Proof. of Proposition 2.5.8
a) Let A be a complete subset of a Hausdorff t.v.s. X and let $x \in \bar{A}$. By Lemma 2.5.11, $x \in \bar{A}$ implies that there exists a filter \mathcal{F} of subsets of X s.t. $A \in \mathcal{F}$ and \mathcal{F} converges to x. Therefore, by Proposition 2.5.4-c), \mathcal{F} is a Cauchy filter. Consider now $\mathcal{F}_{A}:=\{U \in \mathcal{F}: U \subseteq A\} \subset \mathcal{F}$. It is easy to see that \mathcal{F}_{A} is a Cauchy filter on A and so the completeness of A ensures that \mathcal{F}_{A} converges to a point $y \in A$. Hence, any nbhood V of y in A belongs to \mathcal{F}_{A} and so to \mathcal{F}. By definition of subset topology, this means that for any nbhood U of y in X we have $U \cap A \in \mathcal{F}$ and so $U \in \mathcal{F}$ (since \mathcal{F} is a filter). Then \mathcal{F} converges to y. Since X is Hausdorff, Lemma 2.5.10 establishes the uniqueness of the limit point of \mathcal{F}, i.e. $x=y$ and so $\bar{A}=A$.
b) Let A be a closed subset of a complete t.v.s. X and let \mathcal{F}_{A} be any Cauchy filter on A. Take the filter $\mathcal{F}:=\left\{F \subseteq X \mid B \subseteq F\right.$ for some $\left.B \in \mathcal{F}_{A}\right\}$. It is clear that \mathcal{F} contains A and is finer than the Cauchy filter \mathcal{F}_{A}. Therefore, by Proposition 2.5.4-b), \mathcal{F} is also a Cauchy filter. Then the completeness of the t.v.s. X gives that \mathcal{F} converges to a point $x \in X$, i.e. $\mathcal{F}(x) \subseteq \mathcal{F}$. By Lemma 2.5.11, this implies that actually $x \in \bar{A}$ and, since A is closed, that $x \in A$. Now any neighbourhood of $x \in A$ in the subset topology is of the form $U \cap A$ with $U \in \mathcal{F}(x)$. Since $\mathcal{F}(x) \subseteq \mathcal{F}$ and $A \in \mathcal{F}$, we have $U \cap A \in \mathcal{F}$. Therefore, there exists $B \in \mathcal{F}_{A}$ s.t. $B \subseteq U \cap A \subset A$ and so $U \cap A \in \mathcal{F}_{A}$. Hence, \mathcal{F}_{A} converges $x \in A$, i.e. A is complete.

When a t.v.s. is not complete, it makes sense to ask if it is possible to embed it in a complete one. We are going to describe an abstract procedure that allows to always associate to an arbitrary Hausdorff t.v.s. X a complete Hausdorff t.v.s. \hat{X} called the completion of X. Before doing that, we need to introduce uniformly continuous functions between t.v.s. and state some of their fundamental properties.
Definition 2.5.12. Let X and Y be two t.v.s. and let A be a subset of X. A mapping $f: A \rightarrow Y$ is said to be uniformly continuous if for every neighborhood V of the origin in Y, there exists a neighborhood U of the origin in X such that for all pairs of elements $x_{1}, x_{2} \in A$

$$
x_{1}-x_{2} \in U \Rightarrow f\left(x_{1}\right)-f\left(x_{2}\right) \in V .
$$

Proposition 2.5.13. Let X and Y be two t.v.s. and let A be a subset of X.
a) If $f: A \rightarrow Y$ is uniformly continuous, then the image under f of a Cauchy filter on A is a Cauchy filter on Y.
b) If A is a linear subspace of X, then every continuous linear map from A to Y is uniformly continuous.
Proof. (Sheet 6, Exercise 2)

Theorem 2.5.14.

Let X and Y be two Hausdorff t.v.s., A a dense subset of X, and $f: A \rightarrow Y$ a uniformly continuous mapping. If Y is complete the the following hold.
a) There exists a unique continuous mapping $\bar{f}: X \rightarrow Y$ which extends f, i.e. such that for all $x \in A$ we have $\bar{f}(x)=f(x)$.
b) \bar{f} is uniformly continuous.
c) If we additionally assume that f is linear and A is a linear subspace of X, then \bar{f} is linear.

