Proof. of Proposition 2.5.8

- a) Let A be a complete subset of a Hausdorff t.v.s. X and let $x \in \overline{A}$. By Lemma 2.5.11, $x \in \overline{A}$ implies that there exists a filter \mathcal{F} of subsets of X s.t. $A \in \mathcal{F}$ and \mathcal{F} converges to x. Therefore, by Proposition 2.5.4-c), \mathcal{F} is a Cauchy filter. Consider now $\mathcal{F}_A := \{U \in \mathcal{F} : U \subseteq A\} \subset \mathcal{F}$. It is easy to see that \mathcal{F}_A is a Cauchy filter on A and so the completeness of A ensures that \mathcal{F}_A converges to a point $y \in A$. Hence, any nbhood V of y in A belongs to \mathcal{F}_A and so to \mathcal{F} . By definition of subset topology, this means that for any nbhood U of y in X we have $U \cap A \in \mathcal{F}$ and so $U \in \mathcal{F}$ (since \mathcal{F} is a filter). Then \mathcal{F} converges to y. Since X is Hausdorff, Lemma 2.5.10 establishes the uniqueness of the limit point of \mathcal{F} , i.e. x = y and so $\overline{A} = A$.
- b) Let A be a closed subset of a complete t.v.s. X and let \mathcal{F}_A be any Cauchy filter on A. Take the filter $\mathcal{F} := \{F \subseteq X | B \subseteq F \text{ for some } B \in \mathcal{F}_A\}$. It is clear that \mathcal{F} contains A and is finer than the Cauchy filter \mathcal{F}_A . Therefore, by Proposition 2.5.4-b), \mathcal{F} is also a Cauchy filter. Then the completeness of the t.v.s. X gives that \mathcal{F} converges to a point $x \in X$, i.e. $\mathcal{F}(x) \subseteq \mathcal{F}$. By Lemma 2.5.11, this implies that actually $x \in \overline{A}$ and, since A is closed, that $x \in A$. Now any neighbourhood of $x \in A$ in the subset topology is of the form $U \cap A$ with $U \in \mathcal{F}(x)$. Since $\mathcal{F}(x) \subseteq \mathcal{F}$ and $A \in \mathcal{F}$, we have $U \cap A \in \mathcal{F}$. Therefore, there exists $B \in \mathcal{F}_A$ s.t. $B \subseteq U \cap A \subset A$ and so $U \cap A \in \mathcal{F}_A$. Hence, \mathcal{F}_A converges $x \in A$, i.e. A is complete.

When a t.v.s. is not complete, it makes sense to ask if it is possible to embed it in a complete one. We are going to describe an abstract procedure that allows to always associate to an arbitrary Hausdorff t.v.s. X a complete Hausdorff t.v.s. \hat{X} called the *completion* of X. Before doing that, we need to introduce uniformly continuous functions between t.v.s. and state some of their fundamental properties.

Definition 2.5.12. Let X and Y be two t.v.s. and let A be a subset of X. A mapping $f : A \to Y$ is said to be uniformly continuous if for every neighborhood V of the origin in Y, there exists a neighborhood U of the origin in X such that for all pairs of elements $x_1, x_2 \in A$

$$x_1 - x_2 \in U \Rightarrow f(x_1) - f(x_2) \in V.$$

Proposition 2.5.13. Let X and Y be two t.v.s. and let A be a subset of X. a) If $f : A \to Y$ is uniformly continuous, then the image under f of a Cauchy filter on A is a Cauchy filter on Y.

b) If A is a linear subspace of X, then every continuous linear map from A to Y is uniformly continuous.

Proof. (Sheet 6, Exercise 2)

35

Theorem 2.5.14.

Let X and Y be two Hausdorff t.v.s., A a dense subset of X, and $f : A \to Y$ a uniformly continuous mapping. If Y is complete the following hold.

- a) There exists a unique continuous mapping $\overline{f} : X \to Y$ which extends f, *i.e.* such that for all $x \in A$ we have $\overline{f}(x) = f(x)$.
- b) \bar{f} is uniformly continuous.
- c) If we additionally assume that f is linear and A is a linear subspace of X, then \overline{f} is linear.

Proof. (Sheet 6, Exercise 3)

Let us now state and prove the theorem on completion of a t.v.s..

Theorem 2.5.15.

