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where Kx
0

is the one-dimensional linear subspace through x
0

. In other words

8x 2 M, 9!� 2 K, y 2 M
0

: x = y + �x
0

.

Then

8x 2 M, f(x) = f(y) + �f(x
0

) = �f(x
0

) = �,

which means that the values of f on M are completely determined by the ones
on N . Consider now the open unit semiball of p:

U := Ů
p

= {x 2 X : p(x) < 1},

which we know being an open convex subset of X endowed with the topology
induced by p. Then N \U = ; because if there was x 2 N \U then p(x) < 1
and f(x) = 1, which contradict (5.1).

By Theorem 5.1.2 (a�ne version), there exists a closed a�ne hyperplane
H of X with the property that N ✓ H and H \ U = ;. Then H � x

0

is a hyperplane and so the kernel of a continuous linear functional f̃ on X
non-identically zero.

Arguing as before (consider here the decomposition X = (H�x
0

)�Kx
0

),
we can deduce that the values of f̃ on X are completely determined by the
ones on N and so on H (because for any h 2 H we have h�x

0

2 Ker(f̃) and
so f̃(h) � f̃(x

0

) = f̃(h � x
0

) = 0). Since f̃ 6⌘ 0, we have that f̃(x
0

) 6= 0 and
w.l.o.g. we can assume f̃(x

0

) = 1 i.e. f̃ ⌘ 1 on H. Therefore, for any x 2 M
there exist unique � 2 K and y 2 N � x

0

✓ H � x
0

s.t. x = y + �x
0

, we get
that:

f̃(x) = �f̃(x
0

) = � = �f(x
0

) = f(x),

i.e. f is the restriction of f̃ to M . Furthermore, the fact that H\U = ; means
that f̃(x) = 1 implies p(x) � 1. Then for any y 2 X s.t. f̃(y) 6= 0 we have

that: f̃
⇣

y

˜

f(y)

⌘

= 1 and so that p
⇣

y

˜

f(y)

⌘

� 1 which implies that |f̃(y)|  p(y).

The latter obviously holds for f̃(y) = 0. Hence, (5.2) is established.

5.2 Applications of Hahn-Banach theorem

The Hahn-Banach theorem is frequently applied in analysis, algebra and ge-
ometry, as will be seen in the forthcoming course. We will briefly indicate
in this section some applications of this theorem to problems of separation of
convex sets and to the multivariate moment problem. From now on we will
focus on t.v.s. over the field of real numbers.
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5. The Hahn-Banach Theorem and its applications

5.2.1 Separation of convex subsets of a real t.v.s.

Let X t.v.s.over the field of real numbers and H be a closed a�ne hyperplane
of X. We say that two disjoint subsets A and B of X are separated by H
if A is contained in one of the two closed half-spaces determined by H and
B is contained in the other one. We can express this property in terms of
functionals. Indeed, since H = L�1({a}) for some L : X ! R linear not
identically zero and some a 2 R, we can write that A and B are separated by
H if and only if:

9 a 2 R s.t. L(A) � a and L(B)  a.

where for any S ✓ X the notation L(S)  a simply means 8s 2 S,L(s)  a
(and analogously for �, <,>,=, 6=).
We say that A and B are strictly separated by H if at least one of the two
inequalities is strict. (Note that there are several definition in literature for
the strict separation but for us it will be just the one defined above) In the
present subsection we would like to investigate whether one can separate, or
strictly separate, two disjoint convex subsets of a real t.v.s..

Proposition 5.2.1. Let X be a t.v.s. over the real numbers and A,B two
disjoint convex subsets of X.
a) If A is open nonempty and B is nonempty, then there exists a closed a�ne

hyperplane H of X separating A and B, i.e. there exists a 2 R and a func-
tional L : X ! R linear not identically zero s.t. L(A) � a and L(B)  a.

b) If in addition B is open, the hyperplane H can be chosen so as to strictly
separate A and B, i.e. there exists a 2 R and L : X ! R linear not
identically zero s.t. L(A) � a and L(B) < a.

c) If A is a cone and B is open, then a can be chosen to be zero, i.e. there
exists L : X ! R linear not identically zero s.t. L(A) � 0 and L(B) < 0.