Proof. (Sheet 6, Exercise 3)

Let us now state and prove the theorem on completion of a t.v.s..

Theorem 2.5.15.

Let X be a Haudorff t.v.s.. Then there exists a complete Hausdorff t.v.s. \hat{X} and a mapping $i: X \rightarrow \hat{X}$ with the following properties:
a) The mapping i is a topological monomorphism.
b) The image of X under i is dense in \hat{X}.
c) For every complete Hausdorff t.v.s. Y and for every continuous linear map $f: X \rightarrow Y$, there is a continuous linear map $\hat{f}: \hat{X} \rightarrow Y$ such that the following diagram is commutative:

Furthermore:
I) Any other pair $\left(\hat{X}_{1}, i_{1}\right)$, consisting of a complete Hausdorff t.v.s. \hat{X}_{1} and of a mapping $i_{1}: X \rightarrow \hat{X}_{1}$ such that properties (a) and (b) hold substituting \hat{X} with \hat{X}_{1} and i with i_{1}, is isomorphic to (\hat{X}, i). This means that there is an isomorphism j of \hat{X} onto \hat{X}_{1} such that the following diagram is commutative:

II) Given Y and f as in property (c), the continuous linear map \hat{f} is unique.

Proof.

1) The set \hat{X}

Define the following relation on the collection of all Cauchy filters (c.f.) on X :
$\mathcal{F} \sim_{R} \mathcal{G} \Leftrightarrow \forall U$ nbhood of the origin in $X, \exists A \in \mathcal{F}, \exists B \in \mathcal{G}$ s.t. $A-B \subset U$.
The relation (R) is actually an equivalence relation. In fact:

- reflexive: If \mathcal{F} is a c.f. on X, then by Definition 2.5 .2 we have that for any U nbhood of the origin in X there exists $A \in \mathcal{F}$ s.t. $A-A \subset U$, i.e. $\mathcal{F} \sim_{R} \mathcal{F}$.
- symmetric: If \mathcal{F} and \mathcal{G} are c.f. on X s.t. $\mathcal{F} \sim_{R} \mathcal{G}$, then by definition of (R) we have that for any U nbhood of the origin in X there exist $A \in \mathcal{F}$ and $B \in \mathcal{G}$ s.t. $A-B \subset U$. This implies that $B-A \subset-U$, which gives $\mathcal{G} \sim_{R} \mathcal{F}$ considering that $-U$ is a generic nbhood of the origin in X int he same right as U.
- transitive: Let $\mathcal{F}, \mathcal{G}, \mathcal{H}$ be c.f. on X s.t. $\mathcal{F} \sim_{R} \mathcal{G}$ and $\mathcal{G} \sim_{R} \mathcal{H}$. Take any U nbhood of the origin in X, then Theorem 2.1.10 ensures that there exists V nbhood of the origin in X s.t. $V+V \subset U$. By definition of (R), there exists $A \in \mathcal{F}, B_{1}, B_{2} \in \mathcal{G}$ and $C \in \mathcal{H}$ s.t. $A-B_{1} \subset V$ and $B_{2}-C \subset V$. This clearly implies $A-\left(B_{1} \cap B_{2}\right) \subset V$ and $\left(B_{1} \cap B_{2}\right)-C \subset$ V. By adding we obtain

$$
A-C \subset A-\left(B_{1} \cap B_{2}\right)+\left(B_{1} \cap B_{2}\right)-C \subset V+V \subset U
$$

We define \hat{X} as the quotient of the set of all c.f. on X w.r.t. the equivalence relation (R). Hence, an element \hat{x} of \hat{X} is an equivalence class of c.f. on X w.r.t. (R).

