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This section aims to treat completeness for most general types of topological
vector spaces, beyond the traditional metric framework. As well as in the case
of metric spaces, we need to introduce the definition of a Cauchy sequence in
a t.v.s..

Definition 2.5.1. A sequence S := {xn}n∈N of points in a t.v.s. X is said to

be a Cauchy sequence if

∀U ∈ F(o) inX, ∃N ∈ N : xm − xn ∈ U, ∀m,n ≥ N. (2.2)

This definition agrees with the usual one if the topology of X is defined
by a translation-invariant metric d. Indeed, in this case, a basis of neigh-
bourhoods of the origin is given by all the open balls centered at the origin.
Therefore, {xn}n∈N is a Cauchy sequence in such (X, d) iff ∀ ε > 0, ∃N ∈ N :
xm − xn ∈ Bε(o), ∀m,n ≥ N , i.e. d(xm, xn) = d(xm − xn, o) < ε.

By using the subsequences Sm := {xn ∈ S : n ≥ m} of S, we can easily
rewrite (2.2) in the following way

∀U ∈ F(o) inX, ∃N ∈ N : SN − SN ⊂ U.

As we have already observed in Chapter 1, the collection B := {Sm : m ∈ N}
is a basis of the filter FS associated with the sequence S. This immediately
suggests what the definition of a Cauchy filter should be:

Definition 2.5.2. A filter F on a subset A of a t.v.s. X is said to be a Cauchy
filter if

∀U ∈ F(o) inX, ∃M ⊂ A : M ∈ F and M −M ⊂ U.

In order to better illustrate this definition, let us come back to our refer-
ence example of a t.v.s. X whose topology is defined by a translation-invariant
metric d. For any subset M of (X, d), recall that the diameter of M is defined
as diam(M) := supx,y∈M d(x, y). Now if F is a Cauchy filter on X then, by
definition, for any ε > 0 there exists M ∈ F s.t. M − M ⊂ Bε(o) and this
simply means that diam(M) ≤ ε. Therefore, Definition 2.5.2 can be rephrased
in this case as follows: a filter F on a subset A of such a metric t.v.s. X is a

Cauchy filter if it contains subsets of A of arbitrarily small diameter.

Going back to the general case, the following statement clearly holds.

Proposition 2.5.3. The filter associated with a Cauchy sequence in a t.v.s.

X is a Cauchy filter.
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Proposition 2.5.4.
Let X be a t.v.s.. Then the following properties hold:

a) The filter of neighborhoods of a point x ∈ X is a Cauchy filter on X.

b) A filter finer than a Cauchy filter is a Cauchy filter.

c) Every converging filter is a Cauchy filter.

Proof.

a) Let F(x) be the filter of neighborhoods of a point x ∈ X and let U ∈ F(o).
By Theorem 2.1.10, there exists V ∈ F(o) such that V − V ⊂ U and
so such that (V + x) − (V + x) ⊂ U . Since X is a t.v.s., we know that
F(x) = F(o) + x and so M := V + x ∈ F(x). Hence, we have proved that
for any U ∈ F(o) there exists M ∈ F(x) s.t. M −M ⊂ U , i.e. F(x) is a
Cauchy filter.

b) Let F and F � be two filters of subsets of X such that F is a Cauchy
filter and F ⊆ F �. Since F is a Cauchy filter, by Definition 2.5.2, for any
U ∈ F(o) there exists M ∈ F s.t. M −M ⊂ U . But F � is finer than F , so
M belongs also to F �. Hence, F � is obviously a Cauchy filter.

c) If a filter F converges to a point x ∈ X then F(x) ⊆ F (see Defini-
tion 1.1.27). By a), F(x) is a Cauchy filter and so b) implies that F itself
is a Cauchy filter.

The converse of c) is in general false, in other words not every Cauchy
filter converges.

Definition 2.5.5. A subset A of a t.v.s. X is said to be complete if every

Cauchy filter on A converges to a point x of A.

It is important to distinguish between completeness and sequentially com-
pleteness.

Definition 2.5.6. A subset A of a t.v.s. X is said to be sequentially complete
if any Cauchy sequence in A converges to a point in A.

It is easy to see that complete always implies sequentially complete. The
converse is in general false (see Example 2.5.9). We will encounter an impor-
tant class of t.v.s., the so-called metrizable spaces, for which the two notions
coincide.

Proposition 2.5.7. If a subset A of a t.v.s. X is complete then A is sequen-

tially complete.
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Proof.

Let S := {xn}n∈N a Cauchy sequence of points in A. Then Proposition 2.5.3
guarantees that the filter FS associated to S is a Cauchy filter in A. By the
completeness of A we get that there exists x ∈ A such that FS converges to x.
This is equivalent to say that the sequence S is convergent to x ∈ A (see
Proposition 1.1.29). Hence, A is sequentially complete.

