Corollary 2.2.4. For a t.v.s. X the following are equivalent:

- a) X is Hausdorff.
- b) the intersection of all neighbourhoods of the origin o is just  $\{o\}$ .

c)  $\{0\}$  is closed.

Note that in a t.v.s.  $\{0\}$  is closed is equivalent to say that all singletons are closed (and so that the space is (T1)).

#### Proof.

a)  $\Rightarrow$  b) Let X be a Hausdorff t.v.s. space. Clearly,  $\{o\} \subseteq \cap_{U \in \mathcal{F}(o)} U$ . Now if b) does not hold, then there exists  $x \in \cap_{U \in \mathcal{F}(o)} U$  with  $x \neq o$ . But by the previous theorem we know that (2.1) holds and so there exists  $V \in \mathcal{F}(o)$  s.t.  $x \notin V$  and so  $x \notin \cap_{U \in \mathcal{F}(o)} U$  which is a contradiction.

b)  $\Rightarrow$  c) Assume that  $\cap_{U \in \mathcal{F}(o)} U = \{o\}$ . If  $x \in \overline{\{o\}}$  then  $\forall V_x \in \mathcal{F}(x)$  we have  $V_x \cap \{o\} \neq \emptyset$ , i.e.  $o \in V_x$ . By Corollary 2.1.9 we know that each  $V_x = U + x$  with  $U \in \mathcal{F}(o)$ . Then o = u + x for some  $u \in U$  and so  $x = -u \in -U$ . This means that  $x \in \cap_{U \in \mathcal{F}(o)} (-U)$ . Since every dilation is an homeomorphism and b) holds, we have that  $x \in \cap_{U \in \mathcal{F}(o)} U = \{0\}$ . Hence, x = 0 and so  $\overline{\{o\}} = \{o\}$ , i.e.  $\{o\}$  is closed.

c)  $\Rightarrow$  a) Assume that X is not Hausdorff. Then by the previous proposition (2.1) does not hold, i.e. there exists  $x \neq o$  s.t.  $x \in U$  for all  $U \in \mathcal{F}(o)$ . This means that  $x \in \bigcap_{U \in \mathcal{F}(o)} U \subseteq \bigcap_{U \in \mathcal{F}(o) \text{closed}} U = \overline{\{o\}}$  By c),  $\overline{\{o\}} = \{o\}$  and so x = 0 which is a contradiction.

**Example 2.2.5.** Every vector space with an infinite number of elements endowed with the cofinite topology is not a tvs. It is clear that in such topological space all singletons are closed (i.e. it is T1). Therefore, if it was a t.v.s. then by the previous results it should be a Hausdorff space which is not true as shown in Example 1.1.40.

# 2.3 Quotient topological vector spaces

# Quotient topology

Let X be a topological space and ~ be any equivalence relation on X. Then the quotient set  $X/\sim$  is defined to be the set of all equivalence classes w.r.t. to ~. The map  $\phi : X \to X/\sim$  which assigns to each  $x \in X$  its equivalence class  $\phi(x)$  w.r.t. ~ is called the *canonical map* or *quotient map*. Note that  $\phi$  is surjective. We may define a topology on  $X/\sim$  by setting that: a subset U of  $X/\sim$  is open iff the preimage  $\phi^{-1}(U)$  is open in X. This is called the *quotient* topology on  $X/\sim$ . Then it is easy to verify (Sheet 4, Exercise 2) that:

- the quotient map  $\phi$  is continuous.
- the quotient topology on  $X/\sim$  is the finest topology on  $X/\sim$  s.t.  $\phi$  is continuous.

Note that the quotient map  $\phi$  is not necessarily open or closed.

**Example 2.3.1.** Consider  $\mathbb{R}$  with the standard topology given by the modulus and define the following equivalence relation on  $\mathbb{R}$ :

$$x \sim y \Leftrightarrow (x = y \lor \{x, y\} \subset \mathbb{Z}).$$

Let  $\mathbb{R}/\sim$  be the quotient set w.r.t  $\sim$  and  $\phi : \mathbb{R} \to \mathbb{R}/\sim$  the correspondent quotient map. Let us consider the quotient topology on  $\mathbb{R}/\sim$ . Then  $\phi$  is not an open map. In fact, if U is an open proper subset of  $\mathbb{R}$  containing an integer, then  $\phi^{-1}(\phi(U)) = U \cup \mathbb{Z}$  which is not open in  $\mathbb{R}$  with the standard topology. Hence,  $\phi(U)$  is not open in  $\mathbb{R}/\sim$  with the quotient topology.

