Chapter 3

K-Moment Problem: the operator theoretical approach

3.1 Basics from spectral theory of bounded operators

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space (i.e. a complete inner product space). We denote by $\|\cdot\|$ the norm induced on \mathcal{H} by the inner product $\langle\cdot, \cdot\rangle$.

Definition 3.1.1. An operator T on \mathcal{H} is a linear map from a linear subspace $\mathcal{D}(T)$ of \mathcal{H} (called the domain of T) into \mathcal{H}. We say that

- T is bounded if its operator norm $\|T\|_{o p}:=\sup _{x \in \mathcal{D}(T) \backslash\{o\}} \frac{\|T x\|}{\|x\|}$ is finite.
- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$.

Definition 3.1.2. Let T be a bounded operator with $\mathcal{D}(T)=\mathcal{H}$. Then

- the unique bounded operator $T^{*}: \mathcal{H} \rightarrow \mathcal{H}$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x, y \in \mathcal{H}$ is called the adjoint of T.
- T is called self-adjoint if $T=T^{*}$.

Note that a bounded operator defined on the whole \mathcal{H} is self-adjoint if and only if it is symmetric.

Definition 3.1.3. Two operators T_{1}, T_{2} defined on the same Hilbert space \mathcal{H} commute if $T_{1} T_{2} x=T_{2} T_{1} x$ for all $x \in \mathcal{H}$.
Theorem 3.1.4 (Spectral Theorem for bounded operators). Let T_{1}, \ldots, T_{n} be n pairwise commuting bounded self-adjoint operators having as domain the same separable Hilbert space \mathcal{H} and let $v \in \mathcal{H}$. Then there exists a unique non-negative Radon measure μ_{v} on \mathbb{R}^{n} such that

$$
\left\langle v, T_{1}^{\alpha_{1}} \cdots T_{n}^{\alpha_{n}} v\right\rangle=\int_{\mathbb{R}^{n}} \underline{X^{\alpha}} d \mu_{v}<\infty, \forall \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}
$$

and μ_{v} is supported in $B_{\left\|T_{1}\right\|_{o p}}(0) \times \cdots \times B_{\left\|T_{n}\right\|_{o p}}(0)$ where $B_{R}(0)$ denotes the closed ball of radius R and center 0 in \mathbb{R}.
(for a proof see e.g. [40, Theorem 5.23]).
Let us also recall a fundamental theorem about linear transformations on normed spaces (see e.g. [36, Theorem I.7]), which will be useful in the following.

Theorem 3.1.5 (Bounded Linear Transformation Theorem). Let Y be a Banach space, Z be a normed space, and U a dense subset of Z. If $\varphi: U \rightarrow Y$ is a bounded linear map, then φ can be uniquely extended to a bounded linear $\operatorname{map} \bar{\varphi}: Z \rightarrow Y$ and $\|\bar{\varphi}\|_{o p}=\|\varphi\|_{o p}$

3.2 Solving the KMP for K compact semialgebraic sets

In Section 2.3 we proved the celebrated solution to the KMP for K compact due to Schmüdgen, see Corollary 2.3.17, by combining Schmüdgen Nichtnegativstellensatz and Riesz'-Haviland Theorem. In this section we are going to provide the original proof given by Schmüdgen in [39], which is based on an operator theoretical approach to the moment problem.

Theorem 3.2.1. Let $L: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}$ linear and $S:=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{R}[\underline{X}]$ such that the associated bcsas K_{S} is compact. Then there exists a $K_{S}-$ representing measure for L if and only if $L\left(h^{2} g_{1}^{e_{1}} \cdots g_{s}^{e_{s}}\right) \geq 0$ for all $h \in \mathbb{R}[\underline{X}]$, $e_{1}, \ldots, e_{s} \in\{0,1\}$.

Proof. Suppose there exists a K_{S}-representing measure μ for L, then for any $h \in \mathbb{R}[\underline{X}]$ and any $e_{1}, \ldots, e_{s} \in\{0,1\}$ we have

$$
L\left(h^{2} g_{1}^{e_{1}} \cdots g_{s}^{e_{s}}\right)=\int_{K_{S}} h^{2} g_{1}^{e_{1}} \cdots g_{s}^{e_{s}} d \mu
$$

which is non-negative as integral of a non-negative function w.r.t. a nonnegative measure.

Conversely, suppose that $L\left(h^{2} g_{1}^{e_{1}} \cdots g_{s}^{e_{s}}\right) \geq 0$ for all $h \in \mathbb{R}[\underline{X}], e_{1}, \ldots, e_{s} \in$ $\{0,1\}$, i.e. $L\left(T_{S}\right) \subseteq[0,+\infty)$ where T_{S} is the preordering generated by S. We want to show the existence of a $K_{S}-$ representing measure by using the Spectral Theorem 3.1.4.

