
2.5. Completeness for t.v.s.

Proof. of Proposition 2.5.8

a) Let A be a complete subset of a Hausdorff t.v.s. X and let x ∈ A. By
Lemma 2.5.11, x ∈ A implies that there exists a filter F of subsets of X
s.t. A ∈ F and F converges to x. Therefore, by Proposition 2.5.4-c), F is
a Cauchy filter. Consider now FA := {U ∈ F : U ⊆ A} ⊂ F . It is easy to
see that FA is a Cauchy filter on A and so the completeness of A ensures
that FA converges to a point y ∈ A. Hence, any nbhood V of y in A

belongs to FA and so to F . By definition of subset topology, this means
that for any nbhood U of y in X we have U ∩A ∈ F and so U ∈ F (since
F is a filter). Then F converges to y. Since X is Hausdorff, Lemma 2.5.10
establishes the uniqueness of the limit point of F , i.e. x = y and so A = A.

b) Let A be a closed subset of a complete t.v.s. X and let FA be any Cauchy
filter on A. Take the filter F := {F ⊆ X|B ⊆ F for some B ∈ FA}. It is
clear that F contains A and is finer than the Cauchy filter FA. Therefore,
by Proposition 2.5.4-b), F is also a Cauchy filter. Then the completeness
of the t.v.s. X gives that F converges to a point x ∈ X, i.e. F(x) ⊆ F .
By Lemma 2.5.11, this implies that actually x ∈ A and, since A is closed,
that x ∈ A. Now any neighbourhood of x ∈ A in the subset topology is
of the form U ∩ A with U ∈ F(x). Since F(x) ⊆ F and A ∈ F , we have
U ∩ A ∈ F . Therefore, there exists B ∈ FA s.t. B ⊆ U ∩ A ⊂ A and so
U ∩A ∈ FA. Hence, FA converges x ∈ A, i.e. A is complete.

When a t.v.s. is not complete, it makes sense to ask if it is possible to
embed it in a complete one. We are going to describe an abstract procedure
that allows to always associate to an arbitrary Hausdorff t.v.s. X a complete
Hausdorff t.v.s. X̂ called the completion of X. Before doing that, we need
to introduce uniformly continuous functions between t.v.s. and state some of
their fundamental properties.

Definition 2.5.12. Let X and Y be two t.v.s. and let A be a subset of X. A

mapping f : A → Y is said to be uniformly continuous if for every neighbor-

hood V of the origin in Y , there exists a neighborhood U of the origin in X

such that for all pairs of elements x1, x2 ∈ A

x1 − x2 ∈ U ⇒ f(x1)− f(x2) ∈ V.

Proposition 2.5.13. Let X and Y be two t.v.s. and let A be a subset of X.

a) If f : A → Y is uniformly continuous, then the image under f of a Cauchy

filter on A is a Cauchy filter on Y .

b) If A is a linear subspace of X, then every continuous linear map from A

to Y is uniformly continuous.

Proof. (Sheet 6, Exercise 2)
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2. Topological Vector Spaces

Theorem 2.5.14.
Let X and Y be two Hausdorff t.v.s., A a dense subset of X, and f : A → Y

a uniformly continuous mapping. If Y is complete the the following hold.

a) There exists a unique continuous mapping f̄ : X → Y which extends f ,

i.e. such that for all x ∈ A we have f̄(x) = f(x).
b) f̄ is uniformly continuous.

c) If we additionally assume that f is linear and A is a linear subspace of X,

then f̄ is linear.

Proof. (Sheet 6, Exercise 3)

Let us now state and prove the theorem on completion of a t.v.s..

Theorem 2.5.15.
Let X be a Haudorff t.v.s.. Then there exists a complete Hausdorff t.v.s. X̂

and a mapping i : X → X̂ with the following properties:

a) The mapping i is a topological monomorphism.

b) The image of X under i is dense in X̂.

c) For every complete Hausdorff t.v.s. Y and for every continuous linear map

f : X → Y , there is a continuous linear map f̂ : X̂ → Y such that the

following diagram is commutative:

X Y

X̂

i

f

f̂

Furthermore:

I) Any other pair (X̂1, i1), consisting of a complete Hausdorff t.v.s. X̂1

and of a mapping i1 : X → X̂1 such that properties (a) and (b) hold

substituting X̂ with X̂1 and i with i1, is isomorphic to (X̂, i). This means

that there is an isomorphism j of X̂ onto X̂1 such that the following

diagram is commutative:

X X̂1

X̂

i

i1

j

II) Given Y and f as in property (c), the continuous linear map f̂ is unique.
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2.5. Completeness for t.v.s.

