field and let V be a vector space over k.

Then Sym(V) = $GL_k(V)$ is the collection of maps $\alpha : V \to V$ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• for all
$$u, v \in V$$
, one has $\alpha(u + v) = \alpha(u) + \alpha(v)$;

Symmetries of a vector space

Let k be a field and let V be a vector space over k.

Then Sym $(V) = GL_k(V)$ is the collection of maps $\alpha : V \to V$ such that:

ション ふゆ アメリア メリア しょうくう

- for all $u, v \in V$, one has $\alpha(u + v) = \alpha(u) + \alpha(v)$;
- for all $\lambda \in k$ and $v \in V$, one has $\alpha(\lambda v) = \lambda \alpha(v)$;
Symmetries of a vector space

Let k be a field and let V be a vector space over k.

Then Sym(V) = $GL_k(V)$ is the collection of maps $\alpha : V \to V$ such that:

ション ふゆ アメリア メリア しょうくう

- for all $u, v \in V$, one has $\alpha(u + v) = \alpha(u) + \alpha(v)$;
- for all $\lambda \in k$ and $v \in V$, one has $\alpha(\lambda v) = \lambda \alpha(v)$;
- the map α is bijective.

Symmetries of a vector space

Let k be a field and let V be a vector space over k.

Then Sym(V) = $GL_k(V)$ is the collection of maps $\alpha : V \to V$ such that:

- for all $u, v \in V$, one has $\alpha(u + v) = \alpha(u) + \alpha(v)$;
- for all $\lambda \in k$ and $v \in V$, one has $\alpha(\lambda v) = \lambda \alpha(v)$;
- the map lpha is bijective.

If V has finite dimension n over k, then $GL_k(V) \cong GL_n(k)$.

ション ふゆ アメリア メリア しょうくう

Let ℓ/k be an extension of fields.

Let ℓ/k be an extension of fields.

Then $Sym(\ell/k) = Aut_k(\ell)$ is the collection of maps $\alpha : \ell \to \ell$ such that:

イロト 不得 トイヨ トイヨ ト シック

• $\alpha \in \operatorname{GL}_k(\ell);$

Let ℓ/k be an extension of fields.

Then $Sym(\ell/k) = Aut_k(\ell)$ is the collection of maps $\alpha : \ell \to \ell$ such that:

ション ふゆ アメリア メリア しょうくう

- $\alpha \in \operatorname{GL}_k(\ell);$
- for all $x, y \in \ell$, one has $\alpha(xy) = \alpha(x)\alpha(y)$.

Let ℓ/k be an extension of fields.

Then $Sym(\ell/k) = Aut_k(\ell)$ is the collection of maps $\alpha : \ell \to \ell$ such that:

・ロト ・ 中下・ モー・ ・ モー・ うくつ

- $\alpha \in \mathsf{GL}_k(\ell);$
- for all $x, y \in \ell$, one has $\alpha(xy) = \alpha(x)\alpha(y)$.

 $(\Rightarrow$ for all $x \in k$, one has $\alpha(x) = x)$

Let ℓ/k be an extension of fields.

Then $Sym(\ell/k) = Aut_k(\ell)$ is the collection of maps $\alpha : \ell \to \ell$ such that:

- $\alpha \in \mathsf{GL}_k(\ell);$
- for all $x, y \in \ell$, one has $\alpha(xy) = \alpha(x)\alpha(y)$.

 $(\Rightarrow$ for all $x \in k$, one has $\alpha(x) = x)$

Let ℓ/k be an extension of fields.

Then $Sym(\ell/k) = Aut_k(\ell)$ is the collection of maps $\alpha : \ell \to \ell$ such that:

- $\alpha \in \operatorname{GL}_k(\ell);$
- for all $x, y \in \ell$, one has $\alpha(xy) = \alpha(x)\alpha(y)$.

 $(\Rightarrow$ for all $x \in k$, one has $\alpha(x) = x$)

ション・ 山口 マール シート シート シート

If the extension ℓ/k is Galois, then $Gal(\ell/k) = Aut_k(\ell)$.