Let X be a Haudorff t.v.s.. Then there exists a complete Hausdorff t.v.s. \hat{X} and a mapping $i: X \to \hat{X}$ with the following properties:

- a) The mapping i is a topological monomorphism.
- b) The image of X under i is dense in \ddot{X} .
- c) For every complete Hausdorff t.v.s. Y and for every continuous linear map $f: X \to Y$, there is a continuous linear map $\hat{f}: \hat{X} \to Y$ such that the following diagram is commutative:

Furthermore:

I) Any other pair (\hat{X}_1, i_1) , consisting of a complete Hausdorff t.v.s. \hat{X}_1 and of a mapping $i_1 : X \to \hat{X}_1$ such that properties (a) and (b) hold substituting \hat{X} with \hat{X}_1 and i with i_1 , is isomorphic to (\hat{X}, i) . This means that there is an isomorphism j of \hat{X} onto \hat{X}_1 such that the following diagram is commutative:

II) Given Y and f as in property (c), the continuous linear map \hat{f} is unique.

Proof.

1) The set \hat{X}

Define the following relation on the collection of all Cauchy filters (c.f.) on X:

 $\mathcal{F} \sim_R \mathcal{G} \Leftrightarrow \forall U \text{ nbhood of the origin in } X, \exists A \in \mathcal{F}, \exists B \in \mathcal{G} \text{ s.t. } A - B \subset U.$

The relation (R) is actually an equivalence relation. In fact:

- <u>reflexive</u>: If \mathcal{F} is a c.f. on X, then by Definition 2.5.2 we have that for any U nbhood of the origin in X there exists $A \in \mathcal{F}$ s.t. $A - A \subset U$, i.e. $\mathcal{F} \sim_R \mathcal{F}$.
- symmetric: If \mathcal{F} and \mathcal{G} are c.f. on X s.t. $\mathcal{F} \sim_R \mathcal{G}$, then by definition of $\overline{(R)}$ we have that for any U nbhood of the origin in X there exist $A \in \mathcal{F}$ and $B \in \mathcal{G}$ s.t. $A B \subset U$. This implies that $B A \subset -U$, which gives $\mathcal{G} \sim_R \mathcal{F}$ considering that -U is a generic nbhood of the origin in X int he same right as U.
- <u>transitive</u>: Let $\mathcal{F}, \mathcal{G}, \mathcal{H}$ be c.f. on X s.t. $\mathcal{F} \sim_R \mathcal{G}$ and $\mathcal{G} \sim_R \mathcal{H}$. Take any U nbhood of the origin in X, then Theorem 2.1.10 ensures that there exists V nbhood of the origin in X s.t. $V + V \subset U$. By definition of (R), there exists $A \in \mathcal{F}, B_1, B_2 \in \mathcal{G}$ and $C \in \mathcal{H}$ s.t. $A B_1 \subset V$ and $B_2 C \subset V$. This clearly implies $A (B_1 \cap B_2) \subset V$ and $(B_1 \cap B_2) C \subset V$. By adding we obtain

$$A - C \subset A - (B_1 \cap B_2) + (B_1 \cap B_2) - C \subset V + V \subset U.$$

We define \hat{X} as the quotient of the set of all c.f. on X w.r.t. the equivalence relation (R). Hence, an element \hat{x} of \hat{X} is an equivalence class of c.f. on X w.r.t. (R).

2) Operations on \hat{X}

Multiplication by a scalar

Let $0 \neq \lambda \in \mathbb{K}$ and let \hat{x} be a generic element of \hat{X} . For any \mathcal{F} any representative of \hat{x} , we define $\lambda \hat{x}$ to be the equivalence class w.r.t. (R) of the the filter $\lambda \mathcal{F} := \{\lambda A : A \in \mathcal{F}\}$, i.e.

$$\lambda \hat{x} := \{ \mathcal{G} \text{ c.f. on } X : \mathcal{G} \sim_R \lambda \mathcal{F} \}.$$

It is easy to check that this definition does not depend on the choice of the representative \mathcal{F} of \hat{x} (see Sheet 7, Exercise 1).

When $\lambda = 0$, we have $\lambda \hat{x} = \hat{o}$, where \hat{o} is the equivalence class w.r.t. (R) of the filter of neighborhoods of the origin o in X (or, which is the same, of the Cauchy filter consisting of all the subsets of X which contain o).

Vector addition

Let \hat{x} and \hat{y} be two arbitrary elements of \hat{X} , and \mathcal{F} (resp. \mathcal{G}) a representative of \hat{x} (resp. \hat{y}). We define $\hat{x} + \hat{y}$ to be the equivalence class w.r.t. (R) of the the filter $\mathcal{F} + \mathcal{G} := \{C \subseteq X : A + B \subseteq C \text{ for some } A \in \mathcal{F}, B \in \mathcal{G}\}$, i.e.

$$\hat{x} + \hat{y} := \{\mathcal{H} \text{ c.f. on } X : \mathcal{H} \sim_R \mathcal{F} + \mathcal{G}\}.$$

Note that this vector addition is well-defined because its definition does not depend on the choice of the representative \mathcal{F} of \hat{x} and \mathcal{G} of \hat{y} (see Sheet 7, Exercise 1).

