On the diagonalizability of the Atkin U-operator for Drinfeld cusp forms

Maria Valentino

Konstanz: women in Mathematics University of Konstanz

• • • • • • • • • • •

- The modular group: $SL_2(\mathbb{Z}) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) | a, b, c, d \in \mathbb{Z}, ad bc = 1 \right\};$
- The upper half plane: $\mathcal{H} = \{z \in \mathbb{C} : Im(z) > 0\};\$
- Action of $SL_2(\mathbb{Z})$ on \mathcal{H} by Möbius transformations: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$.

Definition 1

Let k be an integer. A function $f: \mathcal{H} \to \mathbb{C}$ is a modular form of weight k if

1 f is holomorphic on \mathcal{H} ;

2 f is holomorphic at infinity;

3 $f(\gamma(z)) = (cz + d)^k f(z)$ for $\gamma \in SL_2(\mathbb{Z})$ and $z \in \mathcal{H}$.

- Fourier expansion: $f(z) = \sum_{n=0}^{\infty} a_n q^n$, $q = e^{2\pi i z}$;
- $M_k(SL_2(\mathbb{Z})) := \{ \text{set of modular forms of weight } k \};$
- $M_k(SL_2(\mathbb{Z}))$ is a finite dimensional vector space over \mathbb{C} .

$Definition \ 2$

A cusp form of weight k is a modular form of weight k whose Fourier expansion has leading coefficient $a_0 = 0$.

• $S_k(SL_2(\mathbb{Z})) := \{ \text{set of cusp forms of weight } k \}$ is finite dimensional vector space over \mathbb{C} .

イロト イヨト イヨト イヨト

• The principal congruence subgroup of level $N \in \mathbb{Z}^+$ is

$$\Gamma(N) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in SL_2(\mathbb{Z}) : \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \equiv \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}\right) \pmod{N} \right\} \,.$$

Definition 3

A subgroup Γ of $SL_2(\mathbb{Z})$ is a *congruence subgroup of level* N if $\Gamma(N) \subset \Gamma$ for some $N \in \mathbb{Z}^+$.

Definition 4

Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$ and let k be an integer. A function $f: \mathcal{H} \to \mathbb{C}$ is a modular form of weight k with respect to Γ if

- 1 f is holomorphic;
- 2 $(c'z+d')^{-k}f(\gamma(z))$ is holomorphic at infinity for all $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in SL_2(\mathbb{Z});$

3
$$f(\gamma(z)) = (cz+d)^k f(z)$$
 for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathcal{H}$.

If in addition,

4 $a_0 = 0$ in the Fourier expansion of $(c'z + d')^{-k} f(\gamma(z))$ for all $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in SL_2(\mathbb{Z}),$

then f is a cusp form of weight k with respect to Γ .

- $M_k(\Gamma) := \{ \text{set of modular forms of weight } k \} \text{ with respect to } \Gamma;$
- $S_k(\Gamma) := \{ \text{set of cusp forms of weight } k \} \text{ with respect to } \Gamma;$
- $M_k(\Gamma)$ and $S_k(\Gamma)$ are finite dimensional vector space over \mathbb{C} .

Maria Valentino (KCL)

na a

Definition 5

Let $N \in \mathbb{Z}^+$ and p a prime number. The *Hecke operator* T_p acts on $M_k(\Gamma)$ in the following way:

$$T_p f(z) = \begin{cases} \sum_{\substack{j=0\\p-1\\p=1}}^{p-k} p^{-k} f\left(\frac{z+j}{p}\right) + (Npz+p)^{-k} f\left(\frac{mpz+n}{Npz+p}\right) & p \nmid N \text{ and } mp-nN = 1\\ \sum_{\substack{p=1\\j=0}}^{p-k} p^{-k} f\left(\frac{z+j}{p}\right) & p \mid N \end{cases}$$

- When $p \mid N, U_p := T_p$ is called *Atkin operator*;
- Let $\Gamma = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in SL_2(\mathbb{Z}) : \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \equiv \left(\begin{smallmatrix} 1 & * \\ 0 & 1 \end{smallmatrix} \right) \pmod{N} \right\};$
- The Petersson inner product: $\langle , \rangle_{\Gamma} : S_k(\Gamma) \times S_k(\Gamma) \to \mathbb{C};$
- If $p \nmid N$ T_p on $S_k(\Gamma)$ is skew-Hermitian with respect to the Petersson inner product \implies If $p \nmid N$ T_p is always diagonalizable;
- U_p on $S_k(\Gamma)$ can fail to be diagonalizabile.

