Sabine Burgdorf

DMV Tagung, September 2015

What is it and why should I care?

Classical multivariate moment problem

- Dual problem to classification of positive polynomials
- Let $K \subseteq \mathbb{R}^n$ be closed.

Moment problem

Let $L : \mathbb{R}[\underline{x}] \to \mathbb{R}$ be linear, L(1) = 1. Does there exist a probability measure μ with supp $\mu \subseteq K$ such that for all $f \in \mathbb{R}[\underline{x}]$:

$$L(f) = \int f(\underline{a}) \, \mathrm{d}\mu(\underline{a})?$$

What is it and why should I care?

What are we up to?

- Generalize from scalars to operators
- Leads to moment problem in noncommuting variables

What is it and why should I care?

What are we up to?

- Generalize from scalars to operators
- Leads to moment problem in noncommuting variables

What do I need it for?

- Applications in quantum physics
 - quantum chemistry: ground state electronic energy of atoms
 - quantum theory: upper bounds for violation of Bell inequalities
 - quantum information: multi prover games/quantum correlation
 - Genral: non-commutative probability theory
- Application in systems control
 - Systematic strategy to compute stabilizing feedback for linear closed loop systems

NC polynomials

- $\underline{X} = (X_1, \dots, X_n)$ non-commuting/free variables
- $\mathbb{R}\langle \underline{X} \rangle$ unital associative free algebra generated by \underline{X}
- Elements $f \in \mathbb{R}\langle \underline{X} \rangle$ are NC polynomials
- Involution $* : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}\langle \underline{X} \rangle$ s.t.
 - X_i self-adjoint
 - * is identity on R
- Evaluation in symmetric matrices or self-adjoint operators

•
$$f(\underline{A}) = f_1 \mathbf{1} + f_{X_1} A_1 + f_{X_2} A_2 + \dots + f_{X_1^2 X_3 X_2^3} A_1^2 A_3 A_2^3 + \dots$$

NC polynomials

- $\underline{X} = (X_1, \dots, X_n)$ non-commuting/free variables
- $\mathbb{R}\langle \underline{X} \rangle$ unital associative free algebra generated by \underline{X}
- Elements $f \in \mathbb{R}\langle \underline{X} \rangle$ are NC polynomials
- Involution $* : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}\langle \underline{X} \rangle$ s.t.
 - X_i self-adjoint
 - * is identity on R
- Evaluation in symmetric matrices or self-adjoint operators

•
$$f(\underline{A}) = f_1 \mathbf{1} + f_{X_1} A_1 + f_{X_2} A_2 + \dots + f_{X_1^2 X_3 X_2^3} A_1^2 A_3 A_2^3 + \dots$$

Moment problems for linear forms $L: \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$

- CWI
- Riesz-Haviland theorem relates moment problems to positivity
- Consider 2 types of positivity of NC polynomials

- CWI
- Riesz-Haviland theorem relates moment problems to positivity
- Consider 2 types of positivity of NC polynomials
 - Positivity by eigenvalue
 - $f \in \mathbb{R}\langle \underline{X} \rangle$ is positive semidefinite if

 $f(\underline{A}) \succeq 0$ for all tuples \underline{A} of symmetric matrices of any size.

Can be extended to self-adjoint bounded operators

- Riesz-Haviland theorem relates moment problems to positivity
- Consider 2 types of positivity of NC polynomials
 - Positivity by eigenvalue
 - $f \in \mathbb{R}\langle \underline{X} \rangle$ is positive semidefinite if

 $f(\underline{A}) \succeq 0$ for all tuples \underline{A} of symmetric matrices of any size.

- Can be extended to self-adjoint bounded operators
- Positivity by trace
 - $f \in \mathbb{R}\langle \underline{X} \rangle$ is trace-positive if

 $Tr(f(\underline{A})) \ge 0$ for all tuples \underline{A} of symmetric matrices of any size.

Can be extended to finite von Neumann algebras

NC moment problem

For which linear form $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ exists a finite dimensional Hilbert space H, a unit vector $\phi \in H$ and a *-representation π on B(H) such that for all $f \in \mathbb{R}\langle \underline{X} \rangle$:

$$L(f) = \langle \pi(f)\phi, \phi \rangle$$
?

