Corollary 2.2.4. For a t.v.s. X the following are equivalent:

a) X is Hausdorff.

b) the intersection of all neighbourhoods of the origin o is just $\{o\}$.

c) $\{0\}$ is closed.

Note that in a t.v.s. $\{0\}$ is closed is equivalent to say that all singletons are closed (and so that the space is (T1)).

Proof. a) \Rightarrow b) Let X be a Hausdorff t.v.s. space. Clearly, $\{o\} \subseteq \cap_{U \in F(o)} U$. Now if b) does not hold, then there exists $x \in \cap_{U \in F(o)} U$ with $x \neq o$. But by the previous theorem we know that (2.1) holds and so there exists $V \in F(o)$ s.t. $x \notin V$ and so $x \notin \cap_{U \in F(o)} U$ which is a contradiction.

b) \Rightarrow c) Assume that $\cap_{U \in F(o)} U = \{o\}$. If $x \in \overline{\{o\}}$ then $\forall V_x \in F(x)$ we have $V_x \cap \{o\} \neq \emptyset$, i.e. $o \in V_x$. By Corollary 2.1.9 we know that each $V_x = U + x$ with $U \in F(o)$. Then $o = u + x$ for some $u \in U$ and so $x = -u \in -U$. This means that $x \in \cap_{U \in F(o)} (-U)$. Since every dilation is an homeomorphism and b) holds, we have that $x \in \cap_{U \in F(o)} U = \{0\}$. Hence, $x = 0$ and so $\overline{\{o\}} = \{o\}$, i.e. $\{o\}$ is closed.

c) \Rightarrow a) Assume that X is not Hausdorff. Then by the previous proposition (2.1) does not hold, i.e. there exists $x \neq o$ s.t. $x \in U$ for all $U \in F(o)$. This means that $x \in \cap_{U \in F(o)} U \subseteq \cap_{U \in F(o)} U = \{o\}$ By c), $\overline{\{o\}} = \{o\}$ and so $x = 0$ which is a contradiction.

Example 2.2.5. Every vector space with an infinite number of elements endowed with the cofinite topology is not a t.v.s. It is clear that in such topological space all singletons are closed (i.e. it is T1). Therefore, if it was a t.v.s. then by the previous results it should be a Hausdorff space which is not true as shown in Example 1.1.40.

2.3 Quotient topological vector spaces

Quotient topology

Let X be a topological space and \sim be any equivalence relation on X. Then the quotient set X/\sim is defined to be the set of all equivalence classes w.r.t. to \sim. The map $\phi : X \to X/\sim$ which assigns to each $x \in X$ its equivalence class $\phi(x)$ w.r.t. \sim is called the canonical map or quotient map. Note that ϕ is surjective. We may define a topology on X/\sim by setting that: a subset U of X/\sim is open iff the preimage $\phi^{-1}(U)$ is open in X. This is called the quotient topology on X/\sim. Then it is easy to verify (Sheet 4, Exercise 2) that:
2. **Topological Vector Spaces**

- the quotient map \(\phi \) is continuous.
- the quotient topology on \(X/\sim \) is the finest topology on \(X/\sim \) s.t. \(\phi \) is continuous.

Note that the quotient map \(\phi \) is not necessarily open or closed.

Example 2.3.1. Consider \(\mathbb{R} \) with the standard topology given by the modulus and define the following equivalence relation on \(\mathbb{R} \):

\[x \sim y \iff (x = y \lor \{x, y\} \subset \mathbb{Z}). \]

Let \(\mathbb{R}/\sim \) be the quotient set w.r.t \(\sim \) and \(\phi : \mathbb{R} \to \mathbb{R}/\sim \) the correspondent quotient map. Let us consider the quotient topology on \(\mathbb{R}/\sim \). Then \(\phi \) is not an open map. In fact, if \(U \) is an open proper subset of \(\mathbb{R} \) containing an integer, then \(\phi^{-1}(\phi(U)) = U \cup \mathbb{Z} \) which is not open in \(\mathbb{R} \) with the standard topology. Hence, \(\phi(U) \) is not open in \(\mathbb{R}/\sim \) with the quotient topology.

For an example of quotient map which is not closed see Example 2.3.3 in the following.

