This result justifies why several authors define a locally convex space to be a t.v.s whose topology is induced by a family of seminorms (which is now evidently equivalent to Definition 4.1.11)

In the previous proofs we have used some interesting properties of semiballs in a vector space. For convenience, we collect them here together with some further ones which we will repeatedly use in the following.

Proposition 4.2.10. Let X be a vector space and p a seminorm on X. Then:

- a) \check{U}_p is absorbing and absolutely convex.
- $b) \ \forall r > 0, \ r \mathring{U}_p = \{ x \in X : p(x) < r \} = \mathring{U}_{\frac{1}{p}}.$
- c) $\forall x \in X, x + \mathring{U}_p = \{y \in X : p(y x) < 1\}.$
- d) If q is also a seminorm on X then: $p \leq q$ if and only if $\mathring{U}_q \subseteq \mathring{U}_p$.
- e) If $n \in \mathbb{N}$ and s_1, \ldots, s_n are seminorms on X, then their maximum s defined as $s(x) := \max_{i=1,\ldots,n} s_i(x), \forall x \in X$ is also seminorm on X and $\mathring{U}_s = \bigcap_{i=1}^n \mathring{U}_{s_i}$.

All the previous properties also hold for closed semballs.

Proof.

- a) This was already proved as part of Lemma 4.2.7.
- b) For any r > 0, we have

$$r\mathring{U}_{p} = \{rx \in X : p(x) < 1\} = \underbrace{\{y \in X : \frac{1}{r}p(y) < 1\}}_{\mathring{U}_{\frac{1}{r}p}} = \{y \in X : p(y) < r\}.$$

c) For any $x \in X$, we have

$$x + \mathring{U}_p = \{x + z \in X : p(z) < 1\} = \{y \in X : p(y - x) < 1\}.$$

- d) Suppose that $p \leq q$ and take any $x \in U_q$. Then we have q(x) < 1 and so $p(x) \leq q(x) < 1$, i.e. $x \in \mathring{U}_p$. Viceversa, suppose that $\mathring{U}_q \subseteq \mathring{U}_p$ holds and take any $x \in X$. We have that either q(x) > 0 or q(x) = 0. In the first case, for any $0 < \varepsilon < 1$ we get that $q\left(\frac{\varepsilon x}{q(x)}\right) = \varepsilon < 1$. Then $\frac{\varepsilon x}{q(x)} \in \mathring{U}_q$ which implies by our assumption that $\frac{\varepsilon x}{q(x)} \in \mathring{U}_p$ i.e. $p\left(\frac{\varepsilon x}{q(x)}\right) < 1$. Hence, $\varepsilon p(x) < q(x)$ and so when $\varepsilon \to 1$ we get $p(x) \leq q(x)$. If instead we are in the second case that is when q(x) = 0, then we claim that also p(x) = 0. Indeed, if p(x) > 0 then $q\left(\frac{x}{p(x)}\right) = 0$ and so $\frac{x}{p(x)} \in \mathring{U}_q$ which implies by our assumption that $\frac{x}{p(x)} \in \mathring{U}_p$, i.e. p(x) < p(x) which is a contradiction.
- e) It is easy to check, using basic properties of the maximum, that the subadditivity and the positive homogeneity of each s_i imply the same properties for s. In fact, for any $x, y \in X$ and for any $\lambda \in \mathbb{K}$ we get:

•
$$s(x+y) = \max_{i=1,\dots,n} s_i(x+y) \leq \max_{i=1,\dots,n} (s_i(x)+s_i(y))$$

 $\leq \max_{i=1,\dots,n} s_i(x) + \max_{i=1,\dots,n} s_i(y) = s(x) + s(y)$
• $s(\lambda x) = \max_{i=1,\dots,n} s_i(\lambda x) = |\lambda| \max_{i=1,\dots,n} s_i(x) = |\lambda| s(x).$
Moreover, if $x \in \mathring{U}_s$ then $\max_{i=1,\dots,n} s_i(x) < 1$ and so for all $i = 1,\dots,n$ we have $s_i(x) < 1$, i.e. $x \in \bigcap_{i=1}^n \mathring{U}_{s_i}$. Conversely, if $x \in \bigcap_{i=1}^n \mathring{U}_{s_i}$ then for all $i = 1,\dots,n$ we have $s_i(x) < 1$, i.e. $x \in \bigcap_{i=1}^n \mathring{U}_{s_i}$.