Proof.

a) Consider the set A�B := {a� b : a 2 A, b 2 B}. Then: A�B is an open
subset of X as it is the union of the open sets A � y as y varies over B;
A�B is convex as it is the Minkowski sum of the convex sets A and �B;
and o /2 (A�B) because if this was the case then there would be at least a
point in the intersection of A and B which contradicts the assumption that
they are disjoint. By applying Theorem 5.1.2 to N = {o} and U = A�B
we have that there is a closed hyperplane H of X which does not intersect
A�B (and passes through the origin) or, which is equivalent, there exists a
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5.2. Applications of Hahn-Banach theorem

linear form f on X not identically zero such that f(A�B) 6= 0. Then there
exists a linear form L on X not identically zero such that L(A � B) > 0
(in the case f(A�B) < 0 just take L := �f) i.e.

8x 2 A, 8 y 2 B, L(x) > L(y). (5.5)

Since B 6= ; we have that a := inf
x2A L(x) > �1. Then (5.5) implies that

L(B)  a and we clearly have L(A) � a.
b) Let now both A and B be open convex and nonempty disjoint subsets of

X. By part a) we have that there exists a 2 R and L : X ! R linear not
identically zero s.t. L(A) � a and L(B)  a. Suppose that there exists
b 2 B s.t. L(b) = a. Since B is open, for any x 2 X there exists " > 0 s.t.
for all t 2 [0, "] we have b+ tx 2 B. Therefore, as L(B)  a, we have that

L(b+ tx)  a, 8 t 2 [0, "]. (5.6)

Now fix x 2 X, consider the function f(t) := L(b+ tx) for all t 2 R whose
first derivative is clearly given by f 0(t) = L(x) for all t 2 R. Then (5.6)
means that t = 0 is a point of local minimum for f and so f 0(0) = 0 i.e.
L(x) = 0. As x is an arbitrary point of x, we get L ⌘ 0 on X which is a
contradiction. Hence, L(B) < a.

c) Let now A be a nonempty convex cone of X and B an open convex
nonempty subset of X s.t. A \ B = ;. By part a) we have that there
exists a 2 R and L : X ! R linear not identically zero s.t. L(A) � a and
L(B)  a. Since A is a cone, for any t > 0 we have that tA ✓ A and so
tL(A) = L(tA) � a i.e. L(A) � a

t

. This implies that L(A) � inf
t>0

a

t

= 0.
Moreover, part a) also gives that L(B) < L(A). Therefore, for any t > 0
and any x 2 A, we have in particular L(B) < L(tx) = tL(x) and so
L(B)  inf

t>0

tL(x) = 0. Since B is also open, we can exactly proceed as
in part b) to get L(B) < 0.

Let us show now two interesting consequences of this result which we will
use in the following subsection.

Corollary 5.2.2. Let X be a vector space over R endowed with the finest
locally convex topology '. If C is a nonempty closed cone in X and x

0

2 X \C
then there exists a linear functional L : X ! R non identically zero s.t.
L(C) � 0 and L(x

0

) < 0.

Proof. As C is closed in (X,') and x
0

2 X \C, we have that X \C is an open
neighbourhood of x

0

. Then the local convexity of (X,') guarantees that there
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5. The Hahn-Banach Theorem and its applications

exists an open convex neighbourhood V of x
0

s.t. V ✓ X \ C i.e. V \ C = ;.
By Proposition 5.2.1-c), we have that there exists L : X ! R linear not
identically zero s.t. L(C̊) � 0 and L(V ) < 0, in particular L(x

0

) < 0.