Quotient vector space

Let \(X \) be a vector space and \(M \) a linear subspace of \(X \). For two arbitrary elements \(x, y \in X \), we define \(x \sim_M y \) iff \(x - y \in M \). It is easy to see that \(\sim_M \) is an equivalence relation: it is reflexive, since \(x - x = 0 \in M \) (every linear subspace contains the origin); it is symmetric, since \(x - y \in M \) implies \(-(x - y) = y - x \in M \) (if a linear subspace contains an element, it contains its inverse); it is transitive, since \(x - y \in M \), \(y - z \in M \) implies \(x - z = (x - y) + (y - z) \in M \) (when a linear subspace contains two vectors, it also contains their sum). Then \(X/M \) is defined to be the quotient set \(X/\sim_M \), i.e. the set of all equivalence classes for the relation \(\sim_M \) described above. The canonical (or quotient) map \(\phi : X \to X/M \) which assigns to each \(x \in X \) its equivalence class \(\phi(x) \) w.r.t. the relation \(\sim_M \) is clearly surjective. Using the fact that \(M \) is a linear subspace of \(X \), it is easy to check that:

1. if \(x \sim_M y \), then \(\forall \lambda \in \mathbb{K} \) we have \(\lambda x \sim_M \lambda y \).
2. if \(x \sim_M y \), then \(\forall z \in X \) we have \(x + z \sim_M y + z \).

These two properties guarantee that the following operations are well-defined on \(X/M \):

- vector addition: \(\forall \phi(x), \phi(y) \in X/M, \phi(x) + \phi(y) := \phi(x + y) \)
- scalar multiplication: \(\forall \lambda \in \mathbb{K}, \forall \phi(x) \in X/M, \lambda \phi(x) := \phi(\lambda x) \)

\(X/M \) with the two operations defined above is a vector space and therefore it is often called *quotient vector space*. Then the quotient map \(\phi \) is clearly linear.
2.3. Quotient topological vector spaces

Quotient topological vector space

Let X be now a t.v.s. and M a linear subspace of X. Consider the quotient vector space X/M and the quotient map $\phi : X \to X/M$ defined in Section 2.3. Since X is a t.v.s, it is in particular a topological space, so we can consider on X/M the quotient topology defined in Section 2.3. We already know that in this topological setting ϕ is continuous but actually the structure of t.v.s. on X guarantees also that it is open.

Proposition 2.3.2. For a linear subspace M of a t.v.s X, the quotient mapping $\phi : X \to X/M$ is open (i.e. carries open sets in X to open sets in X/M) when X/M is endowed with the quotient topology.

Proof. Let V open in X. Then we have

$$\phi^{-1}(\phi(V)) = V + M = \bigcup_{m \in M} (V + m)$$

Since X is a t.v.s, its topology is translation invariant and so $V + m$ is open for any $m \in M$. Hence, $\phi^{-1}(\phi(V))$ is open in X as union of open sets. By definition, this means that $\phi(V)$ is open in X/M endowed with the quotient topology.

It is then clear that ϕ carries neighborhoods of a point in X into neighborhoods of a point in X/M and viceversa. Hence, the neighborhoods of the origin in X/M are direct images under ϕ of the neighborhoods of the origin in X. In conclusion, when X is a t.v.s and M is a subspace of X, we can rewrite the definition of quotient topology on X/M in terms of neighborhoods as follows: the filter of neighborhoods of the origin of X/M is exactly the image under ϕ of the filter of neighborhoods of the origin in X.

It is not true, in general (not even when X is a t.v.s. and M is a subspace of X), that the quotient map is closed.

Example 2.3.3.

Consider \mathbb{R}^2 with the euclidean topology and the hyperbola $H := \{(x, y) \in \mathbb{R}^2 : xy = 1\}$. If M is one of the coordinate axes, then \mathbb{R}^2/M can be identified with the other coordinate axis and the quotient map ϕ with the orthogonal projection on it. All these identifications are also valid for the topologies. The hyperbola H is closed in \mathbb{R}^2 but its image under ϕ is the complement of the origin on a straight line which is open.
Corollary 2.3.4. For a linear subspace \(M \) of a t.v.s. \(X \), the quotient space \(X/M \) endowed with the quotient topology is a t.v.s.