have $s_i(x) < 1$, i.e. $x \in \bigcap_{i=1}^n U_{s_i}$. Conversely, if $x \in \bigcap_{i=1}^n U_{s_i}$ then for all $i = 1, \ldots, n$ we have $s_i(x) < 1$. Since s(x) is the maximum over a finite number of terms, it will be equal to $s_j(x)$ for some $j \in \{1, \ldots, n\}$ and therefore $s(x) = s_j(x) < 1$, i.e. $x \in \mathring{U}_s$.

Proposition 4.2.11. Let X be a t.v.s. and p a seminorm on X. Then the following conditions are equivalent:

- a) the open unit semiball U_p of p is an open set.
- b) p is continuous at the origin.

c) the closed unit semiball U_p of p is a barrel neighbourhood of the origin.

d) p is continuous at every point.

Proof.

a) \Rightarrow b) Suppose that U_p is open in the topology on X. Then for any $\varepsilon > 0$ we have that $p^{-1}([0, \varepsilon[) = \{x \in X : p(x) < \varepsilon\} = \varepsilon U_p$ is an open neighbourhood of the origin in X. This is enough to conclude that $p : X \to \mathbb{R}^+$ is continuous at the origin.

 $b) \Rightarrow c)$ Suppose that p is continuous at the origin, then $U_p = p^{-1}([0,1])$ is a closed neighbourhood of the origin. Since U_p is also absorbing and absolutely convex by Proposition 4.2.10-a), U_p is a barrel.

 $c) \Rightarrow d$) Assume that c) holds and fix $o \neq x \in X$. Using Proposition 4.2.10 and Proposition 4.2.3, we get that for any $\varepsilon > 0$: $p^{-1}([-\varepsilon + p(x), p(x) + \varepsilon]) =$ $\{y \in X : |p(y) - p(x)| \le \varepsilon\} \supseteq \{y \in X : p(y - x) \le \varepsilon\} = x + \varepsilon U_p$, which is a closed neighbourhood of x since X is a t.v.s. and by the assumption c). Hence, p is continuous at x.

 $d) \Rightarrow a)$ If p is continuous on X then a) holds because the preimage of an open set under a continuous function is open and $\mathring{U}_p = p^{-1}([0,1[))$.

With such properties in our hands we are able to give a criterion to compare two locally convex topologies using their generating families of seminorms.

Theorem 4.2.12 (Comparison of l.c. topologies).

Let $\mathcal{P} = \{p_i\}_{i \in I}$ and $\mathcal{Q} = \{q_j\}_{j \in J}$ be two families of seminorms on the vector space X inducing respectively the topologies $\tau_{\mathcal{P}}$ and $\tau_{\mathcal{Q}}$, which both make X into a locally convex t.v.s.. Then $\tau_{\mathcal{P}}$ is finer than $\tau_{\mathcal{Q}}$ (i.e. $\tau_{\mathcal{Q}} \subseteq \tau_{\mathcal{P}}$) iff $\forall q \in \mathcal{Q} \ \exists n \in \mathbb{N}, i_1, \ldots, i_n \in I, C > 0$ s.t. $Cq(x) \leq \max_{k=1,\ldots,n} p_{i_k}(x), \forall x \in X.$

Proof.

Let us first recall that, by Theorem 4.2.9, we have that

$$\mathcal{B}_{\mathcal{P}} := \left\{ \bigcap_{k=1}^{n} \varepsilon \mathring{U}_{p_{i_k}} : i_1, \dots, i_n \in I, n \in \mathbb{N}, \varepsilon > 0, \varepsilon \in \mathbb{R} \right\}$$

and

$$\mathcal{B}_{\mathcal{Q}} := \left\{ \bigcap_{k=1}^{n} \varepsilon \mathring{U}_{q_{j_k}} : j_1, \dots, j_n \in J, n \in \mathbb{N}, \varepsilon > 0, \varepsilon \in \mathbb{R} \right\}$$

are respectively bases of neighbourhoods of the origin for $\tau_{\mathcal{P}}$ and $\tau_{\mathcal{Q}}$.