First of all, let us observe that the compactness of K_{S} implies that there exists $\sigma>0$ such that for any $x \in K_{S}$ we have $|x|^{2}:=x_{1}^{2}+\cdots+x_{n}^{2}<\sigma^{2}$, i.e. $\sigma^{2}-|x|^{2}>0, \forall x \in K_{S}$. Hence, by Stengle Striktpositivstellensatz 1.3.1, we have that

$$
\begin{equation*}
\exists p, q \in T_{S} \text { s.t. }\left(\sigma^{2}-|x|^{2}\right) p=1+q . \tag{3.1}
\end{equation*}
$$

Consider now the symmetric bilinear form

$$
\begin{aligned}
\langle,\rangle: \mathbb{R}[\underline{X}] \times \mathbb{R}[\underline{X}] & \rightarrow \mathbb{R} \\
(p, q) & \mapsto\langle p, q\rangle:=L(p q)
\end{aligned}
$$

(note that $\langle\cdot, \cdot\rangle$ coincides with $\langle\cdot, \cdot\rangle_{1}$ as in Definition 2.3.9).
This is a quasi-inner product, since for any $f \in \mathbb{R}[\underline{X}]$ we have by assumption that $\langle f, f\rangle=L\left(f^{2}\right) \geq 0$ but $\langle f, f\rangle=0$ does not necessarily imply that $f \equiv 0$ (e.g. if $L: \mathbb{R}[X] \rightarrow \mathbb{R}$ is linear s.t. $L\left(\underline{X}^{n}\right)=1$ for $n=0$ and $L\left(\underline{X}^{n}\right)=0$ for $n \in \mathbb{N}$, then $\langle\underline{X}, \underline{X}\rangle=L\left(\underline{X}^{2}\right)=0$ but \underline{X} is not the zero polynomial.)

Let us consider the ideal $N:=\left\{f \in \mathbb{R}[\underline{X}]: L\left(f^{2}\right)=0\right\}$. Hence, there exists a well-defined inner product on the quotient vector space $\mathbb{R}[\underline{X}] / N$ which, by abuse of notation, we denote again by $\langle\cdot, \cdot\rangle$ and that is defined by

$$
\begin{equation*}
\langle f+N, r+N\rangle:=L(f r), \forall f, r \in \mathbb{R}[\underline{X}] . \tag{3.2}
\end{equation*}
$$

Let us denote by \mathcal{H}_{L} the Hilbert space obtained by taking the completion of $\mathbb{R}[\underline{X}] / N$ w.r.t. the inner product $\langle\cdot, \cdot\rangle$ in (3.2) and by $\|\cdot\|$ the norm on \mathcal{H}_{L} induced by $\langle\cdot, \cdot\rangle$.

Claim: $\forall h \in \mathbb{R}[\underline{X}], j \in\{1, \ldots, n\}, \quad\left\|X_{j} h+N\right\| \leq \sigma\|h+N\|$.

Proof. of Claim Let us fix $h \in \mathbb{R}[\underline{X}]$ and $d \in \mathbb{N}$. Take p and q as in (3.1) and defined $|\underline{X}|^{2}:=X_{1}^{2}+\cdots+X_{n}^{2}$. Since $(1+q)|\underline{X}|^{2 d-2} h^{2} \in T_{S}$ and L is non-negative on elements of T_{S}, we have that:

$$
\begin{aligned}
L\left(|\underline{X}|^{2 d} h^{2} p\right) & \leq L\left(|\underline{X}|^{2 d} h^{2} p\right)+L\left((1+q)|\underline{X}|^{2 d-2} h^{2}\right) \\
& =L\left(|\underline{X}|^{2 d-2} h^{2}\left(|\underline{X}|^{2} p+1+q\right)\right) \\
& \stackrel{(3.1)}{=} L\left(|\underline{X}|^{2 d-2} h^{2} \sigma^{2} p\right) \\
& =\sigma^{2} L\left(|\underline{X}|^{2(d-1)} h^{2} p\right) .
\end{aligned}
$$

Iterating, we get that

$$
\begin{equation*}
\forall d \in \mathbb{N}, L\left(|\underline{X}|^{2 d} h^{2} p\right) \leq \sigma^{2 d} L\left(h^{2} p\right) . \tag{3.3}
\end{equation*}
$$

Fix $j \in\{1, \ldots, n\}$ and consider $\ell_{j}: \mathbb{R}\left[X_{j}\right] \rightarrow \mathbb{R}$ defined by $\ell_{j}(r):=L\left(r h^{2}\right)$, for all $r \in \mathbb{R}\left[X_{j}\right]$. Then ℓ_{j} is linear and $\ell_{j}\left(r^{2}\right)=L\left(r^{2} h^{2}\right)=L\left((r h)^{2}\right) \geq 0$, since by assumption L is non-negative on squares. Then, by Hamburger's

