The operator theoretic moment problem

Sabine Burgdorf

DMV Tagung, September 2015

CWI

What is it and why should I care?

Classical multivariate moment problem

- Dual problem to classification of positive polynomials
- Let $K \subseteq \mathbb{R}^{n}$ be closed.

Moment problem

Let $L: \mathbb{R}[\underline{x}] \rightarrow \mathbb{R}$ be linear, $L(1)=1$. Does there exist a probability measure μ with supp $\mu \subseteq K$ such that for all $f \in \mathbb{R}[\underline{x}]$:

$$
L(f)=\int f(\underline{a}) \mathrm{d} \mu(\underline{a}) ?
$$

What is it and why should I care?

What are we up to?

- Generalize from scalars to operators
- Leads to moment problem in noncommuting variables

What are we up to?

- Generalize from scalars to operators
- Leads to moment problem in noncommuting variables

What do I need it for?

- Applications in quantum physics
- quantum chemistry: ground state electronic energy of atoms
- quantum theory: upper bounds for violation of Bell inequalities
- quantum information: multi prover games/quantum correlation
- Genral: non-commutative probability theory
- Application in systems control
- Systematic strategy to compute stabilizing feedback for linear closed loop systems

NC polynomials

- $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ non-commuting/free variables
- $\mathbb{R}\langle\underline{X}\rangle$ unital associative free algebra generated by \underline{X}
- Elements $f \in \mathbb{R}\langle\underline{X}\rangle$ are NC polynomials
- Involution * $: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}\langle\underline{X}\rangle$ s.t.
- X_{i} self-adjoint
- * is identity on \mathbb{R}
- Evaluation in symmetric matrices or self-adjoint operators
- $f(\underline{A})=f_{1} \mathbf{1}+f_{X_{1}} A_{1}+f_{X_{2}} A_{2}+\ldots+f_{X_{1}^{2} X_{3} X_{2}^{3}} A_{1}^{2} A_{3} A_{2}^{3}+\ldots$

NC polynomials

- $\underline{X}=\left(X_{1}, \ldots, X_{n}\right)$ non-commuting/free variables
- $\mathbb{R}\langle\underline{X}\rangle$ unital associative free algebra generated by \underline{X}
- Elements $f \in \mathbb{R}\langle\underline{X}\rangle$ are NC polynomials
- Involution * $: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}\langle\underline{X}\rangle$ s.t.
- X_{i} self-adjoint
- * is identity on \mathbb{R}
- Evaluation in symmetric matrices or self-adjoint operators
- $f(\underline{A})=f_{1} \mathbf{1}+f_{X_{1}} A_{1}+f_{X_{2}} A_{2}+\ldots+f_{X_{1}^{2} X_{3} X_{2}^{3}} A_{1}^{2} A_{3} A_{2}^{3}+\ldots$

Moment problems for linear forms

$$
L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}
$$

Operator theoretic moment problems

- Riesz-Haviland theorem relates moment problems to positivity
- Consider 2 types of positivity of NC polynomials

Operator theoretic moment problems

- Riesz-Haviland theorem relates moment problems to positivity
- Consider 2 types of positivity of NC polynomials
- Positivity by eigenvalue
- $f \in \mathbb{R}\langle\underline{X}\rangle$ is positive semidefinite if
$f(\underline{A}) \succeq 0$ for all tuples \underline{A} of symmetric matrices of any size.
- Can be extended to self-adjoint bounded operators

Operator theoretic moment problems

- Riesz-Haviland theorem relates moment problems to positivity
- Consider 2 types of positivity of NC polynomials
- Positivity by eigenvalue
- $f \in \mathbb{R}\langle\underline{X}\rangle$ is positive semidefinite if
$f(\underline{A}) \succeq 0$ for all tuples \underline{A} of symmetric matrices of any size.
- Can be extended to self-adjoint bounded operators
- Positivity by trace
- $f \in \mathbb{R}\langle\underline{X}\rangle$ is trace-positive if
$\operatorname{Tr}(f(\underline{A})) \geq 0$ for all tuples \underline{A} of symmetric matrices of any size.
- Can be extended to finite von Neumann algebras

