
4. Locally convex topological vector spaces

2. Every family of seminorms on a vector space containing a norm induces

a Hausdorff locally convex topology.

3. Given an open subset Ω of Rd
with the euclidean topology, the space C(Ω)

of real valued continuous functions on Ω with the so-called topology of
uniform convergence on compact sets is a locally convex t.v.s.. This

topology is defined by the family P of all the seminorms on C(Ω) given

by

pK(f) := max
x∈K

|f(x)|, ∀K ⊂ Ω compact .

Moreover, (C(Ω), τP) is Hausdorff, because the family P is clearly sepa-

rating. In fact, if pK(f) = 0, ∀K compact subsets of Ω then in particular

p{x}(f) = |f(x)| = 0 ∀x ∈ Ω, which implies f ≡ 0 on Ω.

More generally, for any X locally compact we have that C(X) with the

topology of uniform convergence on compact subsets of X is a locally

convex Hausdorff t.v.s.

To introduce two other examples of l.c. Hausdorff t.v.s. we need to recall
some standard general notations. Let N0 be the set of all non-negative integers.
For any x = (x1, . . . , xd) ∈ Rd and α = (α1, . . . ,αd) ∈ Nd

0 one defines x
α :=

x
α1
1 · · ·xαd

d . For any β ∈ Nd
0, the symbol Dβ denotes the partial derivative of

order |β| where |β| :=
�d

i=1 βi, i.e.

D
β :=

∂|β|

∂xβ1
1 · · · ∂xβd

d

=
∂β1

∂xβ1
1

· · · ∂βd

∂xβd
d

.

Examples 4.3.5.

1. Let Ω ⊆ Rd
open in the euclidean topology. For any k ∈ N0, let Ck(Ω) be

the set of all real valued k−times continuously differentiable functions
on Ω, i.e. all the derivatives of f of order ≤ k exist (at every point of Ω)
and are continuous functions in Ω. Clearly, when k = 0 we get the set

C(Ω) of all real valued continuous functions on Ω and when k = ∞ we

get the so-called set of all infinitely differentiable functions or smooth
functions on Ω. For any k ∈ N0, Ck(Ω) (with pointwise addition and

scalar multiplication) is a vector space over R. The topology given by

the following family of seminorms on Ck(Ω):

pm,K(f) := sup
β∈Nd0
|β|≤m

sup
x∈K

���(Dβ
f)(x)

��� , ∀K ⊆ Ω compact, ∀m ∈ {0, 1, . . . , k},

makes Ck(Ω) into a locally convex Hausdorff t.v.s.. (Note that when

k = ∞ we have m ∈ N0.)
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4.4. The finest locally convex topology

2. The Schwartz space or space of rapidly decreasing functions on Rd
is

defined as the set S(Rd) of all real-valued functions which are defined

and infinitely differentiable on Rd
and which have the additional property

(regulating their growth at infinity) that all their derivatives tend to zero

at infinity faster than any inverse power of x, i.e.

S(Rd) :=

�
f ∈ C∞(Rd) : sup

x∈Rd

���xαDβ
f(x)

��� < ∞, ∀α,β ∈ Nd
0

�
.

(For example, any smooth function f with compact support in Rd
is

in S(Rd), since any derivative of f is continuous and supported on a

compact subset of Rd
, so x

α(Dβ
f(x)) has a maximum in Rd

by the

extreme value theorem.)

The Schwartz space S(Rd) is a vector space over R and the topology

given by the family Q of seminorms on S(Rd):

qα,β(f) := sup
x∈Rd

���xαDβ
f(x)

��� , ∀α,β ∈ Nd
0

makes S(Rd) into a locally convex Hausdorff t.v.s.. Indeed, the family is

clearly separating, because if qα,β(f) = 0, ∀α,β ∈ Nd
0 then in particular

qo,o(f) = supx∈Rd |f(x)| = 0 ∀x ∈ Rd
, which implies f ≡ 0 on Rd

.

Note that S(Rd) is a linear subspace of C∞(Rd), but its topology τQ
on S(Rd) is finer than the subspace topology induced on it by C∞(Rd).
(Sheet 10, Exercise 1)

4.4 The finest locally convex topology

In the previous sections we have seen how to generate topologies on a vector
space which makes it into a locally convex t.v.s.. Among all of them, there is
the finest one (i.e. the one having the largest number of open sets) which is
usually called the finest locally convex topology on the given vector space.

