Moment Closure - A Brief Review

Christian Kuehn

Vienna University of Technology

Motivation

Consider a general evolution equation:

$$
\partial_{t} u=F(u), \quad u=u(t) \in \mathcal{X}
$$

Could be a ODE, PDE, IDE, DDE, SODE, network, etc.

Motivation

Consider a general evolution equation:

$$
\partial_{t} u=F(u), \quad u=u(t) \in \mathcal{X}
$$

Could be a ODE, PDE, IDE, DDE, SODE, network, etc.

Key problem in (applied) mathematics:

- dimension reduction (if $\operatorname{dim}(\mathcal{X})=\infty$ or $\operatorname{dim}(\mathcal{X}) \gg 1$)
- many methods "work well in practice"
- only few methods have been proven to be accurate

Motivation

Consider a general evolution equation:

$$
\partial_{t} u=F(u), \quad u=u(t) \in \mathcal{X}
$$

Could be a ODE, PDE, IDE, DDE, SODE, network, etc.

Key problem in (applied) mathematics:

- dimension reduction (if $\operatorname{dim}(\mathcal{X})=\infty$ or $\operatorname{dim}(\mathcal{X}) \gg 1$)
- many methods "work well in practice"
- only few methods have been proven to be accurate

Moment Closure - Three Concrete Examples

(I) Stochastic differential equations

- Kolmogorov equation $(\operatorname{dim}(\mathcal{X})=\infty)$
- moments \leftrightarrow moments of a probability density
(II) Kinetic theory
- Boltzmann-type mesoscopic models $(\operatorname{dim}(\mathcal{X})=\infty)$
- moments \leftrightarrow certain integrals
(III) Network dynamics
- dynamics of graph, nodes, edges $(\operatorname{dim}(\mathcal{X}) \gg 1)$
- moments \leftrightarrow graph motives

(I) Stochastic Ordinary Differential Equations (SODEs)

Standard SODE $(x \in \mathbb{R}$ for simplicity $)$ on $(\Omega, \mathcal{F}, \mathbb{P})$

$$
x^{\prime}=f(x)+\sigma \xi, \quad{ }^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} t} .
$$

$\xi=W^{\prime}(W=$ Brownian motion $), \sigma>0$

(I) Stochastic Ordinary Differential Equations (SODEs)

Standard SODE $(x \in \mathbb{R}$ for simplicity $)$ on $(\Omega, \mathcal{F}, \mathbb{P})$

$$
x^{\prime}=f(x)+\sigma \xi, \quad{ }^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} t} .
$$

$\xi=W^{\prime}(W=$ Brownian motion $), \sigma>0$, say take

$$
f(x):=a_{2} x^{2}+a_{1} x+a_{0} .
$$

(I) Stochastic Ordinary Differential Equations (SODEs)

Standard SODE $(x \in \mathbb{R}$ for simplicity $)$ on $(\Omega, \mathcal{F}, \mathbb{P})$

$$
x^{\prime}=f(x)+\sigma \xi, \quad{ }^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} t} .
$$

$\xi=W^{\prime}(W=$ Brownian motion $), \sigma>0$, say take

$$
f(x):=a_{2} x^{2}+a_{1} x+a_{0} .
$$

- x depends upon the random input space \Rightarrow random variable
- define expectation/mean/averaging $\mathbb{E}[\cdot]:=\langle\cdot\rangle$
- might want to know moments: $m_{j}:=\left\langle x^{j}\right\rangle$

Calculating moment equations...

Just average:

$$
m_{1}^{\prime}=\left\langle x^{\prime}\right\rangle=a_{2}\left\langle x^{2}\right\rangle+a_{1}\langle x\rangle+a_{0}=a_{2} m_{2}+a_{1} m_{1}+a_{0} .
$$

\Rightarrow Need second moment equation!

Calculating moment equations...