Proof.
For convenience, we denote here by \(A \) the vector addition in \(X/M \) and just by + the vector addition in \(X \). Let \(W \) be a neighbourhood of the origin \(o \) in \(X/M \). We aim to prove that \(A^{-1}(W) \) is a neighbourhood of \((o, o)\) in \(X/M \times X/M \).

The continuity of the quotient map \(\phi : X \to X/M \) implies that \(\phi^{-1}(W) \) is a neighbourhood of the origin in \(X \). Then, by Theorem 2.1.10-2 (we can apply the theorem because \(X \) is a t.v.s.), there exists \(V \) neighbourhood of the origin in \(X \) s.t. \(V + V \subseteq \phi^{-1}(W) \). Hence, by the linearity of \(\phi \), we get \(A(\phi(V) \times \phi(V)) = \phi(V + V) \subseteq W \), i.e. \(\phi(V) \times \phi(V) \subseteq A^{-1}(W) \). Since \(\phi \) is also open, \(\phi(V) \) is a neighbourhood of the origin \(o \) in \(X/M \) and so \(A^{-1}(W) \) is a neighbourhood of \((o, o)\) in \(X/M \times X/M \).

A similar argument gives the continuity of the scalar multiplication.

Proposition 2.3.5. Let \(X \) be a t.v.s. and \(M \) a linear subspace of \(X \). Consider \(X/M \) endowed with the quotient topology. Then the two following properties are equivalent:

a) \(M \) is closed
b) \(X/M \) is Hausdorff

Proof.
In view of Corollary 2.2.4, (b) is equivalent to say that the complement of the origin in \(X/M \) is open w.r.t. the quotient topology. But the complement of the origin in \(X/M \) is exactly the image under \(\phi \) of the complement of \(M \) in \(X \). Since \(\phi \) is an open continuous map, the image under \(\phi \) of the complement of \(M \) in \(X \) is open in \(X/M \) iff the complement of \(M \) in \(X \) is open, i.e. (a) holds.

Corollary 2.3.6. If \(X \) is a t.v.s., then \(X/\{o\} \) endowed with the quotient topology is a Hausdorff t.v.s.. \(X/\{o\} \) is said to be the Hausdorff t.v.s. associated with the t.v.s. \(X \). When a t.v.s. \(X \) is Hausdorff, \(X \) and \(X/\{o\} \) are topologically isomorphic.

Proof.
Since \(X \) is a t.v.s. and \(\{o\} \) is a linear subspace of \(X \), \(\overline{\{o\}} \) is a closed linear subspace of \(X \). Then, by Corollary 2.3.4 and Proposition 2.3.5, \(X/\{o\} \) is a Hausdorff t.v.s.. If in addition \(X \) is Hausdorff, then Corollary 2.2.4 guarantees that \(\overline{\{o\}} = \{o\} \) in \(X \). Therefore, the quotient map \(\phi : X \to X/\{o\} \) is also injective because in this case \(\text{Ker}(\phi) = \{o\} \). Hence, \(\phi \) is a topological isomorphism (i.e. bijective, continuous, open, linear) between \(X \) and \(X/\{o\} \) which is indeed \(X/\{o\} \).

\[\square \]
2.4 Continuous linear mappings between t.v.s.

Let X and Y be two vector spaces over \mathbb{K} and $f : X \to Y$ a linear map. We define the image of f, and denote it by $\text{Im}(f)$, as the subset of Y:

$$\text{Im}(f) := \{ y \in Y : \exists x \in X \text{ s.t. } y = f(x) \}.$$

We define the kernel of f, and denote it by $\text{Ker}(f)$, as the subset of X:

$$\text{Ker}(f) := \{ x \in X : f(x) = 0 \}.$$

Both $\text{Im}(f)$ and $\text{Ker}(f)$ are linear subspaces of Y and X, respectively. We have then the diagram:

$$
\begin{array}{ccc}
X & \xrightarrow{f} & \text{Im}(f) & \xrightarrow{i} & Y \\
\downarrow{\phi} & & & & \downarrow{f} \\
X/\text{Ker}(f) & & & & \\
\end{array}
$$