Proposition 4.4.1. The finest locally convex topology on a vector space X is

the topology induced by the family of all seminorms on X and it is a Hausdorff
topology.

Proof.

Let us denote by S the family of all seminorms on the vector space X. By
Theorem 4.2.9, we know that the topology τS induced by S makes X into a
locally convex t.v.s. We claim that τS is the finest locally convex topology. In
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4. Locally convex topological vector spaces

fact, if there was a finer locally convex topology τ (i.e. if τS ⊆ τ with (X, τ)
locally convex t.v.s.) then Theorem 4.2.9 would give that τ is also induced by
a family P of seminorms. But surely P ⊆ S and so τ = τP ⊆ τS by definition
of induced topology. Hence, τ = τS .

It remains to show that (X, τS) is Hausdorff. By Lemma 4.3.2, it is enough
to prove that S is separating. Let x ∈ X \ {o} and let B be an algebraic basis
of the vector space X containing x. Define the linear functional L : X → R as
L(x) = 1 and L(y) = 0 for all y ∈ B \ {x}. Then it is easy to see that s := |L|
is a seminorm, so s ∈ S and s(x) �= 0, which proves that S is separating.

An alternative way of describing the finest locally convex topology on a
vector space X without using the seminorms is the following:

Proposition 4.4.2. The collection of all absorbing absolutely convex sets of

a vector space X is a basis of neighbourhoods of the origin for the finest locally

convex topology on X.

Proof. Let τmax be the finest locally convex topology onX andA the collection
of all absorbing absolutely convex sets of X. By Theorem 4.1.14, we know
that every locally convex t.v.s. has a basis of neighbourhood of the origin
consisting of absorbing absolutely convex subsets of X. Then clearly the
basis of neighbourhoods of the origin Bmax of τmax is contained in A. Hence,
τmax ⊆ τ where τ denote the topology generated by A. On the other hand,
A fulfills all the properties required in Theorem 4.1.14 and so τ also makes
X into a locally convex t.v.s.. Hence, by definition of finest locally convex
topology, τ ⊆ τmax.

This result can be clearly proved also using the Proposition 4.4.1 and
the correspondence between Minkowski functionals and absorbing absolutely
convex subsets of X introduced in the Section 4.2.

Proposition 4.4.3. Every linear functional on a vector space X is continuous

w.r.t. the finest locally convex topology on X.

Proof. Let L : X → K be a linear functional on a vector space X. For any
ε > 0, we denote by Bε(0) the open ball in K of radius ε and center 0 ∈ K,
i.e. Bε(0) := {k ∈ K : |k| < ε}. Then we have that L

−1(Bε(0)) = {x ∈ X :
|L(x)| < ε}. It is easy to verify that the latter is an absorbing absolutely
convex subset of X and so, by Proposition 4.4.2, it is a neighbourhood of the
origin in the finest locally convex topology on X. Hence L is continuous at
the origin and so, by Proposition 2.1.15-3), L is continuous everywhere in X.
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4.5. Direct limit topology on a countable dimensional t.v.s.

4.5 Direct limit topology on a countable dimensional t.v.s.

In this section we are going to give an important example of finest locally
convex topology on an infinite dimensional vector space, namely the direct

limit topology on any countable dimensional vector space. For simplicity, we
are going to focus on R−vector spaces.

Definition 4.5.1. Let X be an infinite dimensional vector space whose di-

mension is countable. The direct limit topology (or finite topology) τf on X

is defined as follows:

U ⊆ X is open in τf iff U ∩ W is open in the euclidean topology on W ,

∀W ⊂ X with dim(W ) < ∞.

Equivalently, if we fix a basis {xn}n∈N of X and if for any n ∈ N we set

Xn := span{x1, . . . , xn} s.t. X =
�∞

i=1Xi and X1 ⊆ . . . ⊆ Xn ⊆ . . ., then

U ⊆ X is open in τf iff U ∩ Xi is open in the euclidean topology on Vi for

every i ∈ N.