3) Topology on \hat{X}

Let U be an arbitrary nbhood of the origin in X. Define

$$\hat{U} := \{ \hat{x} \in \hat{X} : U \in \mathcal{F} \text{ for some } \mathcal{F} \in \hat{x} \}.$$
(2.3)

and consider the collection $\hat{\mathcal{B}} := \{\hat{U} : U \text{ nbhood of the origin in } X\}$. The filter generated by $\hat{\mathcal{B}}$ fulfills all the properties in Theorem 2.1.10 (see Sheet 7, Exercise 2) and therefore, it is the filter of nbhoods of the origin $\hat{o} \in \hat{X}$ w.r.t. to the unique topology on \hat{X} compatible with the vector space structure defined in Step 2. Clearly, $\hat{\mathcal{B}}$ is a basis of nbhoods of the origin $\hat{o} \in \hat{X}$ w.r.t. to such a topology.

4) \hat{X} is a Hausdorff t.v.s.

So far we have constructed a t.v.s. \hat{X} . In this step, we aim to prove that \hat{X} is also Hausdorff. By Proposition 2.2.3, it is enough to show that for any $\hat{x} \in \hat{X}$ with $\hat{o} \neq \hat{x}$ there exists a nbhood \hat{V} of the origin \hat{o} in \hat{X} s.t. $\hat{x} \notin \hat{V}$.

Since $\hat{o} \neq \hat{x}$, for any $\mathcal{F} \in \hat{x}$ and for any $\mathcal{F}_o \in \hat{o}$ we have $\mathcal{F} \not\sim_R \mathcal{F}_o$. Take $\mathcal{F}_0 := \{E \subseteq X : o \in E\}$, then the fact that $\mathcal{F} \not\sim_R \mathcal{F}_o$ means that there exists U nbhood of the origin in X s.t. $\forall A \in \mathcal{F}$ and $\forall A_o \in \mathcal{F}_o$ we have $A - A_o \notin U$. In particular, $\{o\} \in \mathcal{F}_o$ and so $\forall A \in \mathcal{F}$ we get $A \notin U$, which simply means that $U \notin \mathcal{F}$. By Theorem 2.1.10 applied to the t.v.s. X, we can always find another nbohood V of the origin in X s.t. $V + V \subset U$.

<u>Claim</u>: V does not belong to any representative of \hat{x} . This means, in view of the definition (2.3), that $\hat{x} \notin \hat{V}$. Hence, as observed at the beginning, the conclusion follows by Proposition 2.2.3.

Let us finally prove the claim. If \mathcal{F}' is any representative of \hat{x} , then $\mathcal{F} \sim_R \mathcal{F}'$, i.e. $\exists A \in \mathcal{F}$ and $\exists A' \in \mathcal{F}'$ s.t. $A - A' \subset V$. Suppose that $V \in \mathcal{F}'$ then $A' \cap V \in \mathcal{F}'$ and so $A' \cap V \neq \emptyset$. Therefore, we clearly have $A - (A' \cap V) \subset V$ which implies

$$A \subset V + (A' \cap V) \subset V + V \subset U.$$

Since $A \in \mathcal{F}$, this proves that $U \in \mathcal{F}$ which is a contradiction. Then $V \notin \mathcal{F}'$ for all $\mathcal{F}' \in \hat{x}$ that is exactly our claim.

5) Existence of $i: X \to \hat{X}$

We define the image of a point $x \in X$ under the mapping $i: X \to \hat{X}$ to be the equivalence class w.r.t. (R) of the filter $\mathcal{F}(x)$ of neighborhoods of x in X, i.e.

$$\forall x \in X, \ i(x) := \{ \mathcal{F} \text{ c.f. on } X : \mathcal{F} \sim_R \mathcal{F}(x) \}.$$

Note that the following properties hold.

Lemma 2.5.16.

a) Two c.f. filters on X converging to the same point are equivalent w.r.t. (R)

b) If two c.f. filters \mathcal{F} and \mathcal{F}' on X are s.t. $\mathcal{F} \sim_R \mathcal{F}'$ and \mathcal{F}' converges to $x \in X$ then also \mathcal{F} converges to x.