Tracial moment problem

For which linear form $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ exists some $s \in \mathbb{N}$ and a probability measure μ with supp $\mu \subseteq (\mathbb{SR}^{s \times s})^n$ such that for all $f \in \mathbb{R}\langle \underline{X} \rangle$:

$$L(f) = \int \operatorname{Tr}(f(\underline{A})) \, d\mu(\underline{A})?$$

NC moment problem

For which linear form $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ exists a finite dimensional Hilbert space H, a unit vector $\phi \in H$ and a *-representation π on B(H) such that for all $f \in \mathbb{R}\langle \underline{X} \rangle$:

$$L(f) = \langle \pi(f)\phi, \phi \rangle$$
?

Tracial moment problem

For which linear form $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ exists some $s \in \mathbb{N}$ and a probability measure μ with supp $\mu \subseteq (\mathbb{SR}^{s \times s})^n$ such that for all $f \in \mathbb{R}\langle \underline{X} \rangle$:

$$L(f) = \int \operatorname{Tr}(f(\underline{A})) \, d\mu(\underline{A})?$$

Can also formulate *K*-moment problems

Hankel matrices

• Associate to $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ the sesquilinear form

 $B_L: \mathbb{R}\langle \underline{X} \rangle \times \mathbb{R}\langle \underline{X} \rangle, (f,g) \mapsto L(f^*g).$

• The representing matrix for B_L is its Hankel matrix

Definition

► The Hankel matrix M(L), indexed by $u, v \in \langle \underline{X} \rangle$, is given by

$$M(L)_{u,v} := L(u^*v).$$

► The truncated Hankel matrix $M_k(L)$ of degree k is the submatrix of M(L) indexed by $u, v \in \langle \underline{X} \rangle_k$.

Hankel matrices

• Associate to $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ the sesquilinear form

 $B_L: \mathbb{R}\langle \underline{X} \rangle \times \mathbb{R}\langle \underline{X} \rangle, (f,g) \mapsto L(f^*g).$

• The representing matrix for B_L is its Hankel matrix

Definition

► The Hankel matrix M(L), indexed by $u, v \in \langle \underline{X} \rangle$, is given by

$$M(L)_{u,v} := L(u^*v).$$

► The truncated Hankel matrix $M_k(L)$ of degree k is the submatrix of M(L) indexed by $u, v \in \langle \underline{X} \rangle_k$.

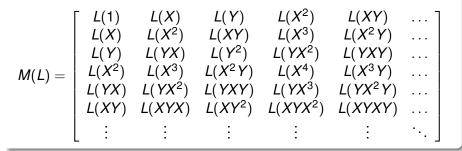
For *K*-moment problem use also localizing Hankel matrices

CWI

One Hankel matrix

Example

Consider $\mathbb{R}\langle X, Y \rangle$ with basis $(1, X, Y, X^2, XY, YX, \dots)$



Truncated NC moment problem

Proposition (Helton, Klep, McCullough)

- $L: \mathbb{R}\langle \underline{X} \rangle_{2d} \to \mathbb{R}$ has a finite dimensional moment representation iff
 - $M_d(L) \succeq 0$
 - 2 for some k > d exists a flat Hankel matrix extension M_k of $M_d(L)$, i.e., rank $M_k = \operatorname{rank} M_{k-1}$.

Truncated NC moment problem

CWI

Proposition (Helton, Klep, McCullough)

- $L: \mathbb{R}\langle \underline{X} \rangle_{2d} \to \mathbb{R}$ has a finite dimensional moment representation iff
 - 1 $M_d(L) \succeq 0$
 - 2 for some k > d exists a flat Hankel matrix extension M_k of $M_d(L)$, i.e., rank $M_k = \operatorname{rank} M_{k-1}$.

Proposition (Helton, Klep, McCullough)

If $M_d(L)$ is positive definite, then it always has a flat Hankel matrix extension M_{d+1} .