Proof.

1) The set X̂

Define the following relation on the collection of all Cauchy filters (c.f.) on X:

F ∼R G ⇔ ∀U nbhood of the origin in X, ∃A ∈ F , ∃B ∈ G s.t. A−B ⊂ U.

The relation (R) is actually an equivalence relation. In fact:
• reflexive: If F is a c.f. on X, then by Definition 2.5.2 we have that for

any U nbhood of the origin in X there exists A ∈ F s.t. A−A ⊂ U , i.e.
F ∼R F .

• symmetric: If F and G are c.f. on X s.t. F ∼R G, then by definition of
(R) we have that for any U nbhood of the origin in X there exist A ∈ F

and B ∈ G s.t. A−B ⊂ U . This implies that B −A ⊂ −U , which gives
G ∼R F considering that −U is a generic nbhood of the origin in X int
he same right as U .

• transitive: Let F ,G,H be c.f. on X s.t. F ∼R G and G ∼R H. Take any
U nbhood of the origin in X, then Theorem 2.1.10 ensures that there
exists V nbhood of the origin in X s.t. V + V ⊂ U . By definition of
(R), there exists A ∈ F , B1, B2 ∈ G and C ∈ H s.t. A − B1 ⊂ V and
B2−C ⊂ V . This clearly implies A−(B1∩B2) ⊂ V and (B1∩B2)−C ⊂

V . By adding we obtain

A− C ⊂ A− (B1 ∩B2) + (B1 ∩B2)− C ⊂ V + V ⊂ U.

We define X̂ as the quotient of the set of all c.f. on X w.r.t. the equivalence
relation (R). Hence, an element x̂ of X̂ is an equivalence class of c.f. on X

w.r.t. (R).

2) Operations on X̂

Multiplication by a scalar

Let 0 �= λ ∈ K and let x̂ be a generic element of X̂. For any F any represen-
tative of x̂, we define λx̂ to be the equivalence class w.r.t. (R) of the the filter
λF := {λA : A ∈ F}, i.e.

λx̂ := {G c.f. onX : G ∼R λF}.

It is easy to check that this definition does not depend on the choice of the
representative F of x̂ (see Sheet 7, Exercise 1).
When λ = 0, we have λx̂ = ô, where ô is the equivalence class w.r.t. (R)
of the filter of neighborhoods of the origin o in X (or, which is the same,
of the Cauchy filter consisting of all the subsets of X which contain o).
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2. Topological Vector Spaces

Vector addition
Let x̂ and ŷ be two arbitrary elements of X̂, and F (resp. G) a representative
of x̂ (resp. ŷ). We define x̂ + ŷ to be the equivalence class w.r.t. (R) of the
the filter F + G := {C ⊆ X : A+B ⊆ C for someA ∈ F , B ∈ G}, i.e.

x̂+ ŷ := {H c.f. onX : H ∼R F + G}.

Note that this vector addition is well-defined because its definition does not
depend on the choice of the representative F of x̂ and G of ŷ (see Sheet 7,
Exercise 1).

3) Topology on X̂

Let U be an arbitrary nbhood of the origin in X. Define

Û := {x̂ ∈ X̂ : U ∈ F for someF ∈ x̂}. (2.3)

and consider the collection B̂ := {Û : U nbhood of the origin in X}. The filter
generated by B̂ fulfills all the properties in Theorem 2.1.10 (see Sheet 7, Ex-
ercise 2) and therefore, it is the filter of nbhoods of the origin ô ∈ X̂ w.r.t. to
the unique topology on X̂ compatible with the vector space structure defined
in Step 2. Clearly, B̂ is a basis of nbhoods of the origin ô ∈ X̂ w.r.t. to such
a topology.

4) X̂ is a Hausdorff t.v.s.
So far we have constructed a t.v.s. X̂. In this step, we aim to prove that X̂ is
also Hausdorff. By Proposition 2.2.3, it is enough to show that for any x̂ ∈ X̂

with ô �= x̂ there exists a nbhood V̂ of the origin ô in X̂ s.t. x̂ /∈ V̂ .
Since ô �= x̂, for any F ∈ x̂ and for any Fo ∈ ô we have F �∼R Fo. Take
F0 := {E ⊆ X : o ∈ E}, then the fact that F �∼R Fo means that there exists
U nbhood of the origin in X s.t. ∀A ∈ F and ∀Ao ∈ Fo we have A−Ao �⊂ U .
In particular, {o} ∈ Fo and so ∀A ∈ F we get A �⊂ U , which simply means
that U /∈ F . By Theorem 2.1.10 applied to the t.v.s. X, we can always find
another nbohood V of the origin in X s.t. V + V ⊂ U .
Claim: V does not belong to any representative of x̂. This means, in view
of the definition (2.3), that x̂ /∈ V̂ . Hence, as observed at the beginning, the
conclusion follows by Proposition 2.2.3.
Let us finally prove the claim. If F � is any representative of x̂, then F ∼R F �,
i.e. ∃A ∈ F and ∃A� ∈ F � s.t. A − A

