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Chapter 3

K—Moment Problem:
the operator theoretical approach

Basics from spectral theory of bounded operators

Let (H,(-,-)) be a Hilbert space (i.e. a complete inner product space). We
denote by || - || the norm induced on H by the inner product (-, -).

Definition 3.1.1. An operator T on H is a linear map from a linear subspace
D(T) of H (called the domain of T') into H. We say that
e T is bounded if its operator norm ||T||op := SUPLep(r)\ {0}
e T is symmetric if (Tx,y) = (z,Ty) for all x,y € D(T).

Definition 3.1.2. Let T be a bounded operator with D(T) = H. Then
o the unique bounded operator T* : H — H such that (T'z,y) = (x,T*y)
for all x,y € H is called the adjoint of T
e T is called self-adjoint of T'= T*.

Tz :
1s finite.
[l]|

Note that a bounded operator defined on the whole H is self-adjoint if and
only if it is symmetric.

Definition 3.1.3. Two operators 11,15 defined on the same Hilbert space H
commute if T1Tox = ToTix for all z € H.

Theorem 3.1.4 (Spectral Theorem for bounded operators). Let Ty,...,T),
be n pairwise commuting bounded self-adjoint operators having as domain the
same separable Hilbert space H and let v € H. Then there exists a unique
non-negative Radon measure p, on R™ such that

(0, T - Temv) = A X% py <00, Va=(ag,...,an) € Ny

and iy is supported in By, (0) X - -+ X Byr,|,,(0) where Br(0) denotes the
closed ball of radius R and center 0 in R.
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(for a proof see e.g. [10, Theorem 5.23]).

Let us also recall a fundamental theorem about linear transformations
on normed spaces (see e.g. [36, Theorem 1.7]), which will be useful in the
following.

Theorem 3.1.5 (Bounded Linear Transformation Theorem). Let Y be a Ba-
nach space, Z be a normed space, and U a dense subset of Z. If o : U =Y
s a bounded linear map, then ¢ can be uniquely extended to a bounded linear
map p: Z =Y and |[@llop = [[llop

Solving the KMP for K compact semialgebraic sets

In Section 2.3 we proved the celebrated solution to the KMP for K compact
due to Schmiidgen, see Corollary 2.3.17, by combining Schmiidgen Nichtneg-
ativstellensatz and Riesz’-Haviland Theorem. In this section we are going to
provide the original proof given by Schmiidgen in [39], which is based on an
operator theoretical approach to the moment problem.

Theorem 3.2.1. Let L : R[X] — R linear and S = {q1,...,9s} C R[X]
such that the associated besas Kg is compact. Then there exists a Kg—repre-
senting measure for L if and only if L(h?g{* ---g%) > 0 for all h € R[X],
er,...,es €{0,1}.

Proof. Suppose there exists a K g—representing measure p for L, then for any
h € R[X] and any ey, ...,es € {0,1} we have

L(h?g5"---g5*) = / hPgit - g5 dp,
Ks

which is non-negative as integral of a non-negative function w.r.t. a non-
negative measure.

Conversely, suppose that L(h?g{* - g%) > 0 for all h € R[X], e1,...,¢5 €
{0,1}, i.e. L(Ts) C [0,400) where Tg is the preordering generated by S.
We want to show the existence of a Kg—representing measure by using the
Spectral Theorem 3.1.4.

First of all, let us observe that the compactness of Kg implies that there
exists o > 0 such that for any r € Kg we have |z|? := 2% + .- + 22 < 02, i.e.
02 — |z > 0,V x € Kg. Hence, by Stengle Striktpositivstellensatz 1.3.1, we
have that

Ip,geTsst. (0 — |z )p=1+q. (3.1)
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Consider now the symmetric bilinear form

(,): RXIxRX] — R
(p,q) = (p,q:=L(pg)

(note that (-, -) coincides with (-,-); as in Definition 2.3.9).

This is a quasi-inner product, since for any f € R[X] we have by assump-
tion that (f, f) = L(f?) > 0 but (f, f) = 0 does not necessarily imply that
f=0(eg if L:R[X] — Rislinear s.t. L(X")=1forn=0and L(X")=0
for n € N, then (X, X) = L(X?) = 0 but X is not the zero polynomial.)