For an example of quotient map which is not closed see Example 2.3.3 in the following.

### Quotient vector space

Let X be a vector space and M a linear subspace of X. For two arbitrary elements  $x, y \in X$ , we define  $x \sim_M y$  iff  $x - y \in M$ . It is easy to see that  $\sim_M$  is an equivalence relation: it is reflexive, since  $x - x = 0 \in M$ (every linear subspace contains the origin); it is symmetric, since  $x - y \in M$ implies  $-(x - y) = y - x \in M$  (if a linear subspace contains an element, it contains its inverse); it is transitive, since  $x - y \in M$ ,  $y - z \in M$  implies  $x - z = (x - y) + (y - z) \in M$  (when a linear subspace contains two vectors, it also contains their sum). Then X/M is defined to be the quotient set  $X/\sim_M$ , i.e. the set of all equivalence classes for the relation  $\sim_M$  described above. The canonical (or quotient) map  $\phi : X \to X/M$  which assigns to each  $x \in X$  its equivalence class  $\phi(x)$  w.r.t. the relation  $\sim_M$  is clearly surjective. Using the fact that M is a linear subspace of X, it is easy to check that:

1. if  $x \sim_M y$ , then  $\forall \lambda \in \mathbb{K}$  we have  $\lambda x \sim_M \lambda y$ .

2. if  $x \sim_M y$ , then  $\forall z \in X$  we have  $x + z \sim_M y + z$ .

These two properties guarantee that the following operations are well-defined on X/M:

• vector addition:  $\forall \phi(x), \phi(y) \in X/M, \phi(x) + \phi(y) := \phi(x+y)$ 

• scalar multiplication:  $\forall \lambda \in \mathbb{K}, \forall \phi(x) \in X/M, \lambda \phi(x) := \phi(\lambda x)$ 

X/M with the two operations defined above is a vector space and therefore it is often called *quotient vector space*. Then the quotient map  $\phi$  is clearly linear.

### Quotient topological vector space

Let X be now a t.v.s. and M a linear subspace of X. Consider the quotient vector space X/M and the quotient map  $\phi : X \to X/M$  defined in Section 2.3. Since X is a t.v.s, it is in particular a topological space, so we can consider on X/M the quotient topology defined in Section 2.3. We already know that in this topological setting  $\phi$  is continuous but actually the structure of t.v.s. on X guarantees also that it is open.

**Proposition 2.3.2.** For a linear subspace M of a t.v.s. X, the quotient mapping  $\phi: X \to X/M$  is open (i.e. carries open sets in X to open sets in X/M) when X/M is endowed with the quotient topology.

*Proof.* Let V open in X. Then we have

$$\phi^{-1}(\phi(V)) = V + M = \bigcup_{m \in M} (V + m)$$

Since X is a t.v.s, its topology is translation invariant and so V + m is open for any  $m \in M$ . Hence,  $\phi^{-1}(\phi(V))$  is open in X as union of open sets. By definition, this means that  $\phi(V)$  is open in X/M endowed with the quotient topology.

It is then clear that  $\phi$  carries neighborhoods of a point in X into neighborhoods of a point in X/M and viceversa. Hence, the neighborhoods of the origin in X/M are direct images under  $\phi$  of the neighborhoods of the origin in X. In conclusion, when X is a t.v.s and M is a subspace of X, we can rewrite the definition of quotient topology on X/M in terms of neighborhoods as follows: the filter of neighborhoods of the origin of X/M is exactly the image under  $\phi$  of the filter of neighborhoods of the origin in X.

It is not true, in general (not even when X is a t.v.s. and M is a subspace of X), that the quotient map is closed.