By using Proposition 4.2.10, the condition (4.2) can be rewritten as

$$\forall q \in \mathcal{Q}, \exists n \in \mathbb{N}, i_1, \dots, i_n \in I, C > 0 \text{ s.t. } C \bigcap_{k=1}^n \mathring{U}_{p_{i_k}} \subseteq \mathring{U}_q$$

which means that

$$\forall q \in \mathcal{Q}, \exists B_q \in \mathcal{B}_{\mathcal{P}} \text{ s.t. } B_q \subseteq \mathring{U}_q.$$

$$(4.3)$$

since $C \bigcap_{k=1}^{n} \mathring{U}_{p_{i_k}} \in \mathcal{B}_{\mathcal{P}}$.

Condition (4.3) means that for any $q \in \mathcal{Q}$ the set $\check{U}_q \in \tau_{\mathcal{P}}$, which by Proposition 4.2.11 is equivalent to say that q is continuous w.r.t. $\tau_{\mathcal{P}}$. By definition of $\tau_{\mathcal{Q}}$, this gives that $\tau_{\mathcal{Q}} \subseteq \tau_{\mathcal{P}}$.²

(4.2)

²Alternate proof without using Prop 4.2.11. (Sheet 10, Exercise 1) Suppose that (4.2) holds and take any $B' \in \mathcal{B}_Q$, i.e. $B' = \bigcap_{k=1}^m \varepsilon \mathring{U}_{q_{j_k}}$ for some $m \in \mathbb{N}, j_1, \ldots, j_n \in J$ and $0 < \varepsilon \in \mathbb{R}$. Then, by using m times the condition (4.3), we obtain that there exist $B_1, \ldots, B_m \in \mathcal{B}_P$ such that $\forall k \in \{1, \ldots, m\}, B_k \subseteq \mathring{U}_{q_{j_k}}$. Hence, $\bigcap_{k=1}^m B_i \subseteq \bigcap_{k=1}^m \mathring{U}_{q_{j_k}}$. Multiplying by ε both sides of the inclusion, we get $B' \supseteq \varepsilon \bigcap_{k=1}^m B_i \in \mathcal{B}_P$ and so, by Hausdorff criterion (see Theorem 1.1.16) $\tau_Q \subseteq \tau_P$.

Conversely, suppose that τ_P is finer than τ_Q and take any $q \in Q$. Since $\mathring{U}_q \in \mathcal{B}_Q$, by Hausdorff criterion, we get that there exists $B \in \mathcal{B}_P$ s.t. $B \subseteq \mathring{U}_q$. Now such B will be of the form $B = \bigcap_{k=1}^n \varepsilon \mathring{U}_{p_{i_k}}$ for some $n \in \mathbb{N}, i_1, \ldots, i_n \in I$ and $0 < \varepsilon \in \mathbb{R}$. Then, Proposition 4.2.10 gives that $B = \varepsilon \mathring{U}_{\substack{k=1,\ldots,n\\k=1,\ldots,n}} p_{i_k} \subseteq \mathring{U}_q$, i.e. $\mathring{U}_{\substack{k=1,\ldots,n\\k=1,\ldots,n}} p_{i_k} \subseteq \mathring{U}_{\varepsilon q}$ which is equivalent to $\varepsilon q(x) \leq \max_{k=1,\ldots,n} p_{i_k}(x), \forall x \in X$.

This theorem allows us to easily see that the topology induced by a family of seminorms on a vector space does not change if we close the family under taking the maximum of finitely many of its elements. Indeed, the following result holds.