Just average:

$$
m_{1}^{\prime}=\left\langle x^{\prime}\right\rangle=a_{2}\left\langle x^{2}\right\rangle+a_{1}\langle x\rangle+a_{0}=a_{2} m_{2}+a_{1} m_{1}+a_{0}
$$

\Rightarrow Need second moment equation!
Using Itô's formula one finds

$$
\left(x^{2}\right)^{\prime}=\left[2 x f(x)+\sigma^{2}\right]+2 x \sigma \xi^{\prime}
$$

Just average:

$$
\begin{aligned}
m_{2}^{\prime} & =2\left\langle a_{2} x^{3}+a_{1} x^{2}+a_{0} x\right\rangle+\sigma^{2}+\sigma\langle 2 x \xi\rangle \\
& =2\left(a_{2} m_{3}+a_{1} m_{2}+a_{0} m_{1}\right)+\sigma^{2}
\end{aligned}
$$

(where $\langle 2 x \xi\rangle=0$ as $\int_{0}^{t} 2 x(s) \mathrm{d} W_{s}$ is a martingale)

Main Steps

First steps:
(S0) moment space: select the space $\mathbb{M}=\left\{m_{j}\right\}$.
(S1) moment equations: derive evolution equations for m_{j}.

Main Steps

First steps:
(S0) moment space: select the space $\mathbb{M}=\left\{m_{j}\right\}$.
(S1) moment equations: derive evolution equations for m_{j}.

Observations:

- system in (S1) is frequently infinite
- infinite system not a desirable reduction
- nonlinearity is crucial
- hierarchical structure

Main Steps

First steps:
(S0) moment space: select the space $\mathbb{M}=\left\{m_{j}\right\}$.
(S1) moment equations: derive evolution equations for m_{j}.

Observations:

- system in (S1) is frequently infinite
- infinite system not a desirable reduction
- nonlinearity is crucial
- hierarchical structure

Next steps:
(S2) moment closure: "higher moments from lower moments"
(S3) verfication: does the closed system approximate dynamics?

Kolmogorov Equation / Fokker-Planck Equation

Probability density $p=p\left(x, t \mid x_{0}, t_{0}\right)$ of x at time t

$$
\frac{\partial p}{\partial t}=-\frac{\partial}{\partial x}\left[\left(a_{2} x^{2}+a_{1} x+a_{0}\right) p\right]+\frac{\sigma^{2}}{2} \frac{\partial^{2} p}{\partial x^{2}} .
$$

Step (S1) to derive the moment equation:

- note: $m_{j}=\int_{\mathbb{R}} x^{j} p(x, t) \mathrm{d} x$
- multiply Fokker-Planck by x^{j} and average

Kolmogorov Equation / Fokker-Planck Equation

Probability density $p=p\left(x, t \mid x_{0}, t_{0}\right)$ of x at time t

$$
\frac{\partial p}{\partial t}=-\frac{\partial}{\partial x}\left[\left(a_{2} x^{2}+a_{1} x+a_{0}\right) p\right]+\frac{\sigma^{2}}{2} \frac{\partial^{2} p}{\partial x^{2}}
$$

Step (S1) to derive the moment equation:

- note: $m_{j}=\int_{\mathbb{R}} x^{j} p(x, t) \mathrm{d} x$
- multiply Fokker-Planck by x^{j} and average

For example, we have

$$
\begin{aligned}
m_{1}^{\prime} & =\left\langle x^{\prime}\right\rangle=\int_{\mathbb{R}} x \frac{\partial p}{\partial t} \mathrm{~d} x \\
& =\int_{\mathbb{R}}-x \frac{\partial}{\partial x}\left[\left(a_{2} x^{2}+a_{1} x+a_{0}\right) p\right] \mathrm{d} x+\int_{\mathbb{R}} x \frac{\sigma^{2}}{2} \frac{\partial^{2} p}{\partial x^{2}} \mathrm{~d} x
\end{aligned}
$$

If p and its derivatives vanish at infinity then

$$
m_{1}^{\prime}=\int_{\mathbb{R}}\left[\left(a_{2} x^{2}+a_{1} x+a_{0}\right) p\right] \mathrm{d} x=a_{2} m_{2}+a_{1} m_{1}+a_{0}
$$

(II) Kinetic Equations

Basics:

- spatial variable $x \in \Omega \subset \mathbb{R}^{N}$
- momentum variable $v \in \mathbb{R}^{N}$
- gas via a single-particle density $\varrho=\varrho(x, v, t)$

(II) Kinetic Equations

Basics:

- spatial variable $x \in \Omega \subset \mathbb{R}^{N}$
- momentum variable $v \in \mathbb{R}^{N}$
- gas via a single-particle density $\varrho=\varrho(x, v, t)$

Kinetic equation (mesoscopic dynamics)

$$
\frac{\partial \varrho}{\partial t}+v \cdot \nabla_{x} \varrho=Q(\varrho)
$$

where

- $\nabla_{x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{N}}\right)^{\top}$
- suitable boundary conditions are assumed
- $\varrho \mapsto Q(\varrho)$ is the collision operator

Moment Equations for Kinetic Equation

Instead of probabilistic average, take velocity average

$$
\langle G\rangle:=\int_{\mathbb{R}^{N}} G(x, v, t) \mathrm{d} v
$$

Same (similar) procedure:

- pick polynomial space \mathbb{M} with $\left\{m_{j}=m_{j}(v)\right\}$
- multiply the kinetic equation by basis elements
- average, using velocity averaging
- get (infinite!) hierarchy of moment equations

Remark: classical closure is Grad's 13 moment system (in 1949)

(III) Network Dynamics - SIS Model

Basics:

- goal: model epidemics on a network/graph
- graph with nodes in states S and I
- SI-link: infection at rate τ
- I-node: recovery at rate γ
- $m_{I}:=\langle I\rangle=\langle I\rangle(t)$ average number of infected
- $m_{S}=\langle S\rangle=\langle S\rangle(t)$ average number of susceptibles

(III) Network Dynamics - SIS Model

Basics:

- goal: model epidemics on a network/graph
- graph with nodes in states S and I
- SI-link: infection at rate τ
- I-node: recovery at rate γ
- $m_{I}:=\langle I\rangle=\langle I\rangle(t)$ average number of infected
- $m_{S}=\langle S\rangle=\langle S\rangle(t)$ average number of susceptibles

Formal (statistical physics) derivation yields

$$
\begin{aligned}
\frac{\mathrm{d} m_{S}}{\mathrm{~d} t} & =\gamma m_{l}-\tau\langle S I\rangle \\
\frac{\mathrm{d} m_{l}}{\mathrm{~d} t} & =\tau\langle S I\rangle-m_{l}
\end{aligned}
$$

where $\langle S I\rangle=$: $m_{S I}=$ average number of $S I$-links.

Second-order equations (Keeling; Rand; Taylor et al.):

$$
\begin{aligned}
\frac{\mathrm{d} m_{S I}}{\mathrm{~d} t} & =\gamma\left(m_{I I}-m_{S I}\right)+\tau\left(m_{S S I}-m_{I S I}-m_{S I}\right) \\
\frac{\mathrm{d} m_{I I}}{\mathrm{~d} t} & =-2 \gamma m_{I I}+2 \tau\left(m_{I S I}+m_{S I}\right) \\
\frac{\mathrm{d} m_{S S}}{\mathrm{~d} t} & =2 \gamma m_{S I}-2 \tau m_{S S I}
\end{aligned}
$$

Second-order equations (Keeling; Rand; Taylor et al.):

$$
\begin{aligned}
\frac{\mathrm{d} m_{S I}}{\mathrm{~d} t} & =\gamma\left(m_{I I}-m_{S I}\right)+\tau\left(m_{S S I}-m_{I S I}-m_{S I}\right) \\
\frac{\mathrm{d} m_{I I}}{\mathrm{~d} t} & =-2 \gamma m_{I I}+2 \tau\left(m_{I S I}+m_{S I}\right) \\
\frac{\mathrm{d} m_{S S}}{\mathrm{~d} t} & =2 \gamma m_{S I}-2 \tau m_{S S I}
\end{aligned}
$$

Observations:

- different derivation strategies
- typical moment closure problem
- number of equations grows rapidly

Abstract Moment Closure Problem

Infinite-dimensional moment system

$$
\begin{align*}
\frac{d m_{1}}{d t} & =h_{1}\left(m_{1}, m_{2}, \ldots\right) \\
\frac{d m_{2}}{d t} & =h_{2}\left(m_{2}, m_{3}, \ldots\right) \tag{1}\\
\frac{d m_{3}}{d t} & =\cdots,
\end{align*}
$$