### Example 2.3.3.

Consider  $\mathbb{R}^2$  with the euclidean topology and the hyperbola  $H := \{(x, y) \in \mathbb{R}^2 : xy = 1\}$ . If M is one of the coordinate axes, then  $\mathbb{R}^2/M$  can be identified with the other coordinate axis and the quotient map  $\phi$  with the orthogonal projection on it. All these identifications are also valid for the topologies. The hyperbola H is closed in  $\mathbb{R}^2$  but its image under  $\phi$  is the complement of the origin on a straight line which is open.

**Corollary 2.3.4.** For a linear subspace M of a t.v.s. X, the quotient space X/M endowed with the quotient topology is a t.v.s..

#### Proof.

For convenience, we denote here by A the vector addition in X/M and just by + the vector addition in X. Let W be a neighbourhood of the origin o in X/M. We aim to prove that  $A^{-1}(W)$  is a neighbourhood of (o, o) in  $X/M \times X/M$ .

The continuity of the quotient map  $\phi : X \to X/M$  implies that  $\phi^{-1}(W)$ is a neighbourhood of the origin in X. Then, by Theorem 2.1.10-2 (we can apply the theorem because X is a t.v.s.), there exists V neighbourhood of the origin in X s.t.  $V + V \subseteq \phi^{-1}(W)$ . Hence, by the linearity of  $\phi$ , we get  $A(\phi(V) \times \phi(V)) = \phi(V + V) \subseteq W$ , i.e.  $\phi(V) \times \phi(V) \subseteq A^{-1}(W)$ . Since  $\phi$  is also open,  $\phi(V)$  is a neighbourhood of the origin o in X/M and so  $A^{-1}(W)$  is a neighbourhood of (o, o) in  $X/M \times X/M$ .

A similar argument gives the continuity of the scalar multiplication.  $\Box$ 

**Proposition 2.3.5.** Let X be a t.v.s. and M a linear subspace of X. Consider X/M endowed with the quotient topology. Then the two following properties are equivalent:

a) M is closed

b) X/M is Hausdorff

Proof.

In view of Corollary 2.2.4, (b) is equivalent to say that the complement of the origin in X/M is open w.r.t. the quotient topology. But the complement of the origin in X/M is exactly the image under  $\phi$  of the complement of M in X. Since  $\phi$  is an open continuous map, the image under  $\phi$  of the complement of M in X is open in X/M iff the complement of M in X is open, i.e. (a) holds.  $\Box$ 

**Corollary 2.3.6.** If X is a t.v.s., then  $X/\overline{\{o\}}$  endowed with the quotient topology is a Hausdorff t.v.s..  $X/\overline{\{o\}}$  is said to be the Hausdorff t.v.s. associated with the t.v.s. X. When a t.v.s. X is Hausdorff, X and  $X/\overline{\{o\}}$  are topologically isomorphic.

## Proof.

Since X is a t.v.s. and  $\{o\}$  is a linear subspace of X,  $\overline{\{o\}}$  is a closed linear subspace of X. Then, by Corollary 2.3.4 and Proposition 2.3.5,  $X/\overline{\{o\}}$  is a Hausdorff t.v.s.. If in addition X is Hausdorff, then Corollary 2.2.4 guarantees that  $\overline{\{o\}} = \{o\}$  in X. Therefore, the quotient map  $\phi : X \to X/\overline{\{o\}}$  is also injective because in this case  $Ker(\phi) = \{o\}$ . Hence,  $\phi$  is a topological isomorphism (i.e. bijective, continuous, open, linear) between X and  $X/\overline{\{o\}}$  which is indeed  $X/\{o\}$ .

# 2.4 Continuous linear mappings between t.v.s.

Let X and Y be two vector spaces over  $\mathbb{K}$  and  $f: X \to Y$  a linear map. We define the *image* of f, and denote it by Im(f), as the subset of Y:

$$Im(f) := \{ y \in Y : \exists x \in X \text{ s.t. } y = f(x) \}.$$

We define the kernel of f, and denote it by Ker(f), as the subset of X:

$$Ker(f) := \{ x \in X : f(x) = 0 \}.$$

Both Im(f) and Ker(f) are linear subspaces of Y and X, respectively. We have then the diagram:



where *i* is the natural injection of Im(f) into *Y*, i.e. the mapping which to each element *y* of Im(f) assigns that same element *y* regarded as an element of *Y*;  $\phi$  is the canonical map of *X* onto its quotient X/Ker(f). The mapping  $\overline{f}$  is defined so as to make the diagram commutative, which means that:

$$\forall x \in X, f(x) = f(\phi(x))$$

Note that

•  $\bar{f}$  is well-defined.

