
Chapter 3

Finite dimensional topological vector spaces

3.1 Finite dimensional Hausdor↵ t.v.s.

Let X be a vector space over the field K of real or complex numbers. We know
from linear algebra that the (algebraic) dimension of X, denoted by dim(X),
is the cardinality of a basis of X. If dim(X) is finite, we say that X is finite
dimensional otherwise X is infinite dimensional. In this section we are going
to focus on finite dimensional vector spaces.

Let {e
1

, . . . , e
d

} be a basis of X, i.e. dim(X) = d. Given any vector x 2 X
there exist unique x

1

, . . . , x
d

2 K s.t. x = x
1

e
1

+ · · ·x
d

e
d

. This can be precisely
expressed by saying that the mapping

Kd ! X
(x

1

, . . . , x
d

) 7! x
1

e
1

+ · · ·x
d

e
d

is an algebraic isomorphism (i.e. linear and bijective) between X and Kd. In
other words: If X is a finite dimensional vector space then X is algebraically
isomorphic to Kdim(X).

If now we give to X the t.v.s. structure and we consider K endowed with
the euclidean topology, then it is natural to ask if such an algebraic isomor-
phism is by any chance a topological one, i.e. if it preserves the t.v.s. structure.
The following theorem shows that if X is a finite dimensional Hausdor↵ t.v.s.
then the answer is yes: X is topologically isomorphic to Kdim(X). It is worth
to observe that usually in applications we deal always with Hausdor↵ t.v.s.,
therefore it makes sense to mainly focus on them.

Theorem 3.1.1. Let X be a finite dimensional Hausdor↵ t.v.s. over K (where
K is endowed with the euclidean topology). Then:
a) X is topologically isomorphic to Kd, where d = dim(X).
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3. Finite dimensional topological vector spaces

b) Every linear functional on X is continuous.
c) Every linear map of X into any t.v.s. Y is continuous.

Before proving the theorem let us recall some lemmas about the continuity
of linear functionals on t.v.s..

Lemma 3.1.2.
Let X be a t.v.s. over K and v 2 X. Then the following mapping is continuous.

'
v

: K ! X
⇠ 7! ⇠v.

Proof. For any ⇠ 2 K, we have '
v

(⇠) = M( 
v

(⇠)), where  
v

: K ! K ⇥ X
given by  (⇠) := (⇠, v) is clearly continuous by definition of product topology
and M : K ⇥ X ! X is the scalar multiplication in the t.v.s. X which is
continuous by definition of t.v.s.. Hence, '

v

is continuous as composition of
continuous mappings.

Lemma 3.1.3. Let X be a t.v.s. over K and L a linear functional on X.
Assume L(x) 6= 0 for some x 2 X. Then the following are equivalent:
a) L is continuous.
b) The null space Ker(L) is closed in X
c) Ker(L) is not dense in X.
d) L is bounded in some neighbourhood of the origin in X.

Proof. (see Sheet 4, Exercise 4)

Proof. of Theorem 3.1.1
Let {e

1

, . . . , e
d

} be a basis of X and let us consider the mapping

' : Kd ! X
(x

1

, . . . , x
d

) 7! x
1

e
1

+ · · ·x
d

e
d

.

As noted above, this is an algebraic isomorphism. Therefore, to conclude a)
it remains to prove that ' is also a homeomorphism.

Step 1: ' is continuous.
When d = 1, we simply have ' ⌘ '

e1 and so we are done by Lemma
3.1.2. When d > 1, for any (x

1

, . . . , x
d

) 2 Kd we can write: '(x
1

, . . . , x
d

) =
A('

e1(x1), . . . ,'ed(xd)) = A(('
e1 ⇥ · · · ⇥ '

ed)(x1, . . . , xd)) where each '
ej is

defined as above and A : X ⇥X ! X is the vector addition in the t.v.s. X.
Hence, ' is continuous as composition of continuous mappings.
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3.1. Finite dimensional Hausdor↵ t.v.s.

