
Chapter 3

K�Moment Problem:
the operator theoretical approach

3.1 Basics from spectral theory of bounded operators

Let (H, h·, ·i) be a Hilbert space (i.e. a complete inner product space). We
denote by k · k the norm induced on H by the inner product h·, ·i.
Definition 3.1.1. An operator T on H is a linear map from a linear subspace
D(T ) of H (called the domain of T ) into H. We say that

• T is bounded if its operator norm kTk
op

:= sup
x2D(T )\{o}

kTxk
kxk is finite.

• T is symmetric if hTx, yi = hx, Tyi for all x, y 2 D(T ).

Definition 3.1.2. Let T be a bounded operator with D(T ) = H. Then
• the unique bounded operator T ⇤ : H ! H such that hTx, yi = hx, T ⇤yi

for all x, y 2 H is called the adjoint of T .
• T is called self-adjoint if T = T ⇤.

Note that a bounded operator defined on the whole H is self-adjoint if and
only if it is symmetric.

Definition 3.1.3. Two operators T
1

, T
2

defined on the same Hilbert space H
commute if T

1

T
2

x = T
2

T
1

x for all x 2 H.

Theorem 3.1.4 (Spectral Theorem for bounded operators). Let T
1

, . . . , T
n

be n pairwise commuting bounded self-adjoint operators having as domain the
same separable Hilbert space H and let v 2 H. Then there exists a unique
non-negative Radon measure µ

v

on Rn such that

hv, T↵1
1

· · ·T↵

n

n

vi =
Z

Rn

X↵dµ
v

< 1, 8 ↵ = (↵
1

, . . . ,↵
n

) 2 Nn

0

and µ
v

is supported in BkT1kop(0)⇥ · · ·⇥BkT
n

k
op

(0) where B
R

(0) denotes the
closed ball of radius R and center 0 in R.
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3. K�Moment Problem: the operator theoretical approach

(for a proof see e.g. [40, Theorem 5.23]).
Let us also recall a fundamental theorem about linear transformations

on normed spaces (see e.g. [36, Theorem I.7]), which will be useful in the
following.

Theorem 3.1.5 (Bounded Linear Transformation Theorem). Let Y be a Ba-
nach space, Z be a normed space, and U a dense subset of Z. If ' : U ! Y
is a bounded linear map, then ' can be uniquely extended to a bounded linear
map ' : Z ! Y and k'k

op

= k'k
op

3.2 Solving the KMP for K compact semialgebraic sets

In Section 2.3 we proved the celebrated solution to the KMP for K compact
due to Schmüdgen, see Corollary 2.3.17, by combining Schmüdgen Nichtneg-
ativstellensatz and Riesz’-Haviland Theorem. In this section we are going to
provide the original proof given by Schmüdgen in [39], which is based on an
operator theoretical approach to the moment problem.

Theorem 3.2.1. Let L : R[X] ! R linear and S := {g
1

, . . . , g
s

} ⇢ R[X]
such that the associated bcsas K

S

is compact. Then there exists a K
S

�repre-
senting measure for L if and only if L(h2ge1

1

· · · ges
s

) � 0 for all h 2 R[X],
e
1

, . . . , e
s

2 {0, 1}.

Proof. Suppose there exists a K
S

�representing measure µ for L, then for any
h 2 R[X] and any e

1

, . . . , e
s

2 {0, 1} we have

L(h2ge1
1

· · · ges
s

) =

Z

K

S

h2ge1
1

· · · ges
s

dµ,

which is non-negative as integral of a non-negative function w.r.t. a non-
negative measure.

Conversely, suppose that L(h2ge1
1

· · · ges
s

) � 0 for all h 2 R[X], e
1

, . . . , e
s

2
{0, 1}, i.e. L(T

S

) ✓ [0,+1) where T
S

is the preordering generated by S.
We want to show the existence of a K

S

�representing measure by using the
Spectral Theorem 3.1.4.

