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∂tu = F (u), u = u(t) ∈ X .

Could be a ODE, PDE, IDE, DDE, SODE, network, etc.

Key problem in (applied) mathematics:

◮ dimension reduction (if dim(X ) =∞ or dim(X )≫ 1)

◮ many methods “work well in practice”

◮ only few methods have been proven to be accurate

MOMENT CLOSURE falls into this scheme



Moment Closure - Three Concrete Examples

(I) Stochastic differential equations

◮ Kolmogorov equation (dim(X ) =∞)

◮ moments ↔ moments of a probability density

(II) Kinetic theory

◮ Boltzmann-type mesoscopic models (dim(X ) =∞)

◮ moments ↔ certain integrals

(III) Network dynamics

◮ dynamics of graph, nodes, edges (dim(X )≫ 1)

◮ moments ↔ graph motives
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Standard SODE (x ∈ R for simplicity) on (Ω,F ,P)

x ′ = f (x) + σξ, ′ =
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(I) Stochastic Ordinary Differential Equations (SODEs)

Standard SODE (x ∈ R for simplicity) on (Ω,F ,P)

x ′ = f (x) + σξ, ′ =
d

dt
.

ξ = W ′ (W = Brownian motion), σ > 0, say take

f (x) := a2x
2 + a1x + a0.

◮ x depends upon the random input space ⇒ random variable

◮ define expectation/mean/averaging E[·] := 〈·〉

◮ might want to know moments: mj := 〈x
j〉
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Calculating moment equations...

Just average:

m1
′ = 〈x ′〉 = a2〈x

2〉+ a1〈x〉+ a0 = a2m2 + a1m1 + a0.

⇒ Need second moment equation!

Using Itô’s formula one finds

(x2)′ = [2xf (x) + σ2] + 2xσ ξ′.

Just average:

m2
′ = 2〈a2x

3 + a1x
2 + a0x〉+ σ2 + σ〈2xξ〉

= 2(a2m3 + a1m2 + a0m1) + σ2,

(where 〈2xξ〉 = 0 as
∫ t

0
2x(s) dWs is a martingale)
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Main Steps

First steps:

(S0) moment space: select the space M = {mj}.

(S1) moment equations: derive evolution equations for mj .

Observations:

◮ system in (S1) is frequently infinite

◮ infinite system not a desirable reduction

◮ nonlinearity is crucial

◮ hierarchical structure

Next steps:

(S2) moment closure: “higher moments from lower moments”

(S3) verfication: does the closed system approximate dynamics?



Kolmogorov Equation / Fokker-Planck Equation
Probability density p = p(x , t|x0, t0) of x at time t

∂p
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∂
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◮ note: mj =
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R
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◮ multiply Fokker-Planck by x j and average
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∂p

∂t
= −

∂

∂x
[(a2x

2 + a1x + a0)p] +
σ2
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∂2p
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.

Step (S1) to derive the moment equation:
◮ note: mj =

∫

R
x j p(x , t) dx

◮ multiply Fokker-Planck by x j and average

For example, we have

m1
′ = 〈x ′〉 =

∫

R

x
∂p

∂t
dx

=

∫

R

−x
∂

∂x
[(a2x

2 + a1x + a0)p] dx +

∫

R

x
σ2

2

∂2p

∂x2
dx .

If p and its derivatives vanish at infinity then

m1
′ =

∫

R

[(a2x
2 + a1x + a0)p] dx = a2m2 + a1m1 + a0
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◮ spatial variable x ∈ Ω ⊂ R
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(II) Kinetic Equations

Basics:

◮ spatial variable x ∈ Ω ⊂ R
N

◮ momentum variable v ∈ R
N

◮ gas via a single-particle density ̺ = ̺(x , v , t)

Kinetic equation (mesoscopic dynamics)

∂̺

∂t
+ v · ∇x̺ = Q(̺),

where

◮ ∇x = ( ∂
∂x1

, . . . , ∂
∂xN

)⊤

◮ suitable boundary conditions are assumed

◮ ̺ 7→ Q(̺) is the collision operator



Moment Equations for Kinetic Equation

Instead of probabilistic average, take velocity average

〈G 〉 :=

∫

RN

G (x , v , t) dv

Same (similar) procedure:

◮ pick polynomial space M with {mj = mj(v)}

◮ multiply the kinetic equation by basis elements

◮ average, using velocity averaging

◮ get (infinite!) hierarchy of moment equations

Remark: classical closure is Grad’s 13 moment system (in 1949)



(III) Network Dynamics - SIS Model

Basics:
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◮ mI := 〈I 〉 = 〈I 〉(t) average number of infected

◮ mS = 〈S〉 = 〈S〉(t) average number of susceptibles



(III) Network Dynamics - SIS Model

Basics:

◮ goal: model epidemics on a network/graph

◮ graph with nodes in states S and I

◮ SI -link: infection at rate τ

◮ I -node: recovery at rate γ

◮ mI := 〈I 〉 = 〈I 〉(t) average number of infected

◮ mS = 〈S〉 = 〈S〉(t) average number of susceptibles

Formal (statistical physics) derivation yields

dmS

dt
= γmI − τ〈SI 〉,

dmI

dt
= τ〈SI 〉 −mI ,

where 〈SI 〉 =: mSI = average number of SI -links.