Indeed, if  $\phi(x) = \phi(y)$ , i.e.  $x - y \in Ker(f)$ , then f(x - y) = 0 that is f(x) = f(y) and so  $\overline{f}(\phi(x)) = \overline{f}(\phi(y))$ .

- $\overline{f}$  is linear. This is an immediate consequence of the linearity of f and of the linear structure of X/Ker(f).
- $\overline{f}$  is a one-to-one linear map of X/Ker(f) onto Im(f). The onto property is evident from the definition of Im(f) and of  $\overline{f}$ . As for the one-to-one property, note that  $\overline{f}(\phi(x)) = \overline{f}(\phi(y))$  means by definition that f(x) = f(y), i.e. f(x - y) = 0. This is equivalent, by linearity of f, to say that  $x - y \in Ker(f)$ , which means that  $\phi(x) = \phi(y)$ .

The set of all linear maps (continuous or not) of a vector space X into another vector space Y is denoted by  $\mathcal{L}(X;Y)$ . Note that  $\mathcal{L}(X;Y)$  is a vector space for the natural addition and multiplication by scalars of functions. Recall that when  $Y = \mathbb{K}$ , the space  $\mathcal{L}(X;Y)$  is denoted by  $X^*$  and it is called the *algebraic dual* of X (see Definition 1.2.4).

Let us not turn to consider linear mapping between two t.v.s. X and Y. Since they posses a topological structure, it is natural to study in this setting continuous linear mappings.

**Proposition 2.4.1.** Let  $f : X \to Y$  a linear map between two t.v.s. X and Y. If Y is Hausdorff and f is continuous, then Ker(f) is closed in X.

# Proof.

Clearly,  $Ker(f) = f^{-1}(\{o\})$ . Since Y is a Hausdorff t.v.s.,  $\{o\}$  is closed in Y and so, by the continuity of f, Ker(f) is also closed in Y.

Note that Ker(f) might be closed in X also when Y is not Hausdorff. For instance, when  $f \equiv 0$  or when f is injective and X is Hausdorff.

**Proposition 2.4.2.** Let  $f : X \to Y$  a linear map between two t.v.s. X and Y. The map f is continuous if and only if the map  $\overline{f}$  is continuous.

Proof.

Suppose f continuous and let U be an open subset in Im(f). Then  $f^{-1}(U)$  is open in X. By definition of  $\overline{f}$ , we have  $\overline{f}^{-1}(U) = \phi(f^{-1}(U))$ . Since the quotient map  $\phi: X \to X/Ker(f)$  is open,  $\phi(f^{-1}(U))$  is open in X/Ker(f). Hence,  $\overline{f}^{-1}(U)$  is open in X/Ker(f) and so the map  $\overline{f}$  is continuous. Viceversa, suppose that  $\overline{f}$  is continuous. Since  $f = \overline{f} \circ \phi$  and  $\phi$  is continuous, f is also continuous as composition of continuous maps.

In general, the inverse of  $\bar{f}$ , which is well defined on Im(f) since  $\bar{f}$  is injective, is not continuous. In other words,  $\bar{f}$  is not necessarily bi-continuous.

The set of all continuous linear maps of a t.v.s. X into another t.v.s. Y is denoted by L(X;Y) and it is a vector subspace of  $\mathcal{L}(X;Y)$ . When  $Y = \mathbb{K}$ , the space L(X;Y) is usually denoted by X' which is called the *topological dual* of X, in order to underline the difference with X\* the algebraic dual of X. X' is a vector subspace of X\* and is exactly the vector space of all continuous linear functionals, or continuous linear forms, on X. The vector spaces X' and L(X;Y) will play an important role in the forthcoming and will be equipped with various topologies.