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MOMENT CLOSURE falls into this scheme




Moment Closure - Three Concrete Examples

(I) Stochastic differential equations
» Kolmogorov equation (dim(X) = o)

» moments <> moments of a probability density

(1) Kinetic theory
» Boltzmann-type mesoscopic models (dim(X) = o)

» moments < certain integrals

(111) Network dynamics
» dynamics of graph, nodes, edges (dim(X) > 1)

> moments <> graph motives
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(1) Stochastic Ordinary Differential Equations (SODEs)

Standard SODE (x € R for simplicity) on (2, F,P)

d

/:f' /:_'
X (x) + o0&, >

& =W’ (W = Brownian motion), o > 0, say take

f(x) == apx® + a1x + ap.

» x depends upon the random input space = random variable
» define expectation/mean/averaging E[-] := (-)

> might want to know moments: m; := (x/)



Calculating moment equations...
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Calculating moment equations...

Just average:
my’ = (X') = ap(x®) + a1 (x) + ap = axmo + aymy + ap.
= Need second moment equation!
Using It6's formula one finds
(x?) = [2xf(x) + 0?] +2x0 €.
Just average:

my' = 2(axx® + a1x® + apx) + 0% 4 o (2x€)

= 2(axm3 +aymy + agmy) + 02,

(where (2x€) =0 as fot 2x(s) dWs is a martingale)
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Next steps:
(52) moment closure: “higher moments from lower moments”

(S3) verfication: does the closed system approximate dynamics?
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Kolmogorov Equation / Fokker-Planck Equation
Probability density p = p(x, t|xo, to) of x at time t

ap 0 a2 0%p
B = B —[(a2x? +a1x+ao)p]+ > 9l

Step (S1) to derive the moment equation:
> note: m; = [ ¥ p(x,t) dx
» multiply Fokker-Planck by x/ and average

For example, we have
m’ = /x— dx
2 82
P dx

= /R x—[(a2X + a1x + ag)p] dx—i—/ = 9

If p and its derivatives vanish at infinity then

m = /[(‘3'2><2 + a1x + ao)p] dx = azmz + a1m1 + ao
R
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(II) Kinetic Equations

Basics:
» spatial variable x € Q c RV
» momentum variable v € RV

> gas via a single-particle density o = o(x, v, t)

Kinetic equation (mesoscopic dynamics)

Do
T + v - Vo= Q(o),
where
> VX:(%,...,%)T

» suitable boundary conditions are assumed

» 0 Q(0) is the collision operator



Moment Equations for Kinetic Equation

Instead of probabilistic average, take velocity average

(G) = G(x,v,t) dv
RN

Same (similar) procedure:
» pick polynomial space M with {m; = m;(v)}
» multiply the kinetic equation by basis elements
> average, using velocity averaging
» get (infinite!) hierarchy of moment equations

Remark: classical closure is Grad’'s 13 moment system (in 1949)
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> graph with nodes in states S and /
» Sl-link: infection at rate 7
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» my = (I) = (I)(t) average number of infected
» ms = (S) = (5)(t) average number of susceptibles



(I11) Network Dynamics - SIS Model

Basics:
» goal: model epidemics on a network/graph
> graph with nodes in states S and /
» Sl-link: infection at rate 7
» [-node: recovery at rate
» my = (I) = (I)(t) average number of infected
» ms = (S) = (5)(t) average number of susceptibles

Formal (statistical physics) derivation yields

s = ymi—(si),
% = 7(Sl)—m),

where (SI) =: mgs; = average number of S/-links.



Second-order equations (Keeling; Rand; Taylor et al.):
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Second-order equations (Keeling; Rand; Taylor et al.):

dmg
el y(my — msy) + 7(mss) — mjs; — msy),
dm
d—t” = —2ymy + 27(ms; + msy),
d
Z’:S = 2’ym5/ — 27'm55/.

Observations:
» different derivation strategies

» typical moment closure problem

» number of equations grows rapidly



Abstract Moment Closure Problem
Infinite-dimensional moment system
jd% = hl(ml,mz,...),
% = h2(m2,m3,...),
dms e

Moment closure: “high-order moments via lower-order

H(my,...,m.) = (Mgt1, Meyo,...).

(1)

moments”
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Abstract Moment Closure Problem
Infinite-dimensional moment system

dd% = hl(ml,mz,...),

dd% - h2(m27m37“‘)7 (1)
dms |

dt - ’

Moment closure: “high-order moments via lower-order moments”

H(my,...,mg) = (Mei1, Meia,...).
Final result:
dd% - hl(m17m27‘”7mn,H(m1,...,m,{)),
dd% = hy(my,ma, ..., me, H(my,..., m)), 2
dcliTl-ﬁ = hﬁ(m]_,mz,...7mK,H(m1,...7mﬂ)).

(Q1) How to find/select the mapping H?
(Q2) How well does (2) approximate (1)?
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Some Classical Closures
(1) Probability theory closures, e.g., consider SODE case

m; = 0 ifj>3andjisodd,
mi = (m)y/?(—1)(j—3)---2 ifj>4andis even.

Gaussian closure!

(I1) Physical principle closures, e.g., consider kinetic case
min{{¢In ¢ — o) : (M) = n} = H(n),

entropy closure!

(111) Microscopic closures, e.g., consider network case
mg; = (SI) = (S)(I) = msmy,

de-correlation closure!
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» stat-phys: Gleeson, Gross, Kirkwood, Kiss, Shaw, Schwartz, ...

» epidemiology: Dieckmann, Eames, House, Keeling, ...
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— “Moment closure - a brief review”, CK, arXiv:1505.02190



Conjecture(s) / Direction(s)

» Closures work only on restricted assumptions.
» Dynamical systems view has to be (re-)introduced.

» Proofs will need algebraic and analytical tools.
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Motivation: Fast-Slow Systems

Fast variables x € R™, slow variables y € R", time scale separation 0 < ¢ < 1.

{x’ = f(x,y) s {gx = f(xy)

y' = cglxy) y = 8&(xy)
J e=0 =0
{X’ = f(xy) {0 = f(xy)
y' =20 y = glxy)
fast subsystem slow subsystem

v

Think: x = higher-order moments, y = lower-order moments!

v

Co := {f = 0} = critical manifold = equil. of fast subsystem.

v

Co is normally hyperbolic if Dyf has no zero-real-part eigenvalues.

v

Fenichel’s Thm: Normal hyperbolicity = “nice” perturbation C..
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analytical: Error estimates? Entropy closure validity?

v

geometric: Slow manifolds? Geometry of moment space?

v

dynamical: Capturing bifurcations? Phase-space dissection?

Papers, preprints, etc all available from:

> www.asc.tuwien.ac.at/~ckuehn and arXiv

» “Moment closure - a brief review”, Christian Kuehn, arXiv:1505.02190
»  “Multiple Time Scale Dynamics”, Christian Kuehn, Springer, 2015

Thank you very much for your attention!