Question

What happens to U_p in the function field case?

(ロ) (日) (日) (日) (日)

- $F = \mathbb{F}_q(t), \ q = p^r, \ p \in \mathbb{Z}$ prime, $A = \mathbb{F}_q[t];$
- $F_{\infty} = \mathbb{F}_q((1/t)), A_{\infty} = \mathbb{F}_q[[1/t]], \mathbb{C}_{\infty} = \{\text{completion of an algebraic closure of } F_{\infty}\};$
- Drinfeld upper half-plane: $\Omega := \mathbb{P}^1(\mathbb{C}_\infty) \setminus \mathbb{P}^1(F_\infty)$ (rigid analytic);
- Action of $GL_2(F_{\infty})$ on Ω : $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d};$
- Let \mathfrak{n} be an ideal of A, then the *principal congruence subgroup of level* \mathfrak{n} is $\Gamma(\mathfrak{n}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(A) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{\mathfrak{n}} \right\};$
- A subgroup Γ of $GL_2(A)$ is called an *arithmetic subgroup* if there exists an ideal \mathfrak{n} of A such that Γ contains $\Gamma(\mathfrak{n})$ and such that this inclusion is of finite index;
- $\Gamma \setminus \mathbb{P}^1(F)$ has finite many elements called *cusps*;

$Definition \ 6$

A rigid analytic function $f: \Omega \to \mathbb{C}_{\infty}$ is called a *Drinfeld modular form* (DMF) of weight k and type m for Γ if

- 1 $f(\gamma z)(\det \gamma)^m(cz+d)^{-k} = f(z) \quad \forall \gamma \in \Gamma;$
- 2 f is holomorphic at all cusps.

Moreover, f is called a *cusp form*, respectively *double cusp form*, if it vanishes at all cusps to the order at least 1, respectively to the order at least 2.

- $M_{k,m}(\Gamma) := \{ \text{set of DMF of weight } k \text{ and type } m \text{ for } \Gamma \} \text{ finite dim. v.s over } \mathbb{C}_{\infty};$
- $S_{k,m}^i(\Gamma) := \{ \text{set of cusp forms (doubly) of weight } k \text{ and type } m \text{ for } \Gamma \} \text{ finite dim. v.s}$ over \mathbb{C}_{∞} .

Combinatorial counterpart of the Drinfeld upper half-plane

• $Z(F_{\infty})$ the scalar matrices of $GL_2(F_{\infty})$;

• Iwahori subgroup,
$$\mathfrak{I}(F_{\infty}) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in GL_2(A_{\infty}) \mid c \equiv 0 \mod \frac{1}{t} \right\};$$

- Bruhat-Tits tree \mathfrak{T} of $GL_2(F_{\infty})$:
 - T is a (q+1)-regual tree on which $GL_2(F_{\infty})$ acts transitively;
 - Vertices $X(\mathfrak{T}) = GL_2(F_\infty)/Z(F_\infty)GL_2(A_\infty)$
 - Oriented edges $Y(\mathfrak{T}) = GL_2(F_\infty)/Z(F_\infty)\mathfrak{I}(F_\infty)$
- The canonical map from $Y(\mathfrak{T})$ to $X(\mathfrak{T})$ associates with each oriented edge e its origin o(e);
- The edge \overline{e} is e with reversed orientation;
- A system of representatives of $X(\mathcal{T})$ and $Y(\mathcal{T})$

•
$$S_X := \left\{ v_{i,u} = \left(\begin{array}{cc} t^i & u \\ 0 & 1 \end{array} \right) \middle| i \in \mathbb{Z}, u \in F_{\infty}/t^i A_{\infty} \right\};$$

• $S_Y := S_X \cup S_X \left(\begin{array}{cc} 0 & 1 \\ \frac{1}{t} & 0 \end{array} \right);$

• For Γ arithmetic subgroup, the quotient tree $\Gamma \backslash \mathcal{T}$ is called *fundamental domain*.