Symmetries of groups

Let G be a group. Then Sym(G) = Aut(G) consists of all maps $\alpha : G \to G$ such that:

イロト 不得 トイヨ トイヨ ト シック

• for all $g, h \in G$, one has $\alpha(gh) = \alpha(g)\alpha(h)$;

Symmetries of groups

Let G be a group. Then Sym(G) = Aut(G) consists of all maps $\alpha : G \to G$ such that:

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

- for all $g,h\in {\sf G}$, one has lpha(gh)=lpha(g)lpha(h);
- the map α is bijective.

Symmetries of groups

Let G be a group. Then Sym(G) = Aut(G) consists of all maps $\alpha : G \to G$ such that:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

- for all $g, h \in G$, one has $\alpha(gh) = \alpha(g)\alpha(h)$;
- the map lpha is bijective.

Example:

- $Aut({1}) = {id};$
- Aut $(\mathbb{Z}) = \{\pm id\};$
- Aut $(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^*$.

From the symmetries to the group

・ロト ・ 中下・ モー・ ・ モー・ うくつ

Let G be a group. Then

 $\operatorname{Aut}(G) = 1 \Rightarrow$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let G be a group. Then

$$\operatorname{Aut}(G) = 1 \Rightarrow \#G = 1 \text{ or } \#G = 2.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Let G be a group. Then

Aut(G) is cyclic \Rightarrow

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let G be a group. Then

Aut(G) is cyclic \Rightarrow G is abelian.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let G be a finitely generated group. Then

Aut(G) is cyclic \Rightarrow G is cyclic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let G be a finitely generated group. Then

G is one between

 $\operatorname{Aut}(G)$ is cyclic \Rightarrow

- Z/2Z;
- Z/4Z;
- $\mathbb{Z}/p^k\mathbb{Z}$, for p odd and $k \ge 0$;

イロト 不得 トイヨ トイヨ ト シック

• Z.

Let G be a group and assume that

- G has cardinality $729 = 3^6$.
- G is 2-generated.
- Aut(G) has cardinality 104976.

Then G is unique up to isomorphism.

イロト 不得 トイヨ トイヨ ト シック

Non-Example 3

Let G be a group and assume that

- G has cardinality $729 = 3^6$.
- G is 2-generated.
- Aut(G) has cardinality 104976.

Then there are 100 possible isomorphism classes for G.

・ロト ・ 中下・ モー・ ・ モー・ うくつ

General idea

Conditions on the structure of Aut(G)

General idea

Conditions on the structure of Aut(G) \downarrow Restrictions to the structure of G

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

General idea

Conditions on the structure of Aut(G) \downarrow Restrictions to the structure of G \downarrow PB: Does G even exist?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Intense automorphisms of groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intense automorphisms

Let G be a finite group. An automorphism α of G is intense if for all $H \leq G$ there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Write $\alpha \in Int(G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intense automorphisms

Let G be a finite group. An automorphism α of G is **intense** if for all $H \leq G$ there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Write $\alpha \in Int(G)$.

Motivation: Intense automorphisms appear naturally as solutions to a certain cohomological problem. They (surprisingly!) give rise to a very rich theory.

ション・ 山口 マール シート シート シート

Example:

- Every automorphism of a cyclic group is intense.
- Inner automorphisms are intense.

Intensity

Let p be a prime number and let G be a finite p-group.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Intensity

Let p be a prime number and let G be a finite p-group. Then $\operatorname{Int}(G)\cong P
times C$

イロト 不得 トイヨ トイヨ ト シック

where

- *P* is a *p*-group.
- C is a subgroup of \mathbb{F}_p^* .

Intensity

Let p be a prime number and let G be a finite p-group. Then $Int(G) \cong P \rtimes C$

イロト 不得 トイヨ トイヨ ト シック

where

- P is a p-group.
- C is a subgroup of \mathbb{F}_p^* .

The intensity of G is int(G) = #C.

The problem

Can we classify all *p*-groups *G* satisfying int(G) > 1?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The problem

Can we classify all *p*-groups *G* satisfying int(G) > 1?

YES!

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Intense triples

An intense triple is a triple (p, G, α) such that

- *p* is a prime number.
- *G* is a finite *p*-group.
- $\alpha \neq 1$ belongs to *C* (or to a conjugate).

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

Intense triples

An intense triple is a triple (p, G, α) such that

- *p* is a prime number.
- *G* is a finite *p*-group.
- $\alpha \neq 1$ belongs to C (or to a conjugate).