Truncated NC moment problem

CWI

Proposition (Helton, Klep, McCullough)

- $L: \mathbb{R}\langle \underline{X} \rangle_{2d} \to \mathbb{R}$ has a finite dimensional moment representation iff
 - 1 $M_d(L) \succeq 0$
 - 2 for some k > d exists a flat Hankel matrix extension M_k of $M_d(L)$, i.e., rank $M_k = \operatorname{rank} M_{k-1}$.

Proposition (Helton, Klep, McCullough)

If $M_d(L)$ is positive definite, then it always has a flat Hankel matrix extension M_{d+1} .

Can also formulate *K*-moment problem version

Full NC moment problem

Theorem(Helton, Klep, McCullough)

- $L:\mathbb{R}\langle\underline{X}\rangle\to\mathbb{R}$ has a finite dimensional moment representation iff
 - 1 $M(L) \succeq 0$
 - **2** M(L) has bounded rank
 - 3 there exists a $C \in \mathbb{R}_{\geq 0}$ such that $M[C X_i^2, L] \succeq 0$ for all $i \in [n]$.

Full NC moment problem

Theorem(Helton, Klep, McCullough)

 $L:\mathbb{R}\langle\underline{X}\rangle\to\mathbb{R}$ has a finite dimensional moment representation iff

- $1 M(L) \succeq 0$
- 2 M(L) has bounded rank

3 there exists a $C \in \mathbb{R}_{\geq 0}$ such that $M[C - X_i^2, L] \succeq 0$ for all $i \in [n]$.

Allow infinite dimensional Hilbert spaces:

Theorem (Pironio, Navascues, Acin)

 $L:\mathbb{R}\langle\underline{X}\rangle\to\mathbb{R}$ has a moment representation if and only if

1 $M(L) \succeq 0$

2 there exists a $C \in \mathbb{R}_{\geq 0}$ such that $M[C - \sum_{i} X_{i}^{2}, L] \succeq 0$.

The tracial moment problem

• Additional constraint on $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$

Tracial condition

L(fg) = L(gf) for all $f, g \in \mathbb{R}\langle \underline{X} \rangle$

The tracial moment problem

• Additional constraint on $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$

Tracial condition

$$L(fg) = L(gf)$$
 for all $f, g \in \mathbb{R}\langle \underline{X} \rangle$

Proposition (B.)

A tracial $L : \mathbb{R}\langle \underline{X} \rangle_{2d} \to \mathbb{R}$ has a finite dimensional tracial moment representation iff

- 1 $M_d(L) \succeq 0$
- 2 for some k > d exists a flat (tracial) Hankel matrix extension M_k of $M_d(L)$.

The tracial moment problem

• Additional constraint on $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$

Tracial condition

$$L(fg) = L(gf)$$
 for all $f, g \in \mathbb{R}\langle \underline{X} \rangle$

Proposition (B.)

A tracial $L : \mathbb{R}\langle \underline{X} \rangle_{2d} \to \mathbb{R}$ has a finite dimensional tracial moment representation iff

- 1 $M_d(L) \succeq 0$
- 2 for some k > d exists a flat (tracial) Hankel matrix extension M_k of $M_d(L)$.

For *K*-moment problem add psd localizing Hankel matrices

Full tracial moment problem

Proposition (B.)

A tracial $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ has a finite dimensional tracial moment representation if and only if

2 rank $M(L) < \infty$.

Full tracial moment problem

Proposition (B.)

A tracial $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ has a finite dimensional tracial moment representation if and only if

2 rank $M(L) < \infty$.

Allow infinite dimensional Hilbert spaces:

Proposition (Klep, Schweighofer;B.)

A tracial $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$ has a tracial moment representation (using a von Neumann algebra) if and only if

1
$$M(L) \succeq C$$

2 there exists a $C \in \mathbb{R}_{\geq 0}$ such that $M[C - \sum_{i} X_{i}^{2}, L] \succeq 0$.