First of all, let us observe that the compactness of K
S

implies that there
exists � > 0 such that for any x 2 K

S

we have |x|2 := x2
1

+ · · ·+ x2
n

< �2, i.e.
�2 � |x|2 > 0, 8 x 2 K

S

. Hence, by Stengle Striktpositivstellensatz 1.3.1, we
have that

9 p, q 2 T
S

s.t. (�2 � |x|2)p = 1 + q. (3.1)
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3.2. Solving the KMP for K compact semialgebraic sets

Consider now the symmetric bilinear form

h , i : R[X]⇥ R[X] ! R
( p , q ) 7! hp, qi := L(pq)

(note that h·, ·i coincides with h·, ·i
1

as in Definition 2.3.9).
This is a quasi-inner product, since for any f 2 R[X] we have by assump-

tion that hf, fi = L(f2) � 0 but hf, fi = 0 does not necessarily imply that
f ⌘ 0 (e.g. if L : R[X] ! R is linear s.t. L(Xn) = 1 for n = 0 and L(Xn) = 0
for n 2 N, then hX,Xi = L(X2) = 0 but X is not the zero polynomial.)

Let us consider the ideal N := {f 2 R[X] : L(f2) = 0}. Hence, there exists
a well-defined inner product on the quotient vector space R[X]/N which, by
abuse of notation, we denote again by h·, ·i and that is defined by

hf +N, r +Ni := L(fr), 8f, r 2 R[X]. (3.2)

Let us denote by H
L

the Hilbert space obtained by taking the completion of
R[X]/N w.r.t. the inner product h·, ·i in (3.2) and by k · k the norm on H

L

induced by h·, ·i.
Claim: 8 h 2 R[X], j 2 {1, . . . , n}, kX

j

h+Nk  �kh+Nk.

Proof. of Claim Let us fix h 2 R[X] and d 2 N. Take p and q as in (3.1)
and defined |X|2 := X2

1

+ · · · + X2

n

. Since (1 + q)|X|2d�2h2 2 T
S

and L is
non-negative on elements of T

S

, we have that:

L(|X|2dh2p)  L(|X|2dh2p) + L
⇣

(1 + q)|X|2d�2h2
⌘

= L
⇣

|X|2d�2h2(|X|2p+ 1 + q)
⌘

(3.1)

= L
⇣

|X|2d�2h2�2p
⌘

= �2L
⇣

|X|2(d�1)h2p
⌘

.

Iterating, we get that

8 d 2 N, L(|X|2dh2p)  �2dL(h2p). (3.3)

Fix j 2 {1, . . . , n} and consider `
j

: R[X
j

] ! R defined by `
j

(r) := L(rh2),
for all r 2 R[X

j

]. Then `
j

is linear and `
j

(r2) = L(r2h2) = L((rh)2) � 0,
since by assumption L is non-negative on squares. Then, by Hamburger’s
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3. K�Moment Problem: the operator theoretical approach

Theorem 2.3.2 we have that there exists an R�representing measure ⌫
h,j

for
`
j

. Therefore, for any � > 0 and any d 2 N we have

Z

(�1,��)[(�,+1)

�2dd⌫
h,j


Z

(�1,��)[(�,+1)

X2d

j

d⌫
h,j


Z

R
X2d

j

d⌫
h,j

= `
j

(X2d

j

) = L(X2d

j

h2)

 L
⇣

X2d

j

h2(|X|2p+ 1 + q)
⌘

(3.1)

= L(X2d

j

h2�2p) = �2L(X2d

j

h2p)

 �2L(|X|2dh2p)
(3.3)

 �2+2dL(h2p).

Hence, we proved that for any � > 0 and any d 2 N we have
Z

(�1,��)[(�,+1)

d⌫
h,j


⇣�

�

⌘

2d

�2L(h2p).

In particular, if we take � > � and d ! 1, then
R

(�1,��)[(�,+1)

d⌫
h,j

= 0

and so that ⌫
h,j

is supported in [��,�]. Then

kX
j

h+Nk2 = L(X2

j

h2) = `
j

(X2

j

) =

Z

R
X2

j

d⌫
h,j

=

Z

[��,�]

X2

j

d⌫
h,j

 �2

Z

[��,�]

d⌫
h,j

= �2`
j

(1) = �2L(h2) = �2kh+Nk2.