where i is the natural injection of $\text{Im}(f)$ into Y, i.e. the mapping which to each element y of $\text{Im}(f)$ assigns that same element y regarded as an element of Y; ϕ is the canonical map of X onto its quotient $X/\text{Ker}(f)$. The mapping \tilde{f} is defined so as to make the diagram commutative, which means that:

$$\forall x \in X, f(x) = \tilde{f}(\phi(x)).$$

Note that

- \tilde{f} is well-defined.
 Indeed, if $\phi(x) = \phi(y)$, i.e. $x - y \in \text{Ker}(f)$, then $f(x - y) = 0$ that is $f(x) = f(y)$ and so $\tilde{f}(\phi(x)) = \tilde{f}(\phi(y))$.

- \tilde{f} is linear.
 This is an immediate consequence of the linearity of f and of the linear structure of $X/\text{Ker}(f)$.

- \tilde{f} is a one-to-one linear map of $X/\text{Ker}(f)$ onto $\text{Im}(f)$.
 The onto property is evident from the definition of $\text{Im}(f)$ and of \tilde{f}.
 As for the one-to-one property, note that $\tilde{f}(\phi(x)) = \tilde{f}(\phi(y))$ means by definition that $f(x) = f(y)$, i.e. $f(x - y) = 0$. This is equivalent, by linearity of f, to say that $x - y \in \text{Ker}(f)$, which means that $\phi(x) = \phi(y)$.
2. Topological Vector Spaces

The set of all linear maps (continuous or not) of a vector space X into another vector space Y is denoted by $\mathcal{L}(X; Y)$. Note that $\mathcal{L}(X; Y)$ is a vector space for the natural addition and multiplication by scalars of functions. Recall that when $Y = \mathbb{K}$, the space $\mathcal{L}(X; Y)$ is denoted by X^* and it is called the algebraic dual of X (see Definition 1.2.4).

Let us not turn to consider linear mapping between two t.v.s. X and Y. Since they possess a topological structure, it is natural to study in this setting continuous linear mapping.

Proposition 2.4.1. Let $f : X \to Y$ a linear map between two t.v.s. X and Y. If Y is Hausdorff and f is continuous, then $\ker(f)$ is closed in X.

Proof.
Clearly, $\ker(f) = f^{-1}(\{0\})$. Since Y is a Hausdorff t.v.s., $\{0\}$ is closed in Y and so, by the continuity of f, $\ker(f)$ is also closed in Y. \square

Note that $\ker(f)$ might be closed in X also when Y is not Hausdorff. For instance, when $f \equiv 0$ or when f is injective and X is Hausdorff.

Proposition 2.4.2. Let $f : X \to Y$ a linear map between two t.v.s. X and Y. The map f is continuous if and only if the map \bar{f} is continuous.

Proof.
Suppose f continuous and let U be an open subset in $\text{Im}(f)$. Then $f^{-1}(U)$ is open in X. By definition of \bar{f}, we have $f^{-1}(U) = \phi(f^{-1}(U))$. Since the quotient map $\phi : X \to X/\ker(f)$ is open, $\phi(f^{-1}(U))$ is open in $X/\ker(f)$. Hence, $f^{-1}(U)$ is open in $X/\ker(f)$ and so the map \bar{f} is continuous. Viceversa, suppose that \bar{f} is continuous. Since $f = \bar{f} \circ \phi$ and ϕ is continuous, f is also continuous as composition of continuous maps. \square

In general, the inverse of \bar{f}, which is well defined on $\text{Im}(f)$ since \bar{f} is injective, is not continuous. In other words, \bar{f} is not necessarily bi-continuous.

The set of all continuous linear maps of a t.v.s. X into another t.v.s. Y is denoted by $L(X; Y)$ and it is a vector subspace of $\mathcal{L}(X; Y)$. When $Y = \mathbb{K}$, the space $L(X; Y)$ is usually denoted by X' which is called the topological dual of X, in order to underline the difference with X^* the algebraic dual of X. X' is a vector subspace of X^* and is exactly the vector space of all continuous linear functionals, or continuous linear forms, on X. The vector spaces X' and $L(X; Y)$ will play an important role in the forthcoming and will be equipped with various topologies.