Operator theoretic moment problems

NC moment problem
For which linear form $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ exists a finite dimensional Hilbert space H, a unit vector $\phi \in H$ and a $*$-representation π on $B(H)$ such that for all $f \in \mathbb{R}\langle\underline{X}\rangle$:

$$
L(f)=\langle\pi(f) \phi, \phi\rangle ?
$$

Tracial moment problem
For which linear form $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ exists some $s \in \mathbb{N}$ and a probability measure μ with $\operatorname{supp} \mu \subseteq\left(\mathbb{S R}^{s \times s}\right)^{n}$ such that for all $f \in \mathbb{R}\langle\underline{X}\rangle$:

$$
L(f)=\int \operatorname{Tr}(f(\underline{A})) d \mu(\underline{A}) ?
$$

Operator theoretic moment problems

NC moment problem
For which linear form $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ exists a finite dimensional Hilbert space H, a unit vector $\phi \in H$ and a $*$-representation π on $B(H)$ such that for all $f \in \mathbb{R}\langle\underline{X}\rangle$:

$$
L(f)=\langle\pi(f) \phi, \phi\rangle ?
$$

Tracial moment problem
For which linear form $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ exists some $s \in \mathbb{N}$ and a probability measure μ with $\operatorname{supp} \mu \subseteq\left(\mathbb{S R}^{s \times s}\right)^{n}$ such that for all $f \in \mathbb{R}\langle\underline{X}\rangle$:

$$
L(f)=\int \operatorname{Tr}(f(\underline{A})) d \mu(\underline{A}) ?
$$

Can also formulate K-moment problems

Hankel matrices

- Associate to $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ the sesquilinear form

$$
B_{L}: \mathbb{R}\langle\underline{X}\rangle \times \mathbb{R}\langle\underline{X}\rangle,(f, g) \mapsto L\left(f^{*} g\right)
$$

- The representing matrix for B_{L} is its Hankel matrix

Definition

- The Hankel matrix $M(L)$, indexed by $u, v \in\langle\underline{X}\rangle$, is given by

$$
M(L)_{u, v}:=L\left(u^{*} v\right)
$$

- The truncated Hankel matrix $M_{k}(L)$ of degree k is the submatrix of $M(L)$ indexed by $u, v \in\langle\underline{X}\rangle_{k}$.

Hankel matrices

- Associate to $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ the sesquilinear form

$$
B_{L}: \mathbb{R}\langle\underline{X}\rangle \times \mathbb{R}\langle\underline{X}\rangle,(f, g) \mapsto L\left(f^{*} g\right)
$$

- The representing matrix for B_{L} is its Hankel matrix

Definition

- The Hankel matrix $M(L)$, indexed by $u, v \in\langle\underline{X}\rangle$, is given by

$$
M(L)_{u, v}:=L\left(u^{*} v\right)
$$

- The truncated Hankel matrix $M_{k}(L)$ of degree k is the submatrix of $M(L)$ indexed by $u, v \in\langle\underline{X}\rangle_{k}$.

For K-moment problem use also localizing Hankel matrices

One Hankel matrix

Example

Consider $\mathbb{R}\langle X, Y\rangle$ with basis (1, $X, Y, X^{2}, X Y, Y X, \ldots$)

$$
M(L)=\left[\begin{array}{cccccc}
L(1) & L(X) & L(Y) & L\left(X^{2}\right) & L(X Y) & \cdots \\
L(X) & L\left(X^{2}\right) & L(X Y) & L\left(X^{3}\right) & L\left(X^{2} Y\right) & \cdots \\
L(Y) & L(Y X) & L\left(Y^{2}\right) & L\left(Y X^{2}\right) & L(Y X Y) & \cdots \\
L\left(X^{2}\right) & L\left(X^{3}\right) & L\left(X^{2} Y\right) & L\left(X^{4}\right) & L\left(X^{3} Y\right) & \cdots \\
L Y X) & L\left(Y X^{2}\right) & L(Y X Y) & L\left(Y X^{3}\right) & L\left(Y X^{2} Y\right) & \cdots \\
L(X Y) & L(X Y X) & L\left(X Y^{2}\right) & L\left(X Y X^{2}\right) & L(X Y X Y) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Truncated NC moment problem

Proposition (Helton, Klep, McCullough)
$L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R}$ has a finite dimensional moment representation iff
$1 M_{d}(L) \succeq 0$
2 for some $k>d$ exists a flat Hankel matrix extension M_{k} of $M_{d}(L)$, i.e., $\operatorname{rank} M_{k}=\operatorname{rank} M_{k-1}$.

Truncated NC moment problem

Proposition (Helton, Klep, McCullough)
$L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R}$ has a finite dimensional moment representation iff
$1 M_{d}(L) \succeq 0$
2 for some $k>d$ exists a flat Hankel matrix extension M_{k} of $M_{d}(L)$, i.e., $\operatorname{rank} M_{k}=\operatorname{rank} M_{k-1}$.

Proposition (Helton, Klep, McCullough)
If $M_{d}(L)$ is positive definite, then it always has a flat Hankel matrix extension M_{d+1}.

Truncated NC moment problem

Proposition (Helton, Klep, McCullough)
$L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R}$ has a finite dimensional moment representation iff
$1 M_{d}(L) \succeq 0$
2 for some $k>d$ exists a flat Hankel matrix extension M_{k} of $M_{d}(L)$, i.e., $\operatorname{rank} M_{k}=\operatorname{rank} M_{k-1}$.