Second-order equations (Keeling; Rand; Taylor et al.):

dmSI

dt
= γ(mII −mSI ) + τ(mSSI −mISI −mSI ),

dmII

dt
= −2γmII + 2τ(mISI +mSI ),

dmSS

dt
= 2γmSI − 2τmSSI .



Second-order equations (Keeling; Rand; Taylor et al.):

dmSI

dt
= γ(mII −mSI ) + τ(mSSI −mISI −mSI ),

dmII

dt
= −2γmII + 2τ(mISI +mSI ),

dmSS

dt
= 2γmSI − 2τmSSI .

Observations:

◮ different derivation strategies

◮ typical moment closure problem

◮ number of equations grows rapidly
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dm1

dt
= h1(m1,m2, . . .),

dm2

dt
= h2(m2,m3, . . .),

dm3

dt
= · · · ,

(1)

Moment closure: “high-order moments via lower-order moments”

H(m1, . . . ,mκ) = (mκ+1,mκ+2, . . .).

Final result:
dm1

dt
= h1(m1,m2, . . . ,mκ,H(m1, . . . ,mκ)),

dm2
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= h2(m1,m2, . . . ,mκ,H(m1, . . . ,mκ)),

... =
...

dmκ

dt
= hκ(m1,m2, . . . ,mκ,H(m1, . . . ,mκ)).

(2)

(Q1) How to find/select the mapping H?

(Q2) How well does (2) approximate (1)?
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Some Classical Closures

(I) Probability theory closures, e.g., consider SODE case

mj = 0 if j ≥ 3 and j is odd,

mj = (m2)
j/2 (j − 1)(j − 3) · · · 2 if j ≥ 4 and j is even.

Gaussian closure!

(II) Physical principle closures, e.g., consider kinetic case

min
̺
{〈̺ ln ̺− ̺〉 : 〈M̺〉 = η} = H(η),

entropy closure!

(III) Microscopic closures, e.g., consider network case

mSI = 〈SI 〉 ≈ 〈S〉〈I 〉 = mSmI ,

de-correlation closure!



Lots of (applied) mathematics work...

Stochastic systems:
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Kinetic equations:

◮ max-ent & theory: Devilettes, Grad, Levermore, Torrilhon, ...
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◮ stat-phys: Gleeson, Gross, Kirkwood, Kiss, Shaw, Schwartz, ...

◮ epidemiology: Dieckmann, Eames, House, Keeling, ...

◮ ecology: Bolker, Pacala, Matis, Rand, Volz, ...
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◮ stat-phys: Gleeson, Gross, Kirkwood, Kiss, Shaw, Schwartz, ...

◮ epidemiology: Dieckmann, Eames, House, Keeling, ...

◮ ecology: Bolker, Pacala, Matis, Rand, Volz, ...

→ “Moment closure - a brief review”, CK, arXiv:1505.02190



Conjecture(s) / Direction(s)

◮ Closures work only on restricted assumptions.

◮ Dynamical systems view has to be (re-)introduced.

◮ Proofs will need algebraic and analytical tools.



Motivation: Fast-Slow Systems
Fast variables x ∈ R

m, slow variables y ∈ R
n, time scale separation 0 < ε ≪ 1.

{

x ′ = f (x , y)
y ′ = εg(x , y)

εt=s
←→

{

εẋ = f (x , y)
ẏ = g(x , y)

↓ ε = 0 ↓ ε = 0

{

x ′ = f (x , y)
y ′ = 0
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0 = f (x , y)
ẏ = g(x , y)
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n, time scale separation 0 < ε ≪ 1.

{

x ′ = f (x , y)
y ′ = εg(x , y)
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←→

{

εẋ = f (x , y)
ẏ = g(x , y)

↓ ε = 0 ↓ ε = 0

{

x ′ = f (x , y)
y ′ = 0

{

0 = f (x , y)
ẏ = g(x , y)

fast subsystem slow subsystem

◮ Think: x = higher-order moments, y = lower-order moments!

◮ C0 := {f = 0} = critical manifold = equil. of fast subsystem.

◮ C0 is normally hyperbolic if Dx f has no zero-real-part eigenvalues.

◮ Fenichel’s Thm: Normal hyperbolicity ⇒ “nice” perturbation Cε.
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◮ probabilistic: Stochastic closures? Microscopic closures?
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◮ geometric: Slow manifolds? Geometry of moment space?

◮ dynamical: Capturing bifurcations? Phase-space dissection?
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Papers, preprints, etc all available from:

◮ www.asc.tuwien.ac.at/∼ckuehn and arXiv

◮ “Moment closure - a brief review”, Christian Kuehn, arXiv:1505.02190

◮ “Multiple Time Scale Dynamics”, Christian Kuehn, Springer, 2015

Thank you very much for your attention!