� ⊂ V . Suppose that V ∈ F � then
A

� ∩ V ∈ F � and so A
� ∩ V �= ∅. Therefore, we clearly have A− (A� ∩ V ) ⊂ V

which implies
A ⊂ V + (A�

∩ V ) ⊂ V + V ⊂ U.
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2.5. Completeness for t.v.s.

Since A ∈ F , this proves that U ∈ F which is a contradiction. Then V /∈ F �

for all F � ∈ x̂ that is exactly our claim.

5) Existence of i : X → X̂

We define the image of a point x ∈ X under the mapping i : X → X̂ to be
the equivalence class w.r.t. (R) of the filter F(x) of neighborhoods of x in X,
i.e.

∀x ∈ X, i(x) := {F c.f. onX : F ∼R F(x)}.

Note that the following properties hold.

Lemma 2.5.16.

a) Two c.f. filters on X converging to the same point are equivalent w.r.t. (R)
b) If two c.f. filters F and F �

on X are s.t. F ∼R F �
and F �

converges to

x ∈ X then also F converges to x.

Proof. (Sheet 7, Exercise 3)

The previous lemma clearly proves that

i(x) ≡ {F c.f. onX : F → x)}.

6) i is an injective linear homeomorphism (i.e. (a) holds)
i is injective

(see Sheet 7, Exercise 4).

i is linear
(see Sheet 7, Exercise 4).

i is a homemorphism
We aim to show that i is both open and continuous on X.

To prove that i is open, we need to show that for any nbhood U of the
origin in X the image i(U) is a nbhood of the origin in i(X) endowed with
the subset topology induced by the topology on X̂. Therefore, it suffices to
show that for any nbhood U of the origin in X there exists U1 nbhood of the
origin in X s.t.

Û1 ∩ i(X) ⊆ i(U) (2.4)

where Û1 is defined as in (2.3).
To show the continuity of i, we need to prove that for any nbhood V̂

of the origin in i(X) the preimage i
−1(V̂ ) is a nbhood of the origin in X.

Now any nbhood of the origin in i(X) is of the form Û1 ∩ i(X) for some U1

nbhood of the origin in X. Therefore, it is enough to show that for any U1
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nbhood of the origin in X there exists another U nbhood of the origin in X

s.t. U ⊆ i
−1(Û1 ∩ i(X)) i.e.

i(U) ⊆ Û1 ∩ i(X) (2.5)

In order to prove (2.4) and (2.5), we shall prove the following:

i(V̊ ) ⊆ V̂ ∩ i(X) ⊆ i(V ), ∀V nbhood of the origin in X. (2.6)

Indeed, if (2.6) holds then the first inclusion immediately shows (2.5) (for any
U1 nbhood of the origin in X take U := Ů1 and apply the first inclusion of
(2.6) to V = U1). Moreover, (2.4) follows by combining the fact that for any
nbhood U of the origin in X exists another nbhood U1 of the origin in X s.t.
U1 = U1 ⊆ U (c.f. Sheet 3, Ex3-a)) together with the second inclusion of (2.6)
(applied to U1).

It remains to prove that (2.6) holds. Let V be any nbhood of the origin
in X, then for any x ∈ V̊ we clearly have that V is a nbhood of x, which
means that V belongs to a representative of i(x), i.e. i(x) ∈ V̂ . Hence,
i(V̊ ) ⊆ V̂ ∩ i(X). Now take ŷ ∈ V̂ ∩ i(X), i.e. ŷ = i(x) for some x ∈ X s.t.
i(x) ∈ V̂ . Then, by definition (2.3), we have that V ∈ F for some F ∈ i(x)
or in other words that V belongs to some filter F converging to x. Let W

be another nbhood of the origin in X then W + x is a nbhood of x in X and
so W + x ∈ F (since F → x). Hence, V ∩ (W + x) ∈ F which implies that
V ∩ (W + x) �= ∅ i.e. x ∈ V . This means that ŷ = i(x) ∈ i(V ) which proves
V̂ ∩ i(X) ⊆ i(V ).