⇤(Claim)

For any j 2 {1, . . . , n}, let us define the multiplication operator as follows

W
j

: R[X]/N ! R[X]/N

h+N 7! X
j

h+N

This is a well-defined operator with s.t. D(W
j

) = R[X]/N is dense in H
L

and
(a) W

j

is bounded, since

kW
j

k
op

:= sup
r2D(W

j

)

r 6=o

kW
j

rk
krk = sup

h2R[X]

h/2N

kX
j

h+Nk
kh+Nk

Claim � sup
h2R[X]

h/2N

kh+Nk
kh+Nk = �.

As (R[X]/N, k · k) is a normed space, this means that W
j

is continuous.
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(b) W
j

is symmetric, since for any h, r 2 R[X]/N we have

hW
j

h, ri = L(X
j

hr) = L(hX
j

r) = hh,W
j

ri.

(c) W
1

, . . . ,W
n

are pairwise commuting, since for any j 6= k in {1, . . . , n} and
any h 2 R[X] we have

W
j

W
k

(h+N) = W
j

(X
k

h+N) = X
j

X
k

h+N = X
k

X
j

h+N = W
k

W
j

(h+N).

By Theorem 3.1.5 (applied for Z = Y = H
L

, U = R[X]/N , ' = W
j

),
there exists a unique bounded operator W

j

: H
L

! H
L

extending W
j

and
kW

j

k
op

= kW
j

k
op

. Since each D(W
j

) is dense in H
L

and each W
j

is bounded
(so continuous), we have that properties (b) and (c) above hold also for
W

1

, . . . ,W
n

. Hence, W
1

, . . . ,W
n

are pairwise commuting bounded self-adjoint
operators with D(W

j

) = H
L

for all j 2 {1, . . . , n}. Then, by the Spectral The-
orem 3.1.4, there exists a unique non-negative Radon measure µ such that

h(1 +N),W
1

↵1 · · ·W
n

↵

n(1 +N)i =
Z

Rn

X↵dµ < 1, 8↵ = (↵
1

, . . . ,↵
n

) 2 Nn

0

(3.4)

and µ is supported in BkW1kop(0)⇥ · · ·⇥BkW
n

k
op

(0)
(a)

✓ [��,�]n =: Q.
Since

h(1 +N),W
1

↵1 · · ·W
n

↵

n(1 +N)i = h(1 +N),W
1

↵1 · · ·W
n

↵

n(1 +N)i
= h(1 +N), X

1

↵1 · · ·X
n

↵

n +Ni
= L(X

1

↵1 · · ·X
n

↵

n) = L(X↵),

(3.4) becomes

L(X↵) =

Z

Rn

X↵dµ, 8↵ 2 Nn

0

.

Hence, the spectral measure µ is a Q�representing measure for L. It remains
to show that µ is actually supported on K

S

.
For each i 2 {1, . . . , n} we have

0  L(g
i

h2) =

Z

Q

g
i

h2dµ, 8 h 2 R[X].

As Q is compact, we can apply the Stone-Weierstrass Theorem 2.3.27, we get

0  L(g
i

f2) =

Z

Q

g
i

f2dµ, 8 f 2 C(Q).
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Then

0  L(g
i

f) =

Z

Q

g
i

fdµ, 8 f 2 C(Q) s.t. f � 0 on Q

and so the linear functional

L̃ : C(Q) ! R
f 7! L(g

i

f)

is such that L̃(f) � 0 for all f � 0 on Q. Hence, by Riesz-Markov-Kakutani
Theorem 2.2.5, there exists a unique non-negative Radon measure ⌫ such that
L̃(f) =

R

fd⌫ for all f 2 C(Q). But L̃(f) =
R

fg
i

dµ for all f 2 C(Q), so
the signed measure g

i

µ must coincide with ⌫. Hence, g
i

µ is a non-negative
measure, which implies that the support of µ must be contained in the set of
non-negativity of each g

i

, i.e. µ is supported in K
S

.
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