Proposition (Helton, Klep, McCullough)
If $M_{d}(L)$ is positive definite, then it always has a flat Hankel matrix extension M_{d+1}.

Can also formulate K-moment problem version

Full NC moment problem

Theorem(Helton, Klep, McCullough)
$L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ has a finite dimensional moment representation iff
$1 M(L) \succeq 0$
$2 M(L)$ has bounded rank
3 there exists a $C \in \mathbb{R}_{\geq 0}$ such that $M\left[C-X_{i}^{2}, L\right] \succeq 0$ for all $i \in[n]$.

Full NC moment problem

Theorem(Helton, Klep, McCullough)
$L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ has a finite dimensional moment representation iff
$1 M(L) \succeq 0$
$2 M(L)$ has bounded rank
3 there exists a $C \in \mathbb{R}_{\geq 0}$ such that $M\left[C-X_{i}^{2}, L\right] \succeq 0$ for all $i \in[n]$.

- Allow infinite dimensional Hilbert spaces:

Theorem (Pironio, Navascues, Acin)
$L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ has a moment representation if and only if
$1 M(L) \succeq 0$
2 there exists a $C \in \mathbb{R}_{\geq 0}$ such that $M\left[C-\sum_{i} x_{i}^{2}, L\right] \succeq 0$.

The tracial moment problem

- Additional constraint on $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$

Tracial condition

$$
L(f g)=L(g f) \text { for all } f, g \in \mathbb{R}\langle\underline{X}\rangle
$$

The tracial moment problem

- Additional constraint on $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$

Tracial condition

$$
L(f g)=L(g f) \text { for all } f, g \in \mathbb{R}\langle\underline{X}\rangle
$$

Proposition (B.)

A tracial $L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R}$ has a finite dimensional tracial moment representation iff
$1 M_{d}(L) \succeq 0$
2 for some $k>d$ exists a flat (tracial) Hankel matrix extension M_{k} of $M_{d}(L)$.

The tracial moment problem

- Additional constraint on $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$

Tracial condition

$$
L(f g)=L(g f) \text { for all } f, g \in \mathbb{R}\langle\underline{X}\rangle
$$

Proposition (B.)

A tracial $L: \mathbb{R}\langle\underline{X}\rangle_{2 d} \rightarrow \mathbb{R}$ has a finite dimensional tracial moment representation iff
$1 M_{d}(L) \succeq 0$
2 for some $k>d$ exists a flat (tracial) Hankel matrix extension M_{k} of $M_{d}(L)$.

For K-moment problem add psd localizing Hankel matrices

Full tracial moment problem

Proposition (B.)
A tracial $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ has a finite dimensional tracial moment representation if and only if
1 ($M(L) \succeq 0$
2 rank $M(L)<\infty$.

Full tracial moment problem

Proposition (B.)
A tracial $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ has a finite dimensional tracial moment representation if and only if
$1 M(L) \succeq 0$
2 rank $M(L)<\infty$.

- Allow infinite dimensional Hilbert spaces:

Proposition (Klep, Schweighofer;B.)
A tracial $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ has a tracial moment representation (using a von Neumann algebra) if and only if
$1 M(L) \succeq 0$
2 there exists a $C \in \mathbb{R}_{\geq 0}$ such that $M\left[C-\sum_{i} x_{i}^{2}, L\right] \succeq 0$.

Application in NC Polynomial optimization

- $p \in \mathbb{R}\langle\underline{X}\rangle$ nc polynomial

$$
\min p:=\max \{\lambda \mid p-\lambda \succeq 0\}
$$

Application in NC Polynomial optimization

- $p \in \mathbb{R}\langle\underline{X}\rangle$ nc polynomial

$$
\min p:=\max \{\lambda \mid p-\lambda \succeq 0\}
$$

- nc-sos relaxation

$$
p_{s o s}=\max \{\lambda \mid p-\lambda \operatorname{sos}\}
$$

- dual nc-sos relaxation

$$
p_{d s}=\min \left\{L(p) \mid L \in \mathbb{R}\langle\underline{X}\rangle^{\vee}, M(L) \succeq 0\right\}
$$

Application in NC Polynomial optimization

- $p \in \mathbb{R}\langle\underline{X}\rangle$ nc polynomial

$$
\min p:=\max \{\lambda \mid p-\lambda \succeq 0\}
$$

- nc-sos relaxation

$$
p_{s o s}=\max \{\lambda \mid p-\lambda \operatorname{sos}\}
$$

- dual nc-sos relaxation

$$
p_{d s}=\min \left\{L(p) \mid L \in \mathbb{R}\langle\underline{X}\rangle^{\vee}, M(L) \succeq 0\right\}
$$