Theorem 2.3.2 we have that there exists an \mathbb{R}-representing measure $\nu_{h, j}$ for ℓ_{j}. Therefore, for any $\lambda>0$ and any $d \in \mathbb{N}$ we have

$$
\begin{aligned}
\int_{(-\infty,-\lambda) \cup(\lambda,+\infty)} \lambda^{2 d} d \nu_{h, j} & \leq \int_{(-\infty,-\lambda) \cup(\lambda,+\infty)} X_{j}^{2 d} d \nu_{h, j} \\
& \leq \int_{\mathbb{R}} X_{j}^{2 d} d \nu_{h, j}=\ell_{j}\left(X_{j}^{2 d}\right)=L\left(X_{j}^{2 d} h^{2}\right) \\
& \leq L\left(X_{j}^{2 d} h^{2}\left(|\underline{X}|^{2} p+1+q\right)\right) \\
& \stackrel{(3.1)}{=} L\left(X_{j}^{2 d} h^{2} \sigma^{2} p\right)=\sigma^{2} L\left(X_{j}^{2 d} h^{2} p\right) \\
& \leq \sigma^{2} L\left(|\underline{X}|^{2 d} h^{2} p\right) \stackrel{(3.3)}{\leq} \sigma^{2+2 d} L\left(h^{2} p\right) .
\end{aligned}
$$

Hence, we proved that for any $\lambda>0$ and any $d \in \mathbb{N}$ we have

$$
\int_{(-\infty,-\lambda) \cup(\lambda,+\infty)} d \nu_{h, j} \leq\left(\frac{\sigma}{\lambda}\right)^{2 d} \sigma^{2} L\left(h^{2} p\right) .
$$

In particular, if we take $\lambda>\sigma$ and $d \rightarrow \infty$, then $\int_{(-\infty,-\lambda) \cup(\lambda,+\infty)} d \nu_{h, j}=0$ and so that $\nu_{h, j}$ is supported in $[-\sigma, \sigma]$. Then

$$
\begin{aligned}
\left\|X_{j} h+N\right\|^{2} & =L\left(X_{j}^{2} h^{2}\right)=\ell_{j}\left(X_{j}^{2}\right)=\int_{\mathbb{R}} X_{j}^{2} d \nu_{h, j}=\int_{[-\sigma, \sigma]} X_{j}^{2} d \nu_{h, j} \\
& \leq \sigma^{2} \int_{[-\sigma, \sigma]} d \nu_{h, j}=\sigma^{2} \ell_{j}(1)=\sigma^{2} L\left(h^{2}\right)=\sigma^{2}\|h+N\|^{2}
\end{aligned}
$$

For any $j \in\{1, \ldots, n\}$, let us define the multiplication operator as follows

$$
\begin{array}{rlll}
W_{j}: & \mathbb{R}[\underline{X}] / N & \rightarrow & \mathbb{R}[\underline{X}] / N \\
& h+N & \mapsto & X_{j} h+N
\end{array}
$$

This is a well-defined operator with s.t. $\mathcal{D}\left(W_{j}\right)=\mathbb{R}[\underline{X}] / N$ is dense in \mathcal{H}_{L} and (a) W_{j} is bounded, since

$$
\left\|W_{j}\right\|_{o p}:=\sup _{\substack{r \in \mathcal{D}\left(W_{j}\right) \\ r \neq o}} \frac{\left\|W_{j} r\right\|}{\|r\|}=\sup _{\substack{h \in \mathbb{R}[(X] \\ h \notin N}} \frac{\left\|X_{j} h+N\right\|}{\|h+N\|} \stackrel{\text { Claim }}{\leq} \sup _{\substack{h \in \mathbb{R}[(X] \\ h \notin N}} \frac{\|h+N\|}{\|h+N\|}=\sigma .
$$

As $(\mathbb{R}[\underline{X}] / N,\|\cdot\|)$ is a normed space, this means that W_{j} is continuous.
(b) W_{j} is symmetric, since for any $h, r \in \mathbb{R}[\underline{X}] / N$ we have

$$
\left\langle W_{j} h, r\right\rangle=L\left(X_{j} h r\right)=L\left(h X_{j} r\right)=\left\langle h, W_{j} r\right\rangle .
$$

(c) W_{1}, \ldots, W_{n} are pairwise commuting, since for any $j \neq k$ in $\{1, \ldots, n\}$ and any $h \in \mathbb{R}[\underline{X}]$ we have

$$
W_{j} W_{k}(h+N)=W_{j}\left(X_{k} h+N\right)=X_{j} X_{k} h+N=X_{k} X_{j} h+N=W_{k} W_{j}(h+N) .
$$