Theorem 4.5.2. Let X be an infinite dimensional vector space whose dimen-

sion is countable endowed with the finite topology τf . Then:

a) (X, τf ) is a Hausdorff locally convex t.v.s.

b) τf is the finest locally convex topology on X

Proof.

a) We leave to the reader the proof of the fact that τf is compatible with the
linear structure of X (Sheet 10, Exercise 3) and we focus instead on proving
that τf is a locally convex topology. To this aim we are going to show that
for any open neighbourhood U of the origin in (X, τf ) there exists an open
convex neighbourhood U

� ⊆ U .
Let {xi}i∈N be an R-basis for X and set Xn := span{x1, . . . , xn} for any

n ∈ N. We proceed (by induction on n ∈ N) to construct an increasing
sequence Cn ⊆ U ∩Xn of convex subsets as follows:

• For n = 1: Since U ∩X1 is open in X1 = Rx1, we have that there exists
a1 ∈ R, a1 > 0 such that C1 :=

�
λ1x1 | − a1 ≤ λ1 ≤ a1

�
⊆ U ∩X1.

• Inductive assumption on n: We assume we have found a1, . . . , an ∈ R+

such that Cn :=
�
λ1x1 + . . .+ λnxn |− ai ≤ λi ≤ ai ; i ∈ {1, . . . , n}

�
⊆

U ∩Xn. Note that Cn is closed (in Xn, as well as) in Xn+1.
• For n+ 1: We claim ∃ an+1 > 0, an+1 ∈ R such that

Cn+1 :=
�
λ1x1+. . .+λnxn+λn+1xn+1|−ai ≤ λi ≤ ai ; i ∈ {1, . . . , n+

1}
�
⊆ U ∩Xn+1.

Proof of claim: If the claim does not hold, then ∀ N ∈ N ∃ x
N ∈ Xn+1

s.t.
x
N = λN

1 x1 + . . .λN
n xn + λN

n+1xn+1
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4. Locally convex topological vector spaces

with −ai ≤ λN
i ≤ ai for i ∈ {1, . . . , n}, − 1

N
≤ λN

n+1 ≤
1

N
and x

N
/∈ U .

But xN has form x
N = λN

1 x1 + . . .+ λN
n xn� �� �

∈ Cn

+λN
n+1xn+1, so {xN}N∈N

is a bounded sequence in Xn+1\U . Therefore, we can find a subsequence
{xNj}j∈N which is convergent as j → ∞ to x ∈ Cn ⊆ U (since Cn is
closed inXn+1 and the n+1−th component of xNj tends to 0 as j → ∞).
Hence, the sequence {xNj}j∈N ⊆ Xn+1 \ U converges to x ∈ U but this
contradicts the fact that Xn+1 \ U is closed in Xn+1. This establishes
the claim.

Now for any n ∈ N consider

Dn :=
�
λ1x1 + . . .+ λnxn |− ai < λi < ai ; i ∈ {1, . . . , n}

�
,

then Dn ⊂ Cn ⊆ U ∩Xn is open and convex in Xn. Then U
� := ∪n∈NDn is

an open and convex neighbourhood of the origin in (X, τf ) and U
� ⊆ U .

b) Let us finally show that τf is actually the finest locally convex topology
τmax on X. Since we have already showed that τf is a l.c. topology on X,
clearly we have τf ⊆ τmax by definition of finest l.c. topology on X.

Conversely, let us consider U ⊆ X open in τmax. We want to show that
U is open in τf , i.e. W ∩ U is open in the euclidean topology on W for
any finite dimensional subspace W of X. Now each W inherits τmax from
X. Let us denote by τWmax the subspace topology induced by (X, τmax) on
W . By definition of subspace topology, we have that W ∩ U is open in τWmax.
Moreover, by Proposition 4.4.1, we know that (X, τmax) is a Hausdorff t.v.s.
and so (W, τWmax) is a finite dimensional Hausdorff t.v.s. (see by Proposition
2.1.15-1). Therefore, τWmax has to coincide with the euclidean topology by
Theorem 3.1.1 and, consequently, W ∩U is open w.r.t. the euclidean topology
on W .

We actually already know a concrete example of countable dimensional
space with the finite topology:

Example 4.5.3. Let n ∈ N and x = (x1, . . . , xn). Denote by R[x] the space

of polynomials in the n variables x1, . . . , xn with real coefficients and by

Rd[x] := {f ∈ R[x]| deg f ≤ d}, d ∈ N0,

then R[x] :=
�∞

d=0Rd[x]. The finite topology τf on R[x] is then given by:

U ⊆ R[x] is open in τf iff ∀d ∈ N0, U ∩ Rd[x] is open in Rd[x] with the

euclidean topology.
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