(ロ) (日) (日) (日) (日)

- Let Γ be a p' torsion free and det $(\Gamma) = 1$;
- For $k \ge 0$ and $m \in \mathbb{Z}$, let V(k,m) be the (k-1)-dimensional vector space over \mathbb{C}_{∞} with a basis $\{x^j y^{k-2-j} : 0 \le j \le k-2\};$
- Action of $\gamma \in GL_2(F_\infty)$ on V(k,m) is given by $\gamma(x^j y^{k-2-j}) \mapsto \det(\gamma)^{m-1} (dx - by)^j (-cx + ay)^{k-2-j} \quad \forall \ 0 \leqslant j \leqslant k-2;$
- For every $\omega \in \operatorname{Hom}(V(k,m), \mathbb{C}_{\infty})$ we have an induced action of $GL_2(F_{\infty})$: $(\gamma \omega)(x^j y^{k-2-j}) = \det(\gamma)^{1-m} \omega((ax+by)^j (cx+dy)^{k-2-j})$ for $0 \leq j \leq k-2$.

Definition 7

A harmonic cocycle of weight k and type m for Γ is a function **c** from the set of directed edges of \mathcal{T} to $\operatorname{Hom}(V(k,m), \mathbb{C}_{\infty})$ satisfying:

- 1 Harmonicity: for all vertices v of $\mathfrak{T}: \sum_{e \mapsto v} \mathbf{c}(e) = 0$, where e runs over all edges in \mathfrak{T} with terminal vertex v;
- 2 For all edges e of \mathfrak{T} , $\mathbf{c}(\overline{e}) = -\mathbf{c}(e)$;
- 3 Γ -equivariancy: for all edges e and elements $\gamma \in \Gamma$, $\mathbf{c}(\gamma e) = \gamma(\mathbf{c}(e))$.
- $C^{har}_{k,m}(\Gamma):=$ space of harmonic cocycles of weight k and type m for Γ .

Theorem (Teitelbaum, 1991)

$$S^1_{k,m}(\Gamma) \simeq C^{har}_{k,m}(\Gamma)$$

- Let Γ be an arithmetic subgroup of level (t);
- Let \mathfrak{n} be an ideal of A and denote by $P_{\mathfrak{n}}$ its monic generator;
- The Hecke operator $\mathbf{T}_{\mathfrak{n}}$ acts on $f \in M_{k,m}(\Gamma)$ in the following way:

$$\mathbf{T}_{\mathfrak{n}}(f)(z) := P_{\mathfrak{n}}^{k-m} \sum_{\substack{\alpha, \delta \text{ monic} \\ \beta \in A, \deg(\beta) < \deg(\delta) \\ \alpha \delta = P_{\mathfrak{n}}, (\alpha) + (t) = A}} f\left(\frac{\alpha z + \beta}{\delta}\right);$$

• For n = (t) the Atkin U-operator in our context is:

$$U(f)(z) := \mathbf{T}_{(t)}(f)(z) = \sum_{\beta \in \mathbb{F}_q} f\left(\frac{z+\beta}{t}\right);$$

• Hecke action on harmonic cocycles in the following way:

$$U(\mathbf{c}(e)) = t^{k-m} \sum_{\beta \in \mathbb{F}_q} \left(\begin{array}{cc} 1 & \beta \\ 0 & t \end{array} \right)^{-1} \mathbf{c} \left(\left(\begin{array}{cc} 1 & \beta \\ 0 & t \end{array} \right) e \right)$$