Before showing an example of a subset of a t.v.s. which is sequentially
complete but not complete, let us introduce two useful properties about com-
pleteness in t.v.s..

Proposition 2.5.8.
a) In a Hausdorff t.v.s. X, any complete subset is closed.

b) In a complete t.v.s. X, any closed subset is complete.

Example 2.5.9.
Let X := Rd

where d > ℵ0 endowed with the product topology given by

considering each copy of R equipped with the usual topology given by the mod-

ulus. For convenience we write X =
�

i∈J R with |J | = d > ℵ0. Note that X

is a Hausdorff t.v.s. as it is product of Hausdorff t.v.s.. Denote by H the sub-

set of X consisting of all vectors x = (xi)i∈J in X with only countably many

non-zero coordinates xi. Claim: H is sequentially complete but not complete.

Proof. of Claim. Let us first make some observations on H.
• H is strictly contained in X.

Indeed, any vector y ∈ X with all non-zero coordinates does not belong
to H because d > ℵ0.

• H is dense in X.
In fact, let x = (xi)i∈J ∈ X and U a neighbourhood of x in X. Then,
by definition of product topology on X, there exist

�
i∈J Ui ⊆ U s.t.

Ui ∈ R neighbourhood of xi in R for all i ∈ J and Ui �= R for all i ∈ I

where I ⊂ J with |I| < ∞. Take y := (yi)i∈J s.t. yi ∈ Ui for all i ∈ J

with yi �= 0 for all i ∈ I and yi = 0 otherwise. Then clearly y ∈ U

but also y ∈ H because it has only finitely many non-zero coordinates.

Hence, U ∩H �= ∅ and so H = X.
Now suppose thatH is complete, then by Proposition 2.5.8-a) we have that

H is closed. Therefore, by the density of H in X, it follows that H = H = X

which contradicts the first of the property above. Hence, H is not complete.
In the end, let us show that H is sequentially complete. Let (xn)n∈N a

Cauchy sequence of vectors xn = (x(i)n )i∈J in H. Then for each i ∈ J we have

that the sequence of the i − th coordinates (x(i)n )n∈N is a Cauchy sequence
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in R. By the completeness (i.e. the sequentially completeness) of R we have

that for each i ∈ J , the sequence (x(i)n )n∈N converges to a point x(i) ∈ R. Set
x := (x(i))i∈J . Then:

• x ∈ H, because for each n ∈ N only countably many x
(i)
n �= 0 and so

only countably many x
(i) �= 0.

• the sequence (xn)n∈N converges to x in H. In fact, for any U neighbour-
hood of x in X there exist

�
i∈J Ui ⊆ U s.t. Ui ∈ R neighbourhood of

xi in R for all i ∈ J and Ui �= R for all i ∈ I where I ⊂ J with |I| < ∞.

Since for each i ∈ J , the sequence (x(i)n )n∈N converges to x
(i) in R, we

get that for each i ∈ J there exists Ni ∈ N s.t. x
(i)
n ∈ Ui for all n ≥ Ni.

Take N := maxi∈I Ni (the max exists because I is finite). Then for each

i ∈ J we get x
(i)
n ∈ Ui for all n ≥ N , i.e. xn ∈ U for all n ≥ N which

proves the convergence of (xn)n∈N to x.
Hence, we have showed that every Cauchy sequence in H is convergent.

In order to prove Proposition 2.5.8, we need two small lemmas regarding
convergence of filters in a topological space.

Lemma 2.5.10. Let F be a filter of a topological Hausdorff space X. If F

converges to x ∈ X and also to y ∈ X, then x = y.

Proof.

Suppose that x �= y. Then, since X is Hausdorff, there exists V ∈ F(x) and
W ∈ F(y) such that V ∩W = ∅. On the other hand, we know by assumption
that F → x and F → y that is F(x) ⊆ F and F(y) ⊆ F (see Definition 1.1.27).
Hence, V,W ∈ F . Since filters are closed under finite intersections, we get
that V ∩W ∈ F and so ∅ ∈ F which contradicts the fact that F is a filter.

Lemma 2.5.11. Let A be a subset of a topological space X. Then x ∈ A if

and only if there exists a filter F of subsets of X such that A ∈ F and F

converges to x.

Proof.

Let x ∈ A, i.e. for any U ∈ F(x) in X we have U ∩ A �= ∅. Set F :=
{F ⊆ X|U ∩A ⊆ F for some U ∈ F(x)}. It is easy to see that F is a filter of
subsets of X. Therefore, for any U ∈ F(x), U ∩A ∈ F and U ∩A ⊆ U imply
that U ∈ F , i.e. F(x) ⊆ F . Hence, F → x.

Viceversa, suppose that F is a filter of X s.t. A ∈ F and F converges to
x. Let U ∈ F(x). Then U ∈ F since F(x) ⊆ F by definition of convergence.
Since also A ∈ F by assumption, we get U ∩A ∈ F and so U ∩A �= ∅.
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