- If optimizing L in $p_{d s}$ has a moment representation then

$$
p_{\min } \leq p_{s o s} \leq p_{d s}=L(p) \leq p_{\text {min }}
$$

- Moment representation implies exactness of relaxation

Application: Quantum Correlations

- Two separated systems: A and and B
- Measurements:
described by operators E_{i} performed on a joint quantum state φ
- Local measurements:

Alice's operators E_{i} commute with bob's operators E_{j}

- Correlations between A and B : Joint probabilities $P(i, j)=\left\langle\varphi, E_{i} E_{j} \varphi\right\rangle$

Application: Quantum Correlations

- Two separated systems: A and and B
- Measurements:
described by operators E_{i} performed on a joint quantum state φ
- Local measurements:

Alice's operators E_{i} commute with bob's operators E_{j}

- Correlations between A and B :

Joint probabilities $P(i, j)=\left\langle\varphi, E_{i} E_{j} \varphi\right\rangle$

- Violation of Bell inqualities
- Linear combination of (joint) probabilities
- Get inequalities by considering classical random variables
- Want to find violations using quantum setup

Application: Quantum Correlations

- Violation of Bell inequalities
- Given linear relation $\sum_{i, j} c_{i, j} P(i, j)$

$$
\begin{array}{|ll|}
\hline \max _{(E, \varphi)}\left\langle\varphi, \sum_{i, j} c_{i j} E_{i} E_{j \varphi}\right\rangle & \leftarrow\langle\varphi, p(\underline{E}) \varphi\rangle \\
\text { s.t. } & \|\varphi\|=1 \\
& E_{i} E_{j}=\delta_{i j} \text { for } i, j \in M_{k} \\
& \sum_{i \in M_{k}} E_{i}=1 \\
& {\left[E_{i}, E_{j}\right]=0 \text { for } i \in A, j \in B} \\
& \\
\hline
\end{array}
$$

Application: Quantum Correlations

- Violation of Bell inequalities
- Given linear relation $\sum_{i, j} c_{i, j} P(i, j)$

$$
\begin{array}{|lll}
\hline \max _{(E, \varphi)}\left\langle\varphi, \sum_{i, j} c_{i j} E_{i} E_{j \varphi}\right\rangle & \leftarrow\langle\varphi, p(\underline{E}) \varphi\rangle \\
\text { s.t. } & \|\varphi\|=1 & \leftarrow\|\varphi\|=1 \\
& E_{i} E_{j}=\delta_{i j} \text { for } i, j \in M_{k} & \\
& \sum_{i \in M_{k}} E_{i}=1 & \\
& {\left[E_{i}, E_{j}\right]=0 \text { for } i \in A, j \in B} & \\
\hline
\end{array}
$$

- Pal, Vertesi run sos-relaxation on 241 Bell inequalities
- prove exactness for about 220 of them

Application: Quantum Correlations

- Violation of Bell inequalities
- Given linear relation $\sum_{i, j} c_{i, j} P(i, j)$

$$
\begin{array}{|lll}
\hline \max _{(E, \varphi)}\left\langle\varphi, \sum_{i, j} c_{i j} E_{i} E_{j \varphi}\right\rangle & \leftarrow\langle\varphi, p(\underline{E}) \varphi\rangle \\
\text { s.t. } & \|\varphi\|=1 & \leftarrow\|\varphi\|=1 \\
& E_{i} E_{j}=\delta_{i j} \text { for } i, j \in M_{k} & \\
& \sum_{i \in M_{k}} E_{i}=1 & \\
& {\left[E_{i}, E_{j}\right]=0 \text { for } i \in A, j \in B} & \\
\hline
\end{array}
$$

- Pal, Vertesi run sos-relaxation on 241 Bell inequalities
- prove exactness for about 220 of them
- Quantum field model of measurements leads to a version with tracial moments

Conclusion

- Operator theoretic moment problems
- eigenvalue/psd version: $L(p)=\langle\varphi p(\underline{A}), \varphi\rangle$
- trace version: $L(p)=\operatorname{Tr}(p(\underline{A}))$
- Generalizes the classical moment problem
- A lot of statements remain true...
- ... if one allows infinite dimensional Hilbert spaces

Conclusion

- Operator theoretic moment problems
- eigenvalue/psd version: $L(p)=\langle\varphi p(\underline{A}), \varphi\rangle$
- trace version: $L(p)=\operatorname{Tr}(p(\underline{A}))$
- Generalizes the classical moment problem
- A lot of statements remain true...
- ... if one allows infinite dimensional Hilbert spaces

Challenge: How can we distinguish between finite and infinite dimensions apart from checking for flatness?