・ロト ・日下・ ・ ヨト・

Cusp forms for $\Gamma_1(t)$

•
$$\Gamma_1(t) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(A) : a \equiv d \equiv 1 \text{ and } c \equiv 0 \pmod{t} \right\};$$

- dim_{\mathbb{C}_{∞}} $S^1_{k,m}(\Gamma_1(t)) = (k-1);$
- Fundamental domain:

$$\overline{e}_{-2} = \underbrace{\begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix}}_{v-1} \quad \overline{e}_{-1} = \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{0} \quad \overline{e}_{0} = \underbrace{\begin{pmatrix} 0 & t \\ 1 & 0 \end{pmatrix}}_{0} \quad \overline{e}_{1} = \underbrace{\begin{pmatrix} 0 & t^{2} \\ 1 & 0 \end{pmatrix}}_{v-2}$$

$$v_{-2} = \begin{pmatrix} 1 & 0 \\ 0 & t^{2} \end{pmatrix} \quad v_{-1} = \begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix} \quad v_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad v_{1} = \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \quad v_{2} = \begin{pmatrix} t^{2} & 0 \\ 0 & 1 \end{pmatrix}$$

$$e_{-2} = \overbrace{\begin{pmatrix} 1 & 0 \\ 0 & t^{2} \end{pmatrix}}_{0} \quad e_{-1} = \overbrace{\begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix}}_{0} \quad e_{0} = \overbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{0} \quad e_{1} = \overbrace{\begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix}}_{0}$$

• Stable edge:
$$\overline{e} := \overline{e}_{-1};$$

• For
$$j \in \{0, 1, \dots, k-2\}$$
, $\mathbf{c}_j(\overline{e})(X^i Y^{k-2-i}) = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$;

Theorem (Bandini, V., 2016)

The matrix associated to $\,U$ in the above context is

$$\begin{aligned} U(\mathbf{c}_{j}(\overline{e})) &= -(-t)^{j+1} {\binom{k-2-j}{j}} \mathbf{c}_{j}(\overline{e}) - t^{j+1} \sum_{h \neq 0} \left[{\binom{k-2-j-h(q-1)}{-h(q-1)}} \right] \\ &+ (-1)^{j+1} {\binom{k-2-j-h(q-1)}{j}} \mathbf{c}_{j+h(q-1)}(\overline{e}) \;. \end{aligned}$$

Theorem (Bandini, V. (2016))

With notations as above, we have:

1 If $q \ge k$, then U is diagonalizable and

$$U(\mathbf{c}_{j}(\overline{e})) = -(-t)^{j+1} {\binom{k-2-j}{j}} \mathbf{c}_{j}(\overline{e});$$

2 If k = q + 1, q + 2, then U is diagonalizable.

	Eigenvector	Eigenvalue
	$\mathbf{c}_0(\overline{e}) + \mathbf{c}_{q-1}(\overline{e})$	t
k=q+1	$\mathbf{c}_j(\overline{e}), \ 1 \leq j \leq q-2$	$-(-t)^{j+1}\binom{k-2-j}{j}$
	$\mathbf{c}_{q-1}(\overline{e})$	0
	$\mathbf{c}_0(\overline{e}) + \mathbf{c}_{q-1}(\overline{e})$	t
$k = q + 2, \ q \neq 2$	$\mathbf{c}_1(\overline{e})$	t^2
	$\mathbf{c}_j(\overline{e}), 2 \leqslant j \leqslant q-2$	$-(-t)^{j+1}\binom{k-2-j}{j}$
	$\mathbf{c}_{q-1}(\overline{e})$	0
	$t^{q-1}\mathbf{c}_1(\overline{e}) + \mathbf{c}_q(\overline{e})$	0
	$\mathbf{c}_0(\overline{e}) + \mathbf{c}_{q-1}(\overline{e})$	t
$k=q+2, \ q=2$	$\mathbf{c}_1(\overline{e})$	t^2
	$t^{q-1}\mathbf{c}_1(\overline{e}) + \mathbf{c}_q(\overline{e})$	0