Proposition 4.2.13. Let $\mathcal{P} := \{p_i\}_{i \in I}$ be a family of seminorms on a vector space X and $\mathcal{Q} := \{\max_{i \in B} p_i : \emptyset \neq B \subseteq I \text{ with } B \text{ finite } \}$. Then \mathcal{Q} is a family of seminorms and $\tau_{\mathcal{P}} = \tau_{\mathcal{Q}}$, where $\tau_{\mathcal{P}}$ and $\tau_{\mathcal{Q}}$ denote the topology induced on X by \mathcal{P} and \mathcal{Q} , respectively.

Proof.

First of all let us note that, by Proposition 4.2.10, \mathcal{Q} is a family of seminorms. On the one hand, since $\mathcal{P} \subseteq \mathcal{Q}$, by definition of induced topology we have $\tau_{\mathcal{P}} \subseteq \tau_{\mathcal{Q}}$. On the other hand, for any $q \in \mathcal{Q}$ we have $q = \max_{i \in B} p_i$ for some $\emptyset \neq B \subseteq I$ finite. Then (4.2) is fulfilled for n = |B| (where |B| denotes the cardinality of the finite set B), i_1, \ldots, i_n being the n elements of B and for any $0 < C \leq 1$. Hence, by Theorem 4.2.12, $\tau_{\mathcal{Q}} \subseteq \tau_{\mathcal{P}}$.

This fact can be used to show the following very useful property of locally convex t.v.s.

Proposition 4.2.14. The topology of a locally convex t.v.s. can be always induced by a directed family of seminorms.

Definition 4.2.15. A family $Q := \{q_j\}_{j \in J}$ of seminorms on a vector space X is said to be directed if

$$\forall j_1, j_2 \in J, \exists j \in J, C > 0 \ s.t. \ Cq_j(x) \ge \max\{q_{j_1}(x), q_{j_2}(x)\}, \forall x \in X \ (4.4)$$

or equivalently by induction if

 $\forall n \in \mathbb{N}, j_1, \dots, j_n \in J, \exists j \in J, C > 0 \ s.t. \ Cq_j(x) \ge \max_{k=1,\dots,n} q_{j_k}(x), \forall x \in X.$

Proof. of Proposition 4.2.14

Let (X, τ) be a locally convex t.v.s.. By Theorem 4.2.9, we have that there exists a family of seminorms $\mathcal{P} := \{p_i\}_{i \in I}$ on X s.t. $\tau = \tau_{\mathcal{P}}$. Let us define \mathcal{Q} as the collection obtained by forming the maximum of finitely many elements of \mathcal{P} , i.e. $\mathcal{Q} := \{\max_{i \in B} p_i : \emptyset \neq B \subseteq I \text{ with } B \text{ finite }\}$. By Proposition 4.2.13, \mathcal{Q} is a family of seminorms and we have that $\tau_{\mathcal{P}} = \tau_{\mathcal{Q}}$. We claim that \mathcal{Q} is directed.

Let $q, q' \in \mathcal{Q}$, i.e. $q := \max_{i \in B} p_i$ and $q' := \max_{i \in B'} p_i$ for some non-empty finite subsets B, B' of I. Let us define $q'' := \max_{i \in B \cup B'} p_i$. Then $q'' \in \mathcal{Q}$ and for any $C \ge 1$ we have that (4.4) is satisfied, because we get that for any $x \in X$

$$Cq''(x) = C \max\left\{\max_{i \in B} p_i(x), \max_{i \in B'} p_i(x)\right\} \ge \max\{q(x), q'(x)\}.$$

Hence, \mathcal{Q} is directed.

It is possible to show (Sheet 10, Exercise 2) that a basis of neighbourhoods of the origin for the l.c. topology $\tau_{\mathcal{Q}}$ induced by a directed family of seminorms \mathcal{Q} is given by:

$$\mathcal{B}_d := \{ r \mathring{U}_q : q \in \mathcal{Q}, r > 0 \}.$$

$$(4.5)$$

4.3 Hausdorff locally convex t.v.s

In Section 2.2, we gave some characterization of Hausdorff t.v.s. which can of course be applied to establish whether a locally convex t.v.s. is Hausdorff or not. However, in this section we aim to provide necessary and sufficient conditions bearing only on the family of seminorms generating a locally convex topology for being a Hausdorff topology.