2) Operations on \hat{X}

Multiplication by a scalar
Let $0 \neq \lambda \in \mathbb{K}$ and let \hat{x} be a generic element of \hat{X}. For any \mathcal{F} any representative of \hat{x}, we define $\lambda \hat{x}$ to be the equivalence class w.r.t. (R) of the the filter $\lambda \mathcal{F}:=\{\lambda A: A \in \mathcal{F}\}$, i.e.

$$
\lambda \hat{x}:=\left\{\mathcal{G} \text { c.f. on } X: \mathcal{G} \sim_{R} \lambda \mathcal{F}\right\} .
$$

It is easy to check that this definition does not depend on the choice of the representative \mathcal{F} of \hat{x} (see Sheet 7, Exercise 1).
When $\lambda=0$, we have $\lambda \hat{x}=\hat{o}$, where \hat{o} is the equivalence class w.r.t. (R) of the filter of neighborhoods of the origin o in X (or, which is the same, of the Cauchy filter consisting of all the subsets of X which contain o).

Vector addition
Let \hat{x} and \hat{y} be two arbitrary elements of \hat{X}, and \mathcal{F} (resp. \mathcal{G}) a representative of \hat{x} (resp. \hat{y}). We define $\hat{x}+\hat{y}$ to be the equivalence class w.r.t. (R) of the the filter $\mathcal{F}+\mathcal{G}:=\{C \subseteq X: A+B \subseteq C$ for some $A \in \mathcal{F}, B \in \mathcal{G}\}$, i.e.

$$
\hat{x}+\hat{y}:=\left\{\mathcal{H} \text { c.f. on } X: \mathcal{H} \sim_{R} \mathcal{F}+\mathcal{G}\right\} .
$$

Note that this vector addition is well-defined because its definition does not depend on the choice of the representative \mathcal{F} of \hat{x} and \mathcal{G} of \hat{y} (see Sheet 7, Exercise 1).

3) Topology on \hat{X}

Let U be an arbitrary nbhood of the origin in X. Define

$$
\begin{equation*}
\hat{U}:=\{\hat{x} \in \hat{X}: U \in \mathcal{F} \text { for some } \mathcal{F} \in \hat{x}\} . \tag{2.3}
\end{equation*}
$$

and consider the collection $\hat{\mathcal{B}}:=\{\hat{U}: U$ nbhood of the origin in $X\}$. The filter generated by $\hat{\mathcal{B}}$ fulfills all the properties in Theorem 2.1.10 (see Sheet 7, Exercise 2) and therefore, it is the filter of nbhoods of the origin $\hat{o} \in \hat{X}$ w.r.t. to the unique topology on \hat{X} compatible with the vector space structure defined in Step 2. Clearly, $\hat{\mathcal{B}}$ is a basis of nbhoods of the origin $\hat{o} \in \hat{X}$ w.r.t. to such a topology.

4) \hat{X} is a Hausdorff t.v.s.

So far we have constructed a t.v.s. \hat{X}. In this step, we aim to prove that \hat{X} is also Hausdorff. By Proposition 2.2.3, it is enough to show that for any $\hat{x} \in \hat{X}$ with $\hat{o} \neq \hat{x}$ there exists a nbhood \hat{V} of the origin \hat{o} in \hat{X} s.t. $\hat{x} \notin \hat{V}$.
Since $\hat{o} \neq \hat{x}$, for any $\mathcal{F} \in \hat{x}$ and for any $\mathcal{F}_{o} \in \hat{o}$ we have $\mathcal{F} \not \chi_{R} \mathcal{F}_{o}$. Take $\mathcal{F}_{0}:=\{E \subseteq X: o \in E\}$, then the fact that $\mathcal{F} \not \chi_{R} \mathcal{F}_{o}$ means that there exists U nbhood of the origin in X s.t. $\forall A \in \mathcal{F}$ and $\forall A_{o} \in \mathcal{F}_{o}$ we have $A-A_{o} \not \subset U$. In particular, $\{o\} \in \mathcal{F}_{o}$ and so $\forall A \in \mathcal{F}$ we get $A \not \subset U$, which simply means that $U \notin \mathcal{F}$. By Theorem 2.1.10 applied to the t.v.s. X, we can always find another nbohood V of the origin in X s.t. $V+V \subset U$.
Claim: V does not belong to any representative of \hat{x}. This means, in view of the definition (2.3), that $\hat{x} \notin \hat{V}$. Hence, as observed at the beginning, the conclusion follows by Proposition 2.2.3.
Let us finally prove the claim. If \mathcal{F}^{\prime} is any representative of \hat{x}, then $\mathcal{F} \sim_{R} \mathcal{F}^{\prime}$, i.e. $\exists A \in \mathcal{F}$ and $\exists A^{\prime} \in \mathcal{F}^{\prime}$ s.t. $A-A^{\prime} \subset V$. Suppose that $V \in \mathcal{F}^{\prime}$ then $A^{\prime} \cap V \in \mathcal{F}^{\prime}$ and so $A^{\prime} \cap V \neq \emptyset$. Therefore, we clearly have $A-\left(A^{\prime} \cap V\right) \subset V$ which implies