・ロト ・日下・・ヨト

Theorem (Bandini, V. 2016)

With notations as above, let k = q + 3. Then, U is diagonalizable if and only if q is odd.

k = q + 3	Eigenvalue	Eigenvector
q=4	t	$\mathbf{c}_0 + \mathbf{c}_3$
	t^3	\mathbf{c}_2
	0	$t^3\mathbf{c}_2 + \mathbf{c}_5$
	0	c ₃
	$t^{7/2}$	$t^{3/2} \mathbf{c}_1 + \mathbf{c}_4$
q = 3	<i>+</i> 3	$-t\mathbf{c}_1+\mathbf{c}_3$
	U .	\mathbf{c}_2
	$-t^{3}$	$t\mathbf{c}_1 + \mathbf{c}_3$
	t	$c_0 + (t^2 + 1)c_2 + c_4$
	0	$t^2 \mathbf{c}_2 + \mathbf{c}_4$
q = 2	t	$c_0 - (t-1)^2 c_1 - (t-1) c_2 + c_3$
	0	$-t^2\mathbf{c}_1-t\mathbf{c}_2+\mathbf{c}_3$
	$t^{5/2}$	$t^{1/2}\mathbf{c}_1 + \mathbf{c}_2$

æ

・ロト ・日下・・ヨト

Conjecture (Bandini, V. 2016)

Let q be even. If $k \ge q+3$ and odd, then U is not diagonalizable.

- The characteristic polynomial is divisible by the factor $(x^2 + t^k)$;
- The c_j 's can be divided in classes (mod q-1) and every class is stable under the action of U;
- The associated matrix is divided in blocks $\pmod{q-1}$ and U is diagonalizable if and only of every block is;
- C_j the class of \mathbf{c}_j , i.e $C_j = {\mathbf{c}_j, \mathbf{c}_{j+(q-1)}, \dots };$

Theorem (Bandini, V. 2016)

Assume q even, $k \equiv 1 \pmod{2}$, with k > q + 3, and $|C_{\frac{k-1-q}{2}}| = 2$. Then the matrix associated to $C_{\frac{k-1-q}{2}}$ is not diagonalizable.

Proof.

$$\begin{pmatrix} 0 & t^{\frac{k+q-1}{2}} \\ t^{\frac{k+1-q}{2}} & 0 \end{pmatrix} \quad \Rightarrow \text{char. poly } X^2 - t^k = (X - t^{\frac{k}{2}})^2 \quad \Rightarrow \text{inseparable eigenvalue } t^{\frac{k}{2}}.$$

Theorem (Bandini, V. 2016)

Assume q even, $k \equiv 1 \pmod{2}$, with k > 3q - 3, and $|C_{\frac{k-3q+1}{2}}| = 4$. Then U is not diagonalizable.

•
$$\frac{k-3q+1}{2} + (q-1) = \frac{k-q-1}{2};$$

• M(j, n, q) matrix associated to the block C_j of size n (k = 2j + 2 + (n - 1)(q - 1));

Theorem (Bandini, V. 2016)

Let $n \in \mathbb{N}$ even, $q = 2^r$ and $0 \leq j \leq q - 2$. Then, for all $j \geq n$, the matrix M(j, n, q) is antidiagonal.

Corollary

With notation as in the previous theorem, M(j, n, q) is not diagonalizable.

13 / 14

References

- A. BANDINI, M. VALENTINO On the diagonalizability of the Atkin U operator for Drinfeld cusp forms, preprint (2016).
- F. DIAMOND, J. SHURMAN A first course in Modular forms, GTM **228**, Springer-Verlag (2005).
- J.T. TEITELBAUM The Poisson kernel for Drinfeld modular curves, J. Amer. Math. Soc. 4 (1991), no. 3, 491–511.

・ロト ・日下・ ・ ヨト