Step 2: ' is open and b) holds.
We prove this step by induction on the dimension dim(X) of X.
For dim(X) = 1, it is easy to see that ' is open, i.e. that the inverse of ':

'�1 : X ! K
x = ⇠e

1

7! ⇠

is continuous. Indeed, we have that

Ker('�1) = {x 2 X : '�1(x) = 0} = {⇠e
1

2 X : ⇠ = 0} = {o},
which is closed in X, since X is Hausdor↵. Hence, by Lemma 3.1.3, '�1 is
continuous. This implies that b) holds. In fact, if L is a non-identically zero
functional on X (when L ⌘ 0, there is nothing to prove), then there exists
a o 6= x̃ 2 X s.t. L(x̃) 6= 0. W.l.o.g. we can assume L(x̃) = 1. Now for
any x 2 X, since dim(X) = 1, we have that x = ⇠x̃ for some ⇠ 2 K and so
L(x) = ⇠L(x̃) = ⇠. Hence, L ⌘ '�1 which we proved to be continuous.

Suppose now that both a) and b) hold for dim(X)  d�1. Let us first show
that b) holds when dim(X) = d. Let L be a non-identically zero functional
on X (when L ⌘ 0, there is nothing to prove), then there exists a o 6= x̃ 2 X
s.t. L(x̃) 6= 0. W.l.o.g. we can assume L(x̃) = 1. Note that for any x 2 X the
element x � x̃L(x) 2 Ker(L). Therefore, if we take the canonical mapping
� : X ! X/Ker(L) then �(x) = �(x̃L(x)) = L(x)�(x̃) for any x 2 X.
This means that X/Ker(L) = span{�(x̃)} i.e. dim(X/Ker(L)) = 1. Hence,
dim(Ker(L)) = d� 1 and so by inductive assumption Ker(L) is topologically
isomorphic to Kd�1. This implies that Ker(L) is a complete subspace of X.
Then, by Proposition 2.5.8-a), Ker(L) is closed in X and so by Lemma 3.1.3
we get L is continuous. By induction, we can cocnlude that b) holds for any
dimension d 2 N.

This immediately implies that a) holds for any dimension d 2 N. In fact,
we just need to show that for any dimension d 2 N the mapping

'�1 : X ! Kd

x =
P

d

j=1

x
j

e
j

7! (x
1

, . . . , x
d

)

is continuous. Now for any x =
P

d

j=1

x
j

e
j

2 X we can write '�1(x) =
(L

1

(x), . . . , L
d

(x)), where for any j 2 {1, . . . , d} we define L
j

: X ! K by
L
j

(x) := x
j

e
j

. Since b) holds for any dimension, we know that each L
j

is
continuous and so '�1 is continuous.

Step 3: The statement c) holds.
Let f : X ! Y be linear and {e

1

, . . . , e
d

} be a basis of X. For any j 2
{1, . . . , d} we define b

j

:= f(e
j

) 2 Y . Hence, for any x =
P

d

j=1

x
j

e
j

2 X we
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3. Finite dimensional topological vector spaces

have f(x) = f(
P

d

j=1

x
j

e
j

) =
P

d

j=1

x
j

b
j

. We can rewrite f as composition of

continuous maps i.e. f(x) = A(('
b1 ⇥ . . .⇥ '

bd
)('�1(x)) where:

• '�1 is continuous by a)
• each '

bj is continuous by Lemma 3.1.2
• A is the vector addition on X and so it is continuous since X is a t.v.s..

Hence, f is continuous.

Corollary 3.1.4 (Tychono↵ theorem). Let d 2 N. The only topology that
makes Kd a Hausdor↵ t.v.s. is the euclidean topology. Equivalently, on a
finite dimensional vector space there is a unique topology that makes it into a
Hausdor↵ t.v.s..

Proof. We already know that Kd endowed with the euclidean topology ⌧
e

is
a Hausdor↵ t.v.s. of dimension d. Let us consider another topology ⌧ on
Kd s.t. (Kd, ⌧) is also Hausdor↵ t.v.s.. Then Theorem 3.1.1-a) ensures that
the identity map between (Kd, ⌧

e

) and (Kd, ⌧) is a topological isomorphism.
Hence, as observed at the end of Section 1.1.4 p.12, we get that ⌧ ⌘ ⌧

e

.

Corollary 3.1.5. Every finite dimensional Hausdor↵ t.v.s. is complete.