$$
A \subset V+\left(A^{\prime} \cap V\right) \subset V+V \subset U
$$

Since $A \in \mathcal{F}$, this proves that $U \in \mathcal{F}$ which is a contradiction. Then $V \notin \mathcal{F}^{\prime}$ for all $\mathcal{F}^{\prime} \in \hat{x}$ that is exactly our claim.
5) Existence of $i: X \rightarrow \hat{X}$

We define the image of a point $x \in X$ under the mapping $i: X \rightarrow \hat{X}$ to be the equivalence class w.r.t. (R) of the filter $\mathcal{F}(x)$ of neighborhoods of x in X, i.e.

$$
\forall x \in X, \quad i(x):=\left\{\mathcal{F} \text { c.f. on } X: \mathcal{F} \sim_{R} \mathcal{F}(x)\right\}
$$

Note that the following properties hold.

Lemma 2.5.16.

a) Two c.f. filters on X converging to the same point are equivalent w.r.t. (R)
b) If two c.f. filters \mathcal{F} and \mathcal{F}^{\prime} on X are s.t. $\mathcal{F} \sim_{R} \mathcal{F}^{\prime}$ and \mathcal{F}^{\prime} converges to $x \in X$ then also \mathcal{F} converges to x.

Proof. (Sheet 7, Exercise 3)
The previous lemma clearly proves that

$$
i(x) \equiv\{\mathcal{F} \text { c.f. on } X: \mathcal{F} \rightarrow x)\} .
$$

6) i is an injective linear homeomorphism (i.e. (a) holds)
i is injective
(see Sheet 7, Exercise 4).
$\underline{i \text { is linear }}$
(see Sheet 7, Exercise 4).
i is a homemorphism
$\overline{\text { We aim to show that }} i$ is both open and continuous on X.
To prove that i is open, we need to show that for any nbhood U of the origin in X the image $i(U)$ is a nbhood of the origin in $i(X)$ endowed with the subset topology induced by the topology on \hat{X}. Therefore, it suffices to show that for any nbhood U of the origin in X there exists U_{1} nbhood of the origin in X s.t.

$$
\begin{equation*}
\hat{U}_{1} \cap i(X) \subseteq i(U) \tag{2.4}
\end{equation*}
$$

where \hat{U}_{1} is defined as in (2.3).
To show the continuity of i, we need to prove that for any nbhood \hat{V} of the origin in $i(X)$ the preimage $i^{-1}(\hat{V})$ is a nbhood of the origin in X. Now any nbhood of the origin in $i(X)$ is of the form $\hat{U}_{1} \cap i(X)$ for some U_{1} nbhood of the origin in X. Therefore, it is enough to show that for any U_{1}
nbhood of the origin in X there exists another U nbhood of the origin in X s.t. $U \subseteq i^{-1}\left(\hat{U}_{1} \cap i(X)\right)$ i.e.

$$
\begin{equation*}
i(U) \subseteq \hat{U}_{1} \cap i(X) \tag{2.5}
\end{equation*}
$$

In order to prove (2.4) and (2.5), we shall prove the following:

$$
\begin{equation*}
i(\stackrel{\circ}{V}) \subseteq \hat{V} \cap i(X) \subseteq i(\bar{V}), \quad \forall V \text { nbhood of the origin in } X \tag{2.6}
\end{equation*}
$$

Indeed, if (2.6) holds then the first inclusion immediately shows (2.5) (for any U_{1} nbhood of the origin in X take $U:=U_{1}^{\circ}$ and apply the first inclusion of (2.6) to $V=U_{1}$). Moreover, (2.4) follows by combining the fact that for any nbhood U of the origin in X exists another nbhood U_{1} of the origin in X s.t. $\overline{U_{1}}=U_{1} \subseteq U$ (c.f. Sheet 3, Ex3-a)) together with the second inclusion of (2.6) (applied to U_{1}).