By Theorem 3.1.5 (applied for $Z=Y=\mathcal{H}_{L}, U=\mathbb{R}[\underline{X}] / N, \varphi=W_{j}$), there exists a unique bounded operator $\overline{W_{j}}: \mathcal{H}_{L} \rightarrow \mathcal{H}_{L}$ extending W_{j} and $\left\|\overline{W_{j}}\right\|_{o p}=\left\|W_{j}\right\|_{o p}$. Since each $\mathcal{D}\left(W_{j}\right)$ is dense in \mathcal{H}_{L} and each W_{j} is bounded (so continuous), we have that properties (b) and (c) above hold also for $\overline{W_{1}}, \ldots, \overline{W_{n}}$. Hence, $\overline{W_{1}}, \ldots, \overline{W_{n}}$ are pairwise commuting bounded self-adjoint operators with $\mathcal{D}\left(\overline{W_{j}}\right)=\mathcal{H}_{L}$ for all $j \in\{1, \ldots, n\}$. Then, by the Spectral Theorem 3.1.4, there exists a unique non-negative Radon measure μ such that

$$
\begin{equation*}
\left\langle(1+N),{\overline{W_{1}}}^{\alpha_{1}} \cdots{\overline{W_{n}}}^{\alpha_{n}}(1+N)\right\rangle=\int_{\mathbb{R}^{n}} \underline{X}^{\alpha} d \mu<\infty, \forall \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n} \tag{3.4}
\end{equation*}
$$

and μ is supported in $B_{\left\|\overline{W_{1}}\right\|_{o p}}(0) \times \cdots \times B_{\left\|\overline{W_{n}}\right\|_{o p}}(0) \stackrel{(a)}{\subseteq}[-\sigma, \sigma]^{n}=: Q$.
Since

$$
\begin{aligned}
\left\langle(1+N),{\overline{W_{1}}}^{\alpha_{1}} \cdots{\overline{W_{n}}}^{\alpha_{n}}(1+N)\right\rangle & =\left\langle(1+N), W_{1}{ }^{\alpha_{1}} \cdots W_{n}{ }^{\alpha_{n}}(1+N)\right\rangle \\
& =\left\langle(1+N), X_{1}{ }^{\alpha_{1}} \cdots X_{n}{ }^{\alpha_{n}}+N\right\rangle \\
& =L\left(X_{1}{ }^{\alpha_{1}} \cdots X_{n}{ }^{\alpha_{n}}\right)=L\left(\underline{X}^{\alpha}\right),
\end{aligned}
$$

(3.4) becomes

$$
L\left(\underline{X}^{\alpha}\right)=\int_{\mathbb{R}^{n}} \underline{X}^{\alpha} d \mu, \forall \alpha \in \mathbb{N}_{0}^{n} .
$$

Hence, the spectral measure μ is a Q-representing measure for L. It remains to show that μ is actually supported on K_{S}.

For each $i \in\{1, \ldots, n\}$ we have

$$
0 \leq L\left(g_{i} h^{2}\right)=\int_{Q} g_{i} h^{2} d \mu, \forall h \in \mathbb{R}[\underline{X}] .
$$

As Q is compact, we can apply the Stone-Weierstrass Theorem 2.3.27, we get

$$
0 \leq L\left(g_{i} f^{2}\right)=\int_{Q} g_{i} f^{2} d \mu, \forall f \in \mathcal{C}(Q)
$$

Then

$$
0 \leq L\left(g_{i} f\right)=\int_{Q} g_{i} f d \mu, \forall f \in \mathcal{C}(Q) \text { s.t. } f \geq 0 \text { on } Q
$$

and so the linear functional

$$
\begin{aligned}
\tilde{L}: \mathcal{C}(Q) & \rightarrow \mathbb{R} \\
f & \mapsto L\left(g_{i} f\right)
\end{aligned}
$$

is such that $\tilde{L}(f) \geq 0$ for all $f \geq 0$ on Q. Hence, by Riesz-Markov-Kakutani Theorem 2.2.5, there exists a unique non-negative Radon measure ν such that $\tilde{L}(f)=\int f d \nu$ for all $f \in \mathcal{C}(Q)$. But $\tilde{L}(f)=\int f g_{i} d \mu$ for all $f \in \mathcal{C}(Q)$, so the signed measure $g_{i} \mu$ must coincide with ν. Hence, $g_{i} \mu$ is a non-negative measure, which implies that the support of μ must be contained in the set of non-negativity of each g_{i}, i.e. μ is supported in K_{S}.