Moment closure: "high-order moments via lower-order moments"

$$
H\left(m_{1}, \ldots, m_{\kappa}\right)=\left(m_{\kappa+1}, m_{\kappa+2}, \ldots\right)
$$

Abstract Moment Closure Problem

Infinite-dimensional moment system

$$
\begin{align*}
\frac{d m_{1}}{d t} & =h_{1}\left(m_{1}, m_{2}, \ldots\right) \\
\frac{d m_{2}}{d t} & =h_{2}\left(m_{2}, m_{3}, \ldots\right) \tag{1}\\
\frac{d m_{3}}{d t} & =\cdots,
\end{align*}
$$

Moment closure: "high-order moments via lower-order moments"

$$
H\left(m_{1}, \ldots, m_{\kappa}\right)=\left(m_{\kappa+1}, m_{\kappa+2}, \ldots\right)
$$

Final result:

$$
\begin{align*}
\frac{\mathrm{d} m_{1}}{\mathrm{~d} t} & =h_{1}\left(m_{1}, m_{2}, \ldots, m_{\kappa}, H\left(m_{1}, \ldots, m_{\kappa}\right)\right), \\
\frac{\mathrm{d} m_{2}}{\mathrm{~d} t} & =h_{2}\left(m_{1}, m_{2}, \ldots, m_{\kappa}, H\left(m_{1}, \ldots, m_{\kappa}\right)\right), \tag{2}\\
\vdots & = \\
\frac{\mathrm{d} m_{\kappa}}{\mathrm{d} t} & =h_{\kappa}\left(m_{1}, m_{2}, \ldots, m_{\kappa}, H\left(m_{1}, \ldots, m_{\kappa}\right)\right) .
\end{align*}
$$

Abstract Moment Closure Problem

Infinite-dimensional moment system

$$
\begin{align*}
\frac{\mathrm{d} m_{1}}{\mathrm{~d} t} & =h_{1}\left(m_{1}, m_{2}, \ldots\right) \\
\frac{\mathrm{d} m_{2}}{\mathrm{~d} t} & =h_{2}\left(m_{2}, m_{3}, \ldots\right) \tag{1}\\
\frac{\mathrm{d} m_{3}}{\mathrm{~d} t} & =\cdots
\end{align*}
$$

Moment closure: "high-order moments via lower-order moments"

$$
H\left(m_{1}, \ldots, m_{\kappa}\right)=\left(m_{\kappa+1}, m_{\kappa+2}, \ldots\right)
$$

Final result:

$$
\begin{array}{ccc}
\frac{\mathrm{d} m_{1}}{\mathrm{~d} t} & =h_{1}\left(m_{1}, m_{2}, \ldots, m_{\kappa}, H\left(m_{1}, \ldots, m_{\kappa}\right)\right) \\
\frac{\mathrm{d} m_{2}}{\mathrm{~d} t} & = & h_{2}\left(m_{1}, m_{2}, \ldots, m_{\kappa}, H\left(m_{1}, \ldots, m_{\kappa}\right)\right) \tag{2}\\
\vdots & = & \vdots \\
\frac{\mathrm{d} m_{\kappa}}{\mathrm{d} t} & = & h_{\kappa}\left(m_{1}, m_{2}, \ldots, m_{\kappa}, H\left(m_{1}, \ldots, m_{\kappa}\right)\right)
\end{array}
$$

(Q1) How to find/select the mapping H ?
(Q2) How well does (2) approximate (1)?

Some Classical Closures

(I) Probability theory closures, e.g., consider SODE case

$$
\begin{aligned}
& m_{j}=0 \quad \text { if } j \geq 3 \text { and } j \text { is odd, } \\
& m_{j}=\left(m_{2}\right)^{j / 2}(j-1)(j-3) \cdots 2 \quad \text { if } j \geq 4 \text { and } j \text { is even. }
\end{aligned}
$$

Some Classical Closures

(I) Probability theory closures, e.g., consider SODE case

$$
\begin{aligned}
m_{j} & =0 \quad \text { if } j \geq 3 \text { and } j \text { is odd, } \\
m_{j} & =\left(m_{2}\right)^{j / 2}(j-1)(j-3) \cdots 2 \quad \text { if } j \geq 4 \text { and } j \text { is even. }
\end{aligned}
$$

Gaussian closure!