It remains to prove that (2.6) holds. Let V be any nbhood of the origin in X, then for any $x \in \stackrel{\circ}{V}$ we clearly have that V is a nbhood of x, which means that V belongs to a representative of $i(x)$, i.e. $i(x) \in \hat{V}$. Hence, $i(\hat{V}) \subseteq \hat{V} \cap i(X)$. Now take $\hat{y} \in \hat{V} \cap i(X)$, i.e. $\hat{y}=i(x)$ for some $x \in X$ s.t. $i(x) \in \hat{V}$. Then, by definition (2.3), we have that $V \in \mathcal{F}$ for some $\mathcal{F} \in i(x)$ or in other words that V belongs to some filter \mathcal{F} converging to x. Let W be another nbhood of the origin in X then $W+x$ is a nbhood of x in X and so $W+x \in \mathcal{F}$ (since $\mathcal{F} \rightarrow x)$. Hence, $V \cap(W+x) \in \mathcal{F}$ which implies that $V \cap(W+x) \neq \emptyset$ i.e. $x \in \bar{V}$. This means that $\hat{y}=i(x) \in i(\bar{V})$ which proves $\hat{V} \cap i(X) \subseteq i(\bar{V})$.
7) $\overline{i(X)}=\hat{X}$ (i.e. (b) holds)

Let $\hat{x_{o}} \in \hat{X}$ and let N be any nbhood of $\hat{x_{o}}$ in \hat{X}. It suffices to consider the neighborhoods N of the form $\hat{U}+\hat{x_{0}}$ where \hat{U} is defined by (2.3) for some U nbhood of the origin in X. We aim to prove that $\left(\hat{U}+\hat{x_{o}}\right) \cap i(X) \neq \emptyset$.

By Theorem 2.1.10, we know that for any U nbhood of the origin in X there exists V nbhood of the origin in X s.t. $V+V \subset U$. Let \mathcal{F}_{o} be a representative of $\hat{x_{0}}$, then \mathcal{F}_{o} is a c.f. on X and so there exists $A_{o} \in \mathcal{F}_{o}$ s.t. $A_{o}-A_{o} \subset V$. Fix an element $x \in A_{o}$. Then we get:

$$
\begin{equation*}
(V+x)-A_{o} \subset V+A_{o}-A_{o} \subset V+V \subset U \tag{2.7}
\end{equation*}
$$

Since $V+x$ is a nbhood of x in $X, V+x$ belongs to any Cauchy filter \mathcal{F} converging to x and so $V+x \in \mathcal{F}$ for any $\mathcal{F} \in i(x)$. Then $(V+x)-A_{o} \in \mathcal{F}-\mathcal{F}_{o}$ and so (2.7) gives $U \in \mathcal{F}-\mathcal{F}_{o}$ i.e. $i(x)-\hat{x_{o}} \in \hat{U}$. Hence, we found that there exists $x \in X$ s.t. $i(x) \in \hat{U}+\hat{x_{o}}$ which gives the conclusion.

8) \hat{X} is complete

Let $\hat{\mathcal{F}}$ be a Cauchy filter on \hat{X}. We aim to prove that there exists an element $\hat{x} \in \hat{X}$ s.t. $\hat{\mathcal{F}} \rightarrow \hat{x}$.