Intense triples are quite rare: if a group occurs in an intense triple, then its structure is almost uniquely determined by p and its *class*.

イロト (理) (ヨ) (ヨ) (ヨ) ()

Intense triples

An intense triple is a triple (p, G, α) such that

- *p* is a prime number.
- *G* is a finite *p*-group.
- $\alpha \neq 1$ belongs to C (or to a conjugate).

Intense triples are quite rare: if a group occurs in an intense triple, then its structure is almost uniquely determined by p and its *class*.

・ロト ・ 中下・ モー・ ・ モー・ うくつ

There are no intense triples with p = 2.

Equivalent triples

Example:

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. For all $\alpha \in \mathbb{F}_p^* \setminus \{1\}$, the triple $(p, \mathbb{F}_p^n, \alpha)$ is intense.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへぐ

Equivalent triples

Example:

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. For all $\alpha \in \mathbb{F}_p^* \setminus \{1\}$, the triple $(p, \mathbb{F}_p^n, \alpha)$ is intense.

Two intense triples (p, G, α) and (q, G', β) are **equivalent** if there exists an isomorphism $\sigma : G \to G'$ such that $\beta = \sigma \alpha \sigma^{-1}$. It follows that p = q.

・ロト ・ 中下・ モー・ ・ モー・ うくつ

Let $\mathcal{T} = \{[p, G, \alpha] \mid p, G, \alpha ...\}$ denote the set of equivalence classes of intense triples.
Abelian groups

Let p be a prime number and let \mathbb{Z}_p denote the ring of p-adic integers. Define $\omega(\mathbb{F}_p^*) = \{ \alpha \in \mathbb{Z}_p^* \mid \alpha^{p-1} = 1 \}.$

Note that $\omega(\mathbb{F}_p^*) \cong \mathbb{F}_p^*$ and that every abelian *p*-group has a natural structure of \mathbb{Z}_p -module.

イロト 不得 トイヨ トイヨ ト シック

Abelian groups

Let p be a prime number and let \mathbb{Z}_p denote the ring of p-adic integers. Define $\omega(\mathbb{F}_p^*) = \{ \alpha \in \mathbb{Z}_p^* \mid \alpha^{p-1} = 1 \}.$

Note that $\omega(\mathbb{F}_p^*) \cong \mathbb{F}_p^*$ and that every abelian *p*-group has a natural structure of \mathbb{Z}_p -module.

(ロ) (型) (ヨ) (ヨ) (ヨ) (マ)

Proposition

Assume that:

- p is odd.
- $G \neq 1$ is a finite abelian p-group.
- $\alpha \in \omega(\mathbb{F}_p^*) \setminus \{1\}.$ (<u>Example</u>: $\alpha = -1$)

Then $[p, G, \alpha] \in \mathcal{T}$ and int(G) = p - 1.

The lower central series

Let G be a finite group.

- If $x, y \in G$, then $[x, y] = xyx^{-1}y^{-1}$.
- If $H, K \leq G$, then $[H, K] = \langle [x, y] \mid x \in H, y \in K \rangle$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The lower central series

Let G be a finite group.

- If $x, y \in G$, then $[x, y] = xyx^{-1}y^{-1}$.
- If $H, K \leq G$, then $[H, K] = \langle [x, y] \mid x \in H, y \in K \rangle$.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The lower central series of G is given by

- $G_1 = G$.
- $G_{i+1} = [G, G_i].$

The lower central series

Let G be a finite group.

- If $x, y \in G$, then $[x, y] = xyx^{-1}y^{-1}$.
- If $H, K \leq G$, then $[H, K] = \langle [x, y] \mid x \in H, y \in K \rangle$.

The lower central series of G is given by

- $G_1 = G$.
- $G_{i+1} = [G, G_i].$

If G is a p-group, there exists k such that $G_k = 1$ and the **(nilpotency) class** of G is

$$c = \#\{i \mid G_i \neq G_{i+1}\} = -1 + \min\{k \mid G_k = 1\}.$$

ション・ 山口 マール シート シート シート

Strategy

For all $c \in \mathbb{Z}_{\geq 0}$, let $\mathcal{T}[c] = \{[p, G, \alpha] \in \mathcal{T} \mid G \text{ has class } c\}$.