Some Classical Closures

(I) Probability theory closures, e.g., consider SODE case

$$
\begin{aligned}
m_{j} & =0 \quad \text { if } j \geq 3 \text { and } j \text { is odd, } \\
m_{j} & =\left(m_{2}\right)^{j / 2}(j-1)(j-3) \cdots 2 \quad \text { if } j \geq 4 \text { and } j \text { is even. }
\end{aligned}
$$

Gaussian closure!
(II) Physical principle closures, e.g., consider kinetic case

$$
\min _{\varrho}\{\langle\varrho \ln \varrho-\varrho\rangle:\langle M \varrho\rangle=\eta\}=H(\eta),
$$

Some Classical Closures

(I) Probability theory closures, e.g., consider SODE case

$$
\begin{aligned}
m_{j} & =0 \quad \text { if } j \geq 3 \text { and } j \text { is odd, } \\
m_{j} & =\left(m_{2}\right)^{j / 2}(j-1)(j-3) \cdots 2 \quad \text { if } j \geq 4 \text { and } j \text { is even. }
\end{aligned}
$$

Gaussian closure!
(II) Physical principle closures, e.g., consider kinetic case

$$
\min _{\varrho}\{\langle\varrho \ln \varrho-\varrho\rangle:\langle M \varrho\rangle=\eta\}=H(\eta),
$$

entropy closure!

Some Classical Closures

(I) Probability theory closures, e.g., consider SODE case

$$
\begin{aligned}
m_{j} & =0 \quad \text { if } j \geq 3 \text { and } j \text { is odd, } \\
m_{j} & =\left(m_{2}\right)^{j / 2}(j-1)(j-3) \cdots 2 \quad \text { if } j \geq 4 \text { and } j \text { is even. }
\end{aligned}
$$

Gaussian closure!
(II) Physical principle closures, e.g., consider kinetic case

$$
\min _{\varrho}\{\langle\varrho \ln \varrho-\varrho\rangle:\langle M \varrho\rangle=\eta\}=H(\eta),
$$

entropy closure!
(III) Microscopic closures, e.g., consider network case

$$
m_{S I}=\langle S I\rangle \approx\langle S\rangle\langle I\rangle=m_{S} m_{I},
$$

Some Classical Closures

(I) Probability theory closures, e.g., consider SODE case

$$
\begin{aligned}
m_{j} & =0 \quad \text { if } j \geq 3 \text { and } j \text { is odd, } \\
m_{j} & =\left(m_{2}\right)^{j / 2}(j-1)(j-3) \cdots 2 \quad \text { if } j \geq 4 \text { and } j \text { is even. }
\end{aligned}
$$

Gaussian closure!
(II) Physical principle closures, e.g., consider kinetic case

$$
\min _{\varrho}\{\langle\varrho \ln \varrho-\varrho\rangle:\langle M \varrho\rangle=\eta\}=H(\eta),
$$

entropy closure!
(III) Microscopic closures, e.g., consider network case

$$
m_{S I}=\langle S I\rangle \approx\langle S\rangle\langle I\rangle=m_{S} m_{I},
$$

de-correlation closure!

Lots of (applied) mathematics work...

Stochastic systems:

- SODEs: Arnold, Bobryk, Bolotin, Grigoriu, Nasell, Singer, ...
- Discrete models: Baake, Gower, Leslie, ...

Kinetic equations:

- max-ent \& theory: Devilettes, Grad, Levermore, Torrilhon, ...
- applications: Christen, Kassubek, Klar, Struchtrup, ...

Networks:

- stat-phys: Gleeson, Gross, Kirkwood, Kiss, Shaw, Schwartz, ...
- epidemiology: Dieckmann, Eames, House, Keeling, ...
- ecology: Bolker, Pacala, Matis, Rand, Volz, ...

Lots of (applied) mathematics work...

Stochastic systems:

- SODEs: Arnold, Bobryk, Bolotin, Grigoriu, Nasell, Singer, ...
- Discrete models: Baake, Gower, Leslie, ...

Kinetic equations:

- max-ent \& theory: Devilettes, Grad, Levermore, Torrilhon, ...
- applications: Christen, Kassubek, Klar, Struchtrup, ...