Consider the filter
$\hat{\mathcal{F}}^{\prime}:=\{\hat{G} \subset \hat{X}: \hat{M}+\hat{U} \subset \hat{G}$ for some $\hat{M} \in \hat{\mathcal{F}}$ and \hat{U} nbhood of the origin in $\hat{X}\}$.
Note that $\hat{\mathcal{F}}^{\prime} \subset \hat{\mathcal{F}}$ and $\hat{\mathcal{F}}^{\prime}$ is also a Cauchy filter on \hat{X}. In fact, since \hat{X} is a t.v.s., for any \hat{U} nbhood of the origin in \hat{X} there exists \hat{V}_{0} balanced nbhood of the origin in \hat{X} s.t. $\hat{V}_{0}+\hat{V}_{0}+\hat{V}_{0} \subset U$. Take $\hat{V}:=\frac{1}{3} \hat{V}_{0}$ which is also a nbhood of the origin in \hat{X}, then

$$
\hat{V}+\hat{V}-\hat{V} \subset \hat{V}_{0}+\hat{V}_{0}+\hat{V}_{0} \subset U .
$$

Since \hat{F} is a Cauchy filter, there exists $\hat{M} \in \hat{F}$ s.t. $\hat{M}-\hat{M} \subset \hat{V}$. Then

$$
(\hat{M}+\hat{V})-(\hat{M}+\hat{V}) \subset \hat{V}+\hat{V}-\hat{V} \subset U
$$

Now let us consider the family of subsets of $i(X)$ given by

$$
\mathcal{F}^{\prime}:=\left\{\hat{A} \cap i(X): \hat{A} \in \hat{F}^{\prime}\right\} .
$$

It is possible to prove that \mathcal{F}^{\prime} is a filter on $i(X)$ and actually a Cauchy filter (see Sheet 7, Exercise 5). Moreover, since we proved that i is a topological isomorphism between X and $i(X)$, we have that $i^{-1}\left(\mathcal{F}^{\prime}\right)$ is a Cauchy filter on X. Take

$$
\hat{x}:=\left\{\mathcal{F} \text { c.f. on } X: \mathcal{F} \sim_{R} i^{-1}\left(\mathcal{F}^{\prime}\right)\right\} .
$$

Then \hat{F} converges to \hat{x} (see Sheet 7, Exercise 5).
9) Proof of the universal property (i.e. (c) and (II))

We can now identify X with $i(X)$ and so regard X as a dense linear subspace of \hat{X}. Since $f: X \rightarrow Y$ is continuous and linear by assumption, it is also uniformly continuous by Proposition 2.5.13. Then applying Theorem 2.5.14 with X replaced by \hat{X} and A by X we get both the properties (c) and (II).
10) Uniqueness of \hat{X} up to isomorphism (proof of (I))

Since by assumption \hat{X}_{1} is a complete Hausdorff t.v.s. and $i_{1}: X \rightarrow \hat{X}_{1}$ is a topological monomorphism (in particular i_{1} is a continuous linear mapping), we have by (c) that there exists a unique continuous linear map $\hat{i_{1}}$ s.t. $\hat{i_{1}}(i(x))=i_{1}(x)$ for any $x \in X$. Let us define $j:=\hat{i_{1}}$. On the other hand, let us define $f: i_{1}(X) \rightarrow \hat{X}$ by $f\left(i_{1}(x)\right)=i(x)$ for any $x \in X$. Since f is
clearly linear and continuous and $i_{1}(X)$ is a linear subspace of \hat{X}, f is uniformly continuous and so by Theorem 2.5 .14 we get that there exists a unique $\hat{f}: \hat{X}_{1} \rightarrow \hat{X}$ continuous and linear s.t. $\hat{f}\left(i_{1}(x)\right)=f\left(i_{1}(x)\right)$ for any $x \in X$. Using the density of $i(X)$ in \hat{X}, the density of $i_{1}(X)$ in \hat{X}_{1} and the continuity of the mappings involved, it is easy to check that

$$
\bar{f}(j(\hat{x}))=\hat{x} \forall \hat{x} \in \hat{X}
$$

and that

$$
j\left(\bar{f}\left(\hat{x_{1}}\right)\right)=\hat{x_{1}} \forall, \hat{x_{1}} \in \hat{X_{1}} .
$$

This means that j and f are the inverse of each other and that both are isomorphisms.