Proof. Let X be a Hausdor↵ t.v.s with dim(X) = d < 1. Then, by Theo-
rem 3.1.1-a), X is topologically isomorphic to Kd endowed with the euclidean
topology. Since the latter is a complete Hausdor↵ t.v.s., so is X.

Corollary 3.1.6. Every finite dimensional linear subspace of a Hausdor↵
t.v.s. is closed.

Proof. Let S be a linear subspace of a Hausdor↵ t.v.s. (X, ⌧) and assume that
dim(S) = d < 1. Then S endowed with the subspace topology induced by ⌧
is itself a Hausdor↵ t.v.s. (see Sheet 5, Exercise 2). Hence, by Corollary 3.1.5
S is complete and therefore closed by Proposition 2.5.8-a).

3.2 Connection between local compactness and finite
dimensionality

By the Heine-Borel property (a subset of Kd is closed and bounded i↵ it is com-
pact), Kd has a basis of compact neighborhoods of the origin (i.e. the closed
balls centered at the origin in Kd). Thus the origin, and consequently every
point, of a finite dimensional Hausdor↵ t.v.s. has a basis of neighborhoods
consisting of compact subsets. This means that a finite dimensional Hausdor↵
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3.2. Connection between local compactness and finite dimensionality

t.v.s. is always locally compact. Actually also the converse is true and gives
the following beautiful characterization of finite dimensional Hausdor↵ t.v.s
due to F. Riesz.

Theorem 3.2.1. A Hausdor↵ t.v.s. is locally compact if and only if it is finite
dimensional.

For convenience let us recall the notions of compactness and local com-
pactness for topological spaces before proving the theorem.

Definition 3.2.2. A topological space X is compact if every open covering
of X contains a finite subcovering. i.e. for any arbitrary collection {U

i

}
i2I

of open subsets of X s.t. X ✓ [
i2IUi

there exists a finite subset J of I s.t.
X ✓ [

i2JUi

.

Definition 3.2.3. A topological space X is locally compact if every point of
X has a base of compact neighbourhoods.

Just a small side remark: It is possible to show that every compact Haus-
dor↵ space is also locally compact but there exist locally compact spaces that
are not compact such as:

• Kd with the euclidean topology
• any infinite set endowed with the discrete topology.

Indeed, any set X with the discrete topology is locally compact, because
for any x 2 X a basis of neighbourhoods of x in the discrete topology is
given just {x} which is open and also compact. However, if X is infinite
then it is not compact. In fact, if we take the infinite open covering S of
X given by all the singletons of its points, then any finite subcovering
of S will not contain at least one point of X.

Proof. of Theorem 3.2.1
Let X be a locally compact Hausdor↵ t.v.s., and K a compact neighborhood
of o in X. As K is compact and as 1

2

K is a neighborhood of the origin (see
Theorem 2.1.10-3), there is a finite family of points x

1

, . . . , x
r

2 X s.t.

K ✓
r

[

i=1

(x
i

+
1

2
K).

Let M := span{x
1

, . . . , x
r

}. Then M is a linear subspace of X and dim(M) <
1 is finite, hence M is closed in X by Corollary 3.1.6. Therefore, the quotient
space X/M is Hausdor↵ t.v.s. by Proposition 2.3.5.

Let � : X ! X/M be the canonical mapping. As K ✓ M + 1

2

K, we have
�(K) ✓ �(M) + �(1

2

K) = 1

2

�(K), i.e. 2�(K) ✓ �(K). By iterating we get
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3. Finite dimensional topological vector spaces

�(2nK) ✓ �(K) for any n 2 N. As K is absorbing (see Theorem 2.1.10-5), we
have X =

S1
n=1

2nK. Thus

X/M = �(X) =
1
[

n=1

�(2nK) ✓ �(K).

Since � is continuous and the continuous image of a compact set is compact, we
get that �(K) is compact. Thus X/M is a Hausdor↵ t.v.s. which is compact.
We claim that X/M must be of zero dimension, i.e. reduced to one point.
This concludes the proof because it implies dim(X) = dim(M) < 1.

Let us prove the claim by contradiction. Suppose dim(X/M) > 0 then
X/M contains a subset of the form Rx̄ for some ō 6= x̄ 2 X/M . Since such a
subset is closed and X/M is compact, Rx̄ is also compact which is a contra-
diction.
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