Application in NC Polynomial optimization

▶ $p \in \mathbb{R}\langle \underline{X} \rangle$ nc polynomial

$$\min \boldsymbol{p} := \max\{\lambda \mid \boldsymbol{p} - \lambda \succeq \boldsymbol{0}\}$$

CW

Application in NC Polynomial optimization

• $p \in \mathbb{R}\langle \underline{X} \rangle$ nc polynomial

$$\min p := \max\{\lambda \mid p - \lambda \succeq \mathbf{0}\}$$

CW

nc-sos relaxation

$$p_{sos} = \max\{\lambda \mid p - \lambda \text{ sos}\}$$

dual nc-sos relaxation

$$p_{ds} = \min\{L(p) \mid L \in \mathbb{R}\langle \underline{X} \rangle^{\vee}, M(L) \succeq 0\}$$

Application in NC Polynomial optimization

• $p \in \mathbb{R}\langle \underline{X} \rangle$ nc polynomial

$$\min p := \max\{\lambda \mid p - \lambda \succeq \mathbf{0}\}$$

nc-sos relaxation

$$p_{sos} = \max\{\lambda \mid p - \lambda \text{ sos}\}$$

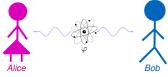
dual nc-sos relaxation

$$p_{ds} = \min\{L(p) \mid L \in \mathbb{R}\langle \underline{X} \rangle^{\vee}, M(L) \succeq 0\}$$

If optimizing L in p_{ds} has a moment representation then

$$p_{min} \leq p_{sos} \leq p_{ds} = L(p) \leq p_{min}$$

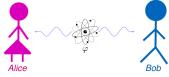
Moment representation implies exactness of relaxation



- Two separated systems: A and and B
- Measurements: described by operators *E_i* performed on a joint quantum state φ
- Local measurements:

Alice's operators E_i commute with bob's operators E_i

Correlations between A and B: Joint probabilities P(i, j) = ⟨φ, E_iE_jφ⟩



- Two separated systems: A and and B
- Measurements: described by operators *E_i* performed on a joint quantum state φ
- Local measurements:

Alice's operators E_i commute with bob's operators E_i

- Correlations between A and B: Joint probabilities P(i,j) = ⟨φ, E_iE_jφ⟩
- Violation of Bell inqualities
 - Linear combination of (joint) probabilities
 - Get inequalities by considering classical random variables
 - Want to find violations using quantum setup

- Violation of Bell inequalities
- Given linear relation $\sum_{i,j} c_{i,j} P(i,j)$

$$\max_{(E,\varphi)} \left\langle \varphi, \sum_{i,j} c_{ij} E_i E_j \varphi \right\rangle$$

s.t. $\|\varphi\| = 1$
 $E_i E_j = \delta_{ij} \text{ for } i, j \in M_k$
 $\sum_{i \in M_k} E_i = 1$
 $[E_i, E_j] = 0 \text{ for } i \in A, j \in B$

$$\leftarrow \left\langle \varphi, p(\underline{E})\varphi \right\rangle$$

$$\leftarrow \|\varphi\| = 1$$

] measurement
] *A*/*B* separated

- Violation of Bell inequalities
- Given linear relation $\sum_{i,j} c_{i,j} P(i,j)$

- Pal, Vertesi run sos-relaxation on 241 Bell inequalities
- prove exactness for about 220 of them

- Violation of Bell inequalities
- Given linear relation $\sum_{i,j} c_{i,j} P(i,j)$

- Pal, Vertesi run sos-relaxation on 241 Bell inequalities
- prove exactness for about 220 of them
- Quantum field model of measurements leads to a version with tracial moments

Conclusion

- Operator theoretic moment problems
 - eigenvalue/psd version: $L(p) = \langle \varphi p(\underline{A}), \varphi \rangle$
 - trace version: $L(p) = \text{Tr}(p(\underline{A}))$
- Generalizes the classical moment problem
 - A lot of statements remain true...
 - ... if one allows infinite dimensional Hilbert spaces

Conclusion

- Operator theoretic moment problems
 - eigenvalue/psd version: $L(p) = \langle \varphi p(\underline{A}), \varphi \rangle$
 - trace version: $L(p) = \text{Tr}(p(\underline{A}))$
- Generalizes the classical moment problem
 - A lot of statements remain true...
 - ... if one allows infinite dimensional Hilbert spaces

Challenge: How can we distinguish between finite and infinite dimensions apart from checking for flatness?