Definition 4.3.1.

A family of seminorms $\mathcal{P} := \{p_i\}_{i \in I}$ on a vector space X is said to be separating if

$$\forall x \in X \setminus \{o\}, \exists i \in I \ s.t. \ p_i(x) \neq 0.$$

$$(4.6)$$

Note that the separation condition (4.6) is equivalent to

$$p_i(x) = 0, \forall i \in I \Rightarrow x = o$$

which by using Proposition 4.2.10 can be rewritten as

$$\bigcap_{i\in I,c>0} c\mathring{U}_{p_i} = \{o\}$$

since $p_i(x) = 0$ is equivalent to say that $p_i(x) < c$, for all c > 0.

Lemma 4.3.2. Let $\tau_{\mathcal{P}}$ be the topology induced by a separating family of seminorms $\mathcal{P} := (p_i)_{i \in I}$ on a vector space X. Then $\tau_{\mathcal{P}}$ is a Hausdorff topology.

Proof. Let $x, y \in X$ be s.t. $x \neq y$. Since \mathcal{P} is separating, $\exists i \in I$ s.t. $p_i(x-y) \neq 0$. Then $\exists \epsilon > 0$ s.t. $p_i(x-y) = 2\epsilon$. Let us define $V_x := \{u \in X \mid p_i(x-u) < \epsilon\}$ and $V_y := \{u \in X \mid p_i(y-u) < \epsilon\}$. By Proposition 4.2.10, we get that $V_x = x + \varepsilon \mathring{U}_{p_i}$ and $V_y = y + \varepsilon \mathring{U}_{p_i}$. Since Theorem 4.2.9 guarantees that $(X, \tau_{\mathcal{P}})$ is a t.v.s. where the set $\varepsilon \mathring{U}_{p_i}$ is a neighbourhood of the origin, V_x and V_y are neighbourhoods of x and y, respectively. They are clearly disjoint. Indeed, if there would exist $u \in V_x \cap V_y$ then

$$p_i(x-y) = p_i(x-u+u-y) \le p_i(x-u) + p_i(u-y) < 2\varepsilon$$

which is a contradiction.

Proposition 4.3.3. A locally convex t.v.s. is Hausdorff if and only if its topology can be induced by a separating family of seminorms.

Proof. Let (X, τ) be a locally convex t.v.s.. Then we know that there always exists a basis \mathcal{N} of neighbourhoods of the origin in X consisting of open absorbing absolutely convex sets. Moreover, in Theorem 4.2.9, we have showed that $\tau = \tau_{\mathcal{P}}$ where \mathcal{P} is the family of seminorms given by the Minkowski functionals of sets in \mathcal{N} , i.e. $\mathcal{P} := \{p_N : N \in \mathcal{N}\}$, and also that for each $N \in \mathcal{N}$ we have $N = \mathring{U}_{p_N}$.

Suppose that (X, τ) is also Hausdorff. Then Proposition 2.2.3 ensures that for any $x \in X$ with $x \neq o$ there exists a neighbourhood V of the origin in Xs.t. $x \notin V$. This implies that there exists at least $N \in \mathcal{N}$ s.t. $x \notin N^3$. Hence, $x \notin N = \mathring{U}_{p_N}$ means that $p_N(x) \geq 1$ and so $p_N(x) \neq 0$, i.e. \mathcal{P} is separating.

Conversely, if τ is induced by a separating family of seminorms \mathcal{P} , i.e. $\tau = \tau_{\mathcal{P}}$, then Lemma 4.3.2 ensures that X is Hausdorff.

Examples 4.3.4.

1. Every normed space is a Hausdorff locally convex space, since every norm is a seminorm satisfying the separation property. Therefore, every Banach space is a complete Hausdorff locally convex space.

³Since \mathcal{N} is a basis of neighbourhoods of the origin, $\exists N \in \mathcal{N}$ s.t. $N \subseteq V$. If x would belong to all elements of the basis then in particular it would be $x \in N$ and so also $x \in V$, contradiction.