Proof. (Sheet 7, Exercise 3)

The previous lemma clearly proves that

$$i(x) \equiv \{\mathcal{F} \text{ c.f. on } X : \mathcal{F} \to x)\}.$$

6) i is an injective linear homeomorphism (i.e. (a) holds)

 $\underline{i \text{ is injective}}$

(see Sheet 7, Exercise 4).

 $\underline{i \text{ is linear}}$ (see Sheet 7, Exercise 4).

i is a homemorphism

We aim to show that i is both open and continuous on X.

To prove that i is open, we need to show that for any nbhood U of the origin in X the image i(U) is a nbhood of the origin in i(X) endowed with the subset topology induced by the topology on \hat{X} . Therefore, it suffices to show that for any nbhood U of the origin in X there exists U_1 nbhood of the origin in X s.t.

$$\hat{U}_1 \cap i(X) \subseteq i(U) \tag{2.4}$$

where \hat{U}_1 is defined as in (2.3).

To show the continuity of i, we need to prove that for any nbhood \hat{V} of the origin in i(X) the preimage $i^{-1}(\hat{V})$ is a nbhood of the origin in X. Now any nbhood of the origin in i(X) is of the form $\hat{U}_1 \cap i(X)$ for some U_1 nbhood of the origin in X. Therefore, it is enough to show that for any U_1

nbhood of the origin in X there exists another U nbhood of the origin in X s.t. $U \subseteq i^{-1}(\hat{U}_1 \cap i(X))$ i.e.

$$i(U) \subseteq \hat{U}_1 \cap i(X) \tag{2.5}$$

In order to prove (2.4) and (2.5), we shall prove the following:

$$i(\check{V}) \subseteq \hat{V} \cap i(X) \subseteq i(\overline{V}), \quad \forall V \text{ nbhood of the origin in } X.$$
 (2.6)

Indeed, if (2.6) holds then the first inclusion immediately shows (2.5) (for any U_1 nbhood of the origin in X take $U := \mathring{U}_1$ and apply the first inclusion of (2.6) to $V = U_1$). Moreover, (2.4) follows by combining the fact that for any nbhood U of the origin in X exists another nbhood U_1 of the origin in X s.t. $\overline{U_1} = U_1 \subseteq U$ (c.f. Sheet 3, Ex3-a)) together with the second inclusion of (2.6) (applied to U_1).

It remains to prove that (2.6) holds. Let V be any nbhood of the origin in X, then for any $x \in \mathring{V}$ we clearly have that V is a nbhood of x, which means that V belongs to a representative of i(x), i.e. $i(x) \in \hat{V}$. Hence, $i(\mathring{V}) \subseteq \hat{V} \cap i(X)$. Now take $\hat{y} \in \hat{V} \cap i(X)$, i.e. $\hat{y} = i(x)$ for some $x \in X$ s.t. $i(x) \in \hat{V}$. Then, by definition (2.3), we have that $V \in \mathcal{F}$ for some $\mathcal{F} \in i(x)$ or in other words that V belongs to some filter \mathcal{F} converging to x. Let Wbe another nbhood of the origin in X then W + x is a nbhood of x in X and so $W + x \in \mathcal{F}$ (since $\mathcal{F} \to x$). Hence, $V \cap (W + x) \in \mathcal{F}$ which implies that $V \cap (W + x) \neq \emptyset$ i.e. $x \in \overline{V}$. This means that $\hat{y} = i(x) \in i(\overline{V})$ which proves $\hat{V} \cap i(X) \subseteq i(\overline{V})$.

7) $\overline{i(X)} = \hat{X}$ (i.e. (b) holds)

Let $\hat{x}_o \in \hat{X}$ and let N be any nbhood of \hat{x}_o in \hat{X} . It suffices to consider the neighborhoods N of the form $\hat{U} + \hat{x}_0$ where \hat{U} is defined by (2.3) for some U nbhood of the origin in X. We aim to prove that $(\hat{U} + \hat{x}_o) \cap i(X) \neq \emptyset$.

By Theorem 2.1.10, we know that for any U nbhood of the origin in X there exists V nbhood of the origin in X s.t. $V + V \subset U$. Let \mathcal{F}_o be a representative of \hat{x}_0 , then \mathcal{F}_o is a c.f. on X and so there exists $A_o \in \mathcal{F}_o$ s.t. $A_o - A_o \subset V$. Fix an element $x \in A_o$. Then we get:

$$(V+x) - A_o \subset V + A_o - A_o \subset V + V \subset U.$$

$$(2.7)$$

Since V + x is a nbhood of x in X, V + x belongs to any Cauchy filter \mathcal{F} converging to x and so $V + x \in \mathcal{F}$ for any $\mathcal{F} \in i(x)$. Then $(V + x) - A_o \in \mathcal{F} - \mathcal{F}_o$ and so (2.7) gives $U \in \mathcal{F} - \mathcal{F}_o$ i.e. $i(x) - \hat{x_o} \in \hat{U}$. Hence, we found that there exists $x \in X$ s.t. $i(x) \in \hat{U} + \hat{x_o}$ which gives the conclusion.