Networks:

- stat-phys: Gleeson, Gross, Kirkwood, Kiss, Shaw, Schwartz, ...
- epidemiology: Dieckmann, Eames, House, Keeling, ...
- ecology: Bolker, Pacala, Matis, Rand, Volz, ...
\rightarrow "Moment closure - a brief review", CK, arXiv:1505.02190

Conjecture(s) / Direction(s)

- Closures work only on restricted assumptions.
- Dynamical systems view has to be (re-)introduced.
- Proofs will need algebraic and analytical tools.

Motivation: Fast-Slow Systems

Fast variables $x \in \mathbb{R}^{m}$, slow variables $y \in \mathbb{R}^{n}$, time scale separation $0<\varepsilon \ll 1$.

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x ^ { \prime } = f (x , y) } \\
{ y ^ { \prime } = \varepsilon g (x , y) }
\end{array} \stackrel { \varepsilon t = s } { \longleftrightarrow } \left\{\begin{array}{rl}
\varepsilon \dot{x} & =f(x, y) \\
\dot{y} & =g(x, y)
\end{array}\right.\right. \\
& \downarrow \varepsilon=0 \\
& \downarrow \varepsilon=0 \\
& \left\{\begin{array}{l}
x^{\prime}=f(x, y) \\
y^{\prime}=0
\end{array}\right. \\
& \text { fast subsystem } \\
& \left\{\begin{array}{l}
0=f(x, y) \\
\dot{y}=g(x, y)
\end{array}\right. \\
& \text { slow subsystem }
\end{aligned}
$$

- Think: $x=$ higher-order moments, $y=$ lower-order moments!

Motivation: Fast-Slow Systems

Fast variables $x \in \mathbb{R}^{m}$, slow variables $y \in \mathbb{R}^{n}$, time scale separation $0<\varepsilon \ll 1$.

$$
\left.\left.\begin{array}{rl}
\left\{\begin{aligned}
& x^{\prime}=f(x, y) \\
& y^{\prime}= g(x, y)
\end{aligned}\right. & \stackrel{\varepsilon t=s}{\longleftrightarrow}
\end{array} \begin{array}{rl}
\varepsilon \dot{x} & =f(x, y) \\
\dot{y} & =g(x, y)
\end{array}\right\} \begin{array}{rl}
\downarrow & \downarrow=0
\end{array}\right\} \begin{aligned}
& \downarrow=0 \\
&\left\{\begin{aligned}
x^{\prime}=f(x, y) \\
y^{\prime}=0
\end{aligned}\right.\left\{\begin{array}{r}
0=f(x, y) \\
\dot{y} \\
\text { fast subsystem } \\
\text { slow subsystem }
\end{array}\right.
\end{aligned}
$$

- Think: $x=$ higher-order moments, $y=$ lower-order moments!
- $C_{0}:=\{f=0\}=$ critical manifold $=$ equil. of fast subsystem.
- C_{0} is normally hyperbolic if $D_{x} f$ has no zero-real-part eigenvalues.
- Fenichel's Thm: Normal hyperbolicity \Rightarrow "nice" perturbation C_{ε}.

The Last Slide...

Summary \& Outlook:

- many open problems...
- combinatorial: How many equations? Structures?
- algebraic: Symmetries/invariants? Normal forms?
- probabilistic: Stochastic closures? Microscopic closures?
- analytical: Error estimates? Entropy closure validity?
- geometric: Slow manifolds? Geometry of moment space?
- dynamical: Capturing bifurcations? Phase-space dissection?

The Last Slide...

Summary \& Outlook:

- many open problems...
- combinatorial: How many equations? Structures?
- algebraic: Symmetries/invariants? Normal forms?
- probabilistic: Stochastic closures? Microscopic closures?
- analytical: Error estimates? Entropy closure validity?
- geometric: Slow manifolds? Geometry of moment space?
- dynamical: Capturing bifurcations? Phase-space dissection?

Papers, preprints, etc all available from:

- www.asc.tuwien.ac.at/~ckuehn and arXiv
- "Moment closure - a brief review", Christian Kuehn, arXiv:1505.02190
- "Multiple Time Scale Dynamics", Christian Kuehn, Springer, 2015

Thank you very much for your attention!