イロト 不得 トイヨ トイヨ ト シック

Then:

- $\mathcal{T} = \bigsqcup_{c} \mathcal{T}[c].$
- $\mathcal{T}[0] = \emptyset$.
- $\mathcal{T}[1] = \{[p, G, \alpha] \text{ as in the Proposition}\}.$
- $\mathcal{T}[c]$ for c = 2 ?
- $\mathcal{T}[c]$ for $c \geq 3$?

Class 2

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. Define $(\mathrm{ES}(p,n),*)$ as

•
$$\operatorname{ES}(p,n) = \mathbb{F}_p \times \mathbb{F}_p^n \times \mathbb{F}_p^n$$
.

•
$$(z_1, y_1, x_1) * (z_2, y_2, x_2) = (z_1 + z_2 + x_1 \cdot y_2, y_1 + y_2, x_1 + x_2).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Class 2

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. Define $(\mathrm{ES}(p,n),*)$ as

•
$$\operatorname{ES}(p,n) = \mathbb{F}_p \times \mathbb{F}_p^n \times \mathbb{F}_p^n$$

• $(z_1, y_1, x_1) * (z_2, y_2, x_2) = (z_1 + z_2 + x_1 \cdot y_2, y_1 + y_2, x_1 + x_2).$

<u>Exercise</u>:

- (ES(p, n), *) has order p^{2n+1} and class 2.
- Let $\lambda \in \mathbb{F}_p^*$. Then $\alpha_{\lambda} : (z, y, x) \mapsto (\lambda^2 z, \lambda y, \lambda x)$ is an intense automorphism of $(\mathrm{ES}(p, n), *)$.

・ロト ・ 中下・ モー・ ・ モー・ うくつ

Class 2

Let p be an odd prime and let $n \in \mathbb{Z}_{>0}$. Define $(\mathrm{ES}(p,n),*)$ as

•
$$\operatorname{ES}(p,n) = \mathbb{F}_p \times \mathbb{F}_p^n \times \mathbb{F}_p^n$$
.

• $(z_1, y_1, x_1) * (z_2, y_2, x_2) = (z_1 + z_2 + x_1 \cdot y_2, y_1 + y_2, x_1 + x_2).$

<u>Exercise</u>:

- $(\mathrm{ES}(p,n),*)$ has order p^{2n+1} and class 2.
- Let $\lambda \in \mathbb{F}_p^*$. Then $\alpha_{\lambda} : (z, y, x) \mapsto (\lambda^2 z, \lambda y, \lambda x)$ is an intense automorphism of $(\mathrm{ES}(p, n), *)$.

Proposition

 $\mathcal{T}[2] = \{ [p, (\mathrm{ES}(p, n), *), \alpha_{\lambda}] \mid p \text{ is odd}, n \in \mathbb{Z}_{>0}, \lambda \in \mathbb{F}_p^* \setminus \{1\} \}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ りゅつ

Class at least 3

Given a *p*-group *G*, let $(G_i)_{i\geq 1}$ be its lower central series. Let $(f_i)_{i\geq 1}$ be the sequence, with values in $\mathbb{Z}_{\geq 0}$, such that the order of G_i/G_{i+1} is equal to p^{f_i} .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Class at least 3

Given a *p*-group *G*, let $(G_i)_{i\geq 1}$ be its lower central series. Let $(f_i)_{i\geq 1}$ be the sequence, with values in $\mathbb{Z}_{\geq 0}$, such that the order of G_i/G_{i+1} is equal to p^{f_i} .

Proposition

Let $c \geq 3$ and assume $[p, G, \alpha] \in \mathcal{T}[c]$. The following hold.

- The order of α is equal to 2 and int(G) = 2.
- For all i, the quotient G_i/G_{i+1} is a vector space over 𝔽_p and α induces multiplication by (−1)ⁱ on it.
- $(f_i)_{i\geq 1} = (2, 1, 2, 1, \dots, 2, 1, f, 0, 0, 0, \dots)$ with $f \in \{0, 1, 2\}$.