8) \hat{X} is complete

Let $\hat{\mathcal{F}}$ be a Cauchy filter on \hat{X} . We aim to prove that there exists an element $\hat{x} \in \hat{X}$ s.t. $\hat{\mathcal{F}} \to \hat{x}$.

Consider the filter

$$\hat{\mathcal{F}}' := \{ \hat{G} \subset \hat{X} : \hat{M} + \hat{U} \subset \hat{G} \text{ for some } \hat{M} \in \hat{\mathcal{F}} \text{ and } \hat{U} \text{ nbhood of the origin in } \hat{X} \}.$$

Note that $\hat{\mathcal{F}}' \subset \hat{\mathcal{F}}$ and $\hat{\mathcal{F}}'$ is also a Cauchy filter on \hat{X} . In fact, since \hat{X} is a t.v.s., for any \hat{U} nbhood of the origin in \hat{X} there exists \hat{V}_0 balanced nbhood of the origin in \hat{X} s.t. $\hat{V}_0 + \hat{V}_0 + \hat{V}_0 \subset U$. Take $\hat{V} := \frac{1}{3}\hat{V}_0$ which is also a nbhood of the origin in \hat{X} , then

$$\hat{V} + \hat{V} - \hat{V} \subset \hat{V}_0 + \hat{V}_0 \subset U.$$

Since \hat{F} is a Cauchy filter, there exists $\hat{M} \in \hat{F}$ s.t. $\hat{M} - \hat{M} \subset \hat{V}$. Then

$$(\hat{M} + \hat{V}) - (\hat{M} + \hat{V}) \subset \hat{V} + \hat{V} - \hat{V} \subset U$$

Now let us consider the family of subsets of i(X) given by

$$\mathcal{F}' := \{ \hat{A} \cap i(X) : \hat{A} \in \hat{F}' \}.$$

It is possible to prove that \mathcal{F}' is a filter on i(X) and actually a Cauchy filter (see Sheet 7, Exercise 5). Moreover, since we proved that i is a topological isomorphism between X and i(X), we have that $i^{-1}(\mathcal{F}')$ is a Cauchy filter on X. Take

$$\hat{x} := \{ \mathcal{F} \text{ c.f. on } X : \mathcal{F} \sim_R i^{-1}(\mathcal{F}') \}.$$

Then \hat{F} converges to \hat{x} (see Sheet 7, Exercise 5).

9) Proof of the universal property (i.e. (c) and (II))

We can now identify X with i(X) and so regard X as a dense linear subspace of \hat{X} . Since $f : X \to Y$ is continuous and linear by assumption, it is also uniformly continuous by Proposition 2.5.13. Then applying Theorem 2.5.14 with X replaced by \hat{X} and A by X we get both the properties (c) and (II).

10) Uniqueness of \hat{X} up to isomorphism (proof of (I))

Since by assumption \hat{X}_1 is a complete Hausdorff t.v.s. and $i_1 : X \to \hat{X}_1$ is a topological monomorphism (in particular i_1 is a continuous linear mapping), we have by (c) that there exists a unique continuous linear map \hat{i}_1 s.t. $\hat{i}_1(i(x)) = i_1(x)$ for any $x \in X$. Let us define $j := \hat{i}_1$. On the other hand, let us define $f : i_1(X) \to \hat{X}$ by $f(i_1(x)) = i(x)$ for any $x \in X$. Since f is clearly linear and continuous and $i_1(X)$ is a linear subspace of \hat{X} , f is uniformly continuous and so by Theorem 2.5.14 we get that there exists a unique $\hat{f} : \hat{X}_1 \to \hat{X}$ continuous and linear s.t. $\hat{f}(i_1(x)) = f(i_1(x))$ for any $x \in X$. Using the density of i(X) in \hat{X} , the density of $i_1(X)$ in \hat{X}_1 and the continuity of the mappings involved, it is easy to check that

$$\bar{f}(j(\hat{x})) = \hat{x} \,\,\forall\, \hat{x} \in \hat{X}$$

and that

$$j(\bar{f}(\hat{x_1})) = \hat{x_1} \ \forall, \hat{x_1} \in \hat{X_1}$$

This means that j and f are the inverse of each other and that both are isomorphisms.