7) i(X) = X̂ (i.e. (b) holds)
Let x̂o ∈ X̂ and let N be any nbhood of x̂o in X̂. It suffices to consider the
neighborhoods N of the form Û + x̂0 where Û is defined by (2.3) for some U

nbhood of the origin in X. We aim to prove that (Û + x̂o) ∩ i(X) �= ∅.
By Theorem 2.1.10, we know that for any U nbhood of the origin in X

there exists V nbhood of the origin in X s.t. V + V ⊂ U . Let Fo be a
representative of x̂0, then Fo is a c.f. on X and so there exists Ao ∈ Fo s.t.
Ao −Ao ⊂ V . Fix an element x ∈ Ao. Then we get:

(V + x)−Ao ⊂ V +Ao −Ao ⊂ V + V ⊂ U. (2.7)

Since V + x is a nbhood of x in X, V + x belongs to any Cauchy filter F con-
verging to x and so V +x ∈ F for any F ∈ i(x). Then (V +x)−Ao ∈ F −Fo

and so (2.7) gives U ∈ F −Fo i.e. i(x)− x̂o ∈ Û . Hence, we found that there
exists x ∈ X s.t. i(x) ∈ Û + x̂o which gives the conclusion.
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2.5. Completeness for t.v.s.

8) X̂ is complete
Let F̂ be a Cauchy filter on X̂. We aim to prove that there exists an element
x̂ ∈ X̂ s.t. F̂ → x̂.

Consider the filter

F̂
� := {Ĝ ⊂ X̂ : M̂+Û ⊂ Ĝ for some M̂ ∈ F̂ and Û nbhood of the origin in X̂}.

Note that F̂ � ⊂ F̂ and F̂ � is also a Cauchy filter on X̂. In fact, since X̂ is a
t.v.s., for any Û nbhood of the origin in X̂ there exists V̂0 balanced nbhood of
the origin in X̂ s.t. V̂0 + V̂0 + V̂0 ⊂ U . Take V̂ := 1

3 V̂0 which is also a nbhood

of the origin in X̂, then

V̂ + V̂ − V̂ ⊂ V̂0 + V̂0 + V̂0 ⊂ U.

Since F̂ is a Cauchy filter, there exists M̂ ∈ F̂ s.t. M̂ − M̂ ⊂ V̂ . Then

(M̂ + V̂ )− (M̂ + V̂ ) ⊂ V̂ + V̂ − V̂ ⊂ U

Now let us consider the family of subsets of i(X) given by

F
� := {Â ∩ i(X) : Â ∈ F̂

�
}.

It is possible to prove that F � is a filter on i(X) and actually a Cauchy filter
(see Sheet 7, Exercise 5). Moreover, since we proved that i is a topological
isomorphism between X and i(X), we have that i−1(F �) is a Cauchy filter on
X. Take

x̂ := {F c.f. on X : F ∼R i
−1(F �)}.

Then F̂ converges to x̂ (see Sheet 7, Exercise 5).

9) Proof of the universal property (i.e. (c) and (II))
We can now identify X with i(X) and so regard X as a dense linear subspace
of X̂. Since f : X → Y is continuous and linear by assumption, it is also
uniformly continuous by Proposition 2.5.13. Then applying Theorem 2.5.14
with X replaced by X̂ and A by X we get both the properties (c) and (II).

10) Uniqueness of X̂ up to isomorphism (proof of (I))
Since by assumption X̂1 is a complete Hausdorff t.v.s. and i1 : X → X̂1

is a topological monomorphism (in particular i1 is a continuous linear map-
ping), we have by (c) that there exists a unique continuous linear map î1 s.t.
î1(i(x)) = i1(x) for any x ∈ X. Let us define j := î1. On the other hand,
let us define f : i1(X) → X̂ by f(i1(x)) = i(x) for any x ∈ X. Since f is
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clearly linear and continuous and i1(X) is a linear subspace of X̂, f is uni-
formly continuous and so by Theorem 2.5.14 we get that there exists a unique
f̂ : X̂1 → X̂ continuous and linear s.t. f̂(i1(x)) = f(i1(x)) for any x ∈ X.
Using the density of i(X) in X̂, the density of i1(X) in X̂1 and the continuity
of the mappings involved, it is easy to check that

f̄(j(x̂)) = x̂ ∀ x̂ ∈ X̂

and that
j(f̄(x̂1)) = x̂1 ∀ , x̂1 ∈ X̂1.

This means that j and f are the inverse of each other and that both are
isomorphisms.
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