Let us consider the ideal N := {f € R[X] : L(f?) = 0}. Hence, there exists
a well-defined inner product on the quotient vector space R[X]/N which, by
abuse of notation, we denote again by (-, -) and that is defined by

(f+ N,r+ N):=L(fr),Vf,r € R.X]. (3.2)

Let us denote by H; the Hilbert space obtained by taking the completion of
R[X]/N w.r.t. the inner product (-,-) in (3.2) and by || - || the norm on Hr,
induced by (-, ).

Claim: ¥ h e RIX], je€{l,...,n}, ||X;h+ N| <olh+ NJ.

Proof. of Claim Let us fix h € R[X] and d € N. Take p and ¢ as in (3.1)
and defined | X|? := X? + -+ + X2. Since (1 4 q)|X|**2h%? € Ts and L is
non-negative on elements of Tg, we have that:

LOX[n?p) < LOXP0%p) + L ((1+ )| XP"~202)

= L(IXP*2R2(XPp+1+0q))

G (|X|2d_2h2agp)

S <\X|2(d71)h2p) ‘
Iterating, we get that

VdeN, L|X[*h%*p) < a* L(h?p). (3.3)

Fix j € {1,...,n} and consider £; : R[X;] — R defined by ¢;(r) := L(rh?),
for all r € R[X;]. Then ¢; is linear and ¢;(r?) = L(r?h?) = L((rh)?) > 0,

since by assumption L is non-negative on squares. Then, by Hamburger’s
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Theorem 2.3.2 we have that there exists an R—representing measure v, ; for
;. Therefore, for any A > 0 and any d € N we have

/ )\2ddyh7j < / X?ddth
(—00,—A)U(X,+00) (=00, = A)U(A,+00)
< /R X3 dvp; = 6;(X37) = L(X7'h?)
<

L(X2R2(XP*p+1+q))
1) L(ijdh202p) = UQL(X]?dth)

(3.3)
< U2L(|X|2dh2p) < O'2+2dL(h2p).

Hence, we proved that for any A > 0 and any d € N we have

o 2d
dvni < (=) o*L(h%p).
\/(oo,)\)U()\,+oo) I <)\> ("°p)

In particular, if we take A\ > o and d — oo, then f(ioo dvpj =0

= AUA,+00)
and so that vy, ; is supported in [—o,¢]. Then

| X;h+ N|* = L(Xj?fﬂ):ﬁj(xj?):/xfduh,j:/[ ]X}duh,j
R —0,0

< 02/ dvp; = 0?l;(1) = o*L(h?) = o?||h + N
[_070
[J(Claim)
For any j € {1,...,n}, let us define the multiplication operator as follows

Wi RIX)/N - R[X]/N
h+N — X;h+N

This is a well-defined operator with s.t. D(W;) = R[X]|/N is dense in #, and
(a) Wj is bounded, since

W, X;h + N| Claim h+ N
||W/j||op = || JTH = su || J + || < o sup ” + ” —
reD(W;) il nerix) ||+ N| nerix) [[h+ N
r#o h¢ N hgN
As (R[X]/N, | - ||) is a normed space, this means that W; is continuous.
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(b) Wj is symmetric, since for any h,r € R[X]/N we have

(Wjh,r) = L(Xjhr) = L(hX;r) = (h, Wjr).

(c) Wh,..., W, are pairwise commuting, since for any j # k in {1,...,n} and
any h € R[X] we have

WjWk(h—l—N) = Wj(th-i-N) = Xijh-i-N = Xkah+N = Wij(h-i-N).

By Theorem 3.1.5 (applied for Z =Y = Hp, U = RX]/N, ¢ = W;),
there exists a unique bounded operator W] : Hr — Hp extending W) and
[Willop = [[Wjl|op- Since each D(W;) is dense in Hy, and each W; is bounded
(so continuous), we have that properties (b) and (c) above hold also for
Wi,...,W,. Hence, W1, ..., W, are pairwise commuting bounded self-adjoint
operators with D(W;) = H, for all j € {1,...,n}. Then, by the Spectral The-
orem 3.1.4, there exists a unique non-negative Radon measure p such that

(1+N), W™ - W, (1 + N)) :/ X%dp < co,Ya = (ay,...,an) € NJ

n

(3.4)
. _ (a)
and pis supported in BIIWlllop(O) X e X B”Wn”w(()) C [—o,0|" = Q.
Since
(A+N), W™ W, "1+ N)) = ((1+N),Wi*---W,,*(1+ N))

(14 N), X1 - X, + )
= L(Xlal .o Xna") = L(XOC)7

(3.4) becomes

L(X*) = X%p, Vo € Ny
R’VL

Hence, the spectral measure p is a (Q)—