Before giving the second corollary, let us introduce some notations. Given
a cone C in a t.v.s. (X, ⌧) we define the first and the second dual of C w.r.t.
⌧ respectively as follows:

C_
⌧

:= {` : X ! R linear |` is ⌧ � continuous and `(C) � 0}

C__
⌧

:= {x 2 X |8 ` 2 C_
⌧

, `(x) � 0}.
Corollary 5.2.3. Let X be a vector space over R endowed with the finest
locally convex topology '. If C is a nonempty cone in X, then C

'

= C__
'

.

Proof. Let us first observe that C ✓ C__
'

, because for any x 2 C and any
` 2 C_

'

we have by definition of first dual of C that `(x) � 0 and so that

x 2 C__
'

. Then we get that C
' ✓ C__

'

'

. But C__
'

is closed since C__
'

=
T

`2C_
'
`([0,+1)) and each ` 2 C_

'

is '-continuous. Hence, C
' ✓ C__

'

.

Conversely, suppose there exists x
0

2 C__
'

\C'

. By Corollary 5.2.2, there

exists a linear functional L : X ! R non identically zero s.t. L(C
'

) � 0 and
L(x

0

) < 0. As L(C) � 0 and every linear functional is '�continuous, we have
L 2 C_

'

. This together with the fact that L(x
0

) < 0 give x
0

/2 C__
'

, which is

a contradiction. Hence, C
'

= C__
'

.

5.2.2 Multivariate real moment problem

Let d 2 N and let R[x] be the ring of polynomials with real coe�cients and d
variables x := (x

1

, . . . , x
d

). Fixed a subset K of Rd, we denote by

Psd(K) := {p 2 R[x] : p(x) � 0, 8x 2 K}.

Definition 5.2.4 (Multivariate real K�moment problem).
Given a closed subset K of Rd and a linear functional L : R[x] ! R, does
there exists a nonnegative finite Borel measure µ s.t.

L(p) =

Z

Rd
p(x)µ(dx), 8p 2 R[x]

and supp(µ) ✓ K (where supp(µ) denotes the support of the measure µ)?
If such a measure exists, we say that µ is a K-representing measure for L

and that it is a solution to the K�moment problem for L.
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A necessary condition for the existence of a solution to the K�moment
problem for the linear functional L is clearly that L is nonnegative on Psd(K).
In fact, if there exists a representing measure µ for L then for all p 2 Psd(K)
we have

L(p) =

Z

Rd
p((x))µ(dx) =

Z

K

p((x))µ(dx) � 0

since µ is nonnegative and supported on K and p is nonnegative on K.
It is then natural to ask if the nonnegative of L on Psd(K) is also su�cient.

The answer is positive and it was established by Riesz in 1923 for d = 1 and
by Haviland for any d � 2.

Theorem 5.2.5 (Riesz-Haviland Theorem). Let K be a closed subset of Rd

and L : R[x] ! R be linear. L has a K�representing measure if and only if
L(Psd(K)) � 0.

Note that this theorem provides a complete solution for the K� moment
problem but it is quite unpractical! In fact, it reduces the solvability of the
K�moment problem to the problem of classifying all polynomials which are
nonnegative on a prescribed closed subsetK of Rd i.e. to characterize Psd(K).
This is actually a hard problem to be solved for general K and it is a core
question in real algebraic geometry. For example, if we think of the case
K = Rd then for d = 1 we know that Psd(K) =

P

R[x]2, where
P

R[x]2
denotes the set of squares of polynomials. However, for d � 2 this equality
does not hold anymore as it was proved by Hilbert in 1888. It is now clear
that to make the conditions of the Riesz-Haviland theorem actually checkable
we need to be able to write/approximate a non-negative polynomial on K in
a way that makes its non-negativity apparent, i.e. as a sum of squares or as
an element of quadratic modules of R[x]. For a special class of closed subsets
of Rd we actually have such representations and we can get better conditions
than the one of Riesz-Haviland type to solve the K�moment problem.