Normal subgroups structure

 $f = 0 \qquad \qquad f = 1 \qquad \qquad f = 2$

◆□ > ◆■ > ◆目 > ◆目 > ○ ● ○ ○ ○ ○

An intense graph

Fix p and define $\mathcal{T}_p = \{ [p, G, \alpha] \mid G, \alpha, \ldots \}.$

There is a well-defined sequence of sets

$$\ldots \longrightarrow \mathcal{T}_{\rho}[c+1] \xrightarrow{\pi_{c+1}} \mathcal{T}_{\rho}[c] \xrightarrow{\pi_{c}} \mathcal{T}_{\rho}[c-1] \longrightarrow \ldots$$

where, for all c, the map π_c is defined by

$$\pi_{c}: [p, G, \alpha] \mapsto [p, G/G_{c}, \overline{\alpha}].$$

イロト 不得 トイヨ トイヨ ト シック

An intense graph

Fix p and define $\mathcal{T}_p = \{[p, G, \alpha] \mid G, \alpha, \ldots\}.$

There is a well-defined sequence of sets

$$\ldots \longrightarrow \mathcal{T}_{p}[c+1] \xrightarrow{\pi_{c+1}} \mathcal{T}_{p}[c] \xrightarrow{\pi_{c}} \mathcal{T}_{p}[c-1] \longrightarrow \ldots$$

where, for all c, the map π_c is defined by

$$\pi_{c}: [p, G, \alpha] \mapsto [p, G/G_{c}, \overline{\alpha}].$$

・ロト ・ 中下・ モー・ ・ モー・ うくつ

We define a graph $\mathcal{G}_{p} = (E_{p}, V_{p})$, where

The graph for p = 3

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Example 3

Let G be a group. Assume that

- G has cardinality $729 = 3^6$.
- G is 2-generated.
- Aut(G) has cardinality 104976.

Then G is unique up to isomorphism.

イロト 不得 トイヨ トイヨ ト シック

The graph for p > 3

The infinite case

Theorem

Let p be an odd prime and let $c \in \mathbb{Z}_{>0}$. Then the following hold.

イロト 不得 トイヨ トイヨ ト シック

- If $c \ge 3$, then $\mathcal{T}_p[c]$ is finite.
- $\mathcal{T}_p[c] = \emptyset \iff p = 3$ and $c \ge 5$.

• If
$$p > 3$$
, then $\# \varprojlim_c \mathcal{T}_p[c] = 1$.

The infinite case

Theorem

Let p be an odd prime and let $c \in \mathbb{Z}_{>0}$. Then the following hold.

• If $c \ge 3$, then $\mathcal{T}_p[c]$ is finite.

•
$$\mathcal{T}_p[c] = \emptyset \iff p = 3$$
 and $c \ge 5$.

• If
$$p > 3$$
, then $\# \varprojlim_c \mathcal{T}_p[c] = 1$.

If $\varprojlim_{c} \mathcal{T}_{p}[c] = \{[p, G^{(c)}, \alpha^{(c)}]\}_{c>0}$, we want to determine the pro-*p*-group $G_{lim} = \varprojlim_{c} G^{(c)}$ and the automorphism α_{lim} of G_{lim} that is induced by the automorphisms $\alpha^{(c)}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへぐ

A profinite example

Let p > 3 be a prime and let $t \in \mathbb{Z}_p$ satisfy $(\frac{t}{p}) = -1$. Set $A_p = \mathbb{Z}_p + \mathbb{Z}_p i + \mathbb{Z}_p j + \mathbb{Z}_p i j$ with defining relations $i^2 = t$, $j^2 = p$, and ji = -ij. Then A_p is a non-commutative local ring such that $A_p/jA_p \cong \mathbb{F}_{p^2}$. The involution $\overline{\cdot} : A_p \to A_p$ is defined by

$$a = s + ti + uj + vij \mapsto \overline{a} = s - ti - uj - vij$$

Let $G = \{a \in A_p^* \mid a\overline{a} = 1 \text{ and } a \equiv 1 \text{ mod } jA_p\}$ and, for all $a \in G$, define $\alpha(a) = iai^{-1}$.

Theorem

G is a pro-p-group and α is topologically intense, i.e. for any closed subgroup H of G there exists $g \in G$ such that $\alpha(H) = gHg^{-1}$. Moreover, $(G, \alpha) \cong (G_{lim}, \alpha_{lim})$.

ション ふゆ マ キャット ビー シンクション

▲ロト ▲■ト ▲ヨト ▲ヨト ニヨー のへで