Definition 5.2.6. Given a finite set of polynomials S := {g
1

, . . . , g
s

}, we call
the basic closed semialgebraic set generated by S the following

K
S

:= {x 2 Rd : g
i

(x) � 0, i = 1, . . . , s}.

Definition 5.2.7. A subset M of R[x] is said to be a quadratic module if
1 2 M , M +M ✓ M and h2M ✓ M for any h 2 R[x].

Note that each quadratic module is a cone in R[x].

Definition 5.2.8. A quadratic module M of R[x] is called Archimedean if
there exists N 2 N s.t. N � (

P

d

i=1

x2
i

) 2 M .
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For S := {g
1

, . . . , g
s

} finite subset of R[x], we define the quadratic module
generated by S to be:

M
S

:=

(

s

X

i=0

�
i

g
i

: �
i

2
X

R[x]2, i = 0, 1, . . . , s

)

,

where g
0

:= 1.

Remark 5.2.9. Note that M
S

✓ Psd(K
S

) and M
S

is the smallest quadratic
module of R[x] containing S.

Consider now the finite topology on R[x] (see Definition 4.5.1 ) which
we have proved to be the finest locally convex topology on this space (see
Proposition 4.5.2) and which we therefore denote by '. By Corollary 5.2.3,
we get that

M
S

'

= (M
S

)__
'

(5.7)

Moreover, the Putinar Positivstellesatz (1993), a milestone result in real al-
gebraic geometry, provides that if M

S

is Archimedean then

Psd(K
S

) ✓ M
S

'

. (5.8)

Note that M
S

is Archimedean implies that K
S

is compact while the converse
is in general not true (see e.g. M. Marshall, Positive polynomials and sum of
squares, 2008).

Combining (5.7) and (5.8), we get the following result.

Proposition 5.2.10. Let S := {g
1

, . . . , g
s

} be a finite subset of R[x] and
L : R[x] ! R linear. Assume that M

S

is Archimedean. Then there exists a
K

S

-representing measure µ for L if and only if L(M
S

) � 0, i.e. L(h2g
i

) � 0
for all h 2 R[x] and for all i 2 {1, . . . , s}.

Proof. Suppose that L(M
S

) � 0 and let us consider the finite topology '
on R[x]. Then the linear functional L is '-continuous and so L 2 (M

S

)_
'

.
Moreover, as M

S

is assumed to be Archimedean we have

Psd(K
S

)
(5.8)

✓ M
S

'

(5.7)

= (M
S

)__
'

.

Since any p 2 Psd(K
S

) is also an element of (M
S

)__
'

, we have that for any
` 2 (M

S

)_
'

, `(Psd(K
S

)) � 0 and in particular L(Psd(K
S

)) � 0. Hence, by
Riesz-Haviland theorem we get the existence of a K

S

-representing measure µ
for L.
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Conversely, suppose that the there exists a K
S

-representing measure µ
for L. Then for all p 2 M

S

we have in particular that

L(p) =

Z

Rd
p(x)µ(dx)

which is nonnegative as µ is a nonnegative measure supported on K
S

and
p 2 M

S

✓ Psd(K
S

).

From this result and its proof we understand that whenever we know that
Psd(K

S

) ✓ M
S

'

, we need to check only that L(M
S

) � 0 to find out whether
there exists a solution for theK

S

�moment problem for L. Then it makes sense
to look for closure results of this kind in the case when M

S

is not Archimedean
and so we cannot apply the Putinar Positivstellesatz. Actually whenever we
know that Psd(K

S

) ✓ M
S

⌧

where ⌧ is a locally convex topology on R[x], the
condition L(M

S

) � 0 is necessary and su�cient for the existence of a solution
of the K

S

�moment problem for any ⌧�continuous functional on R[x] (see
M. Ghasemi, S. Kuhlmann, E. Samei, 2012). This relationship between the
closure of quadratic modules and the representability of functionals continuous
w.r.t. locally convex topologies started a new research line in the study of the
moment problem which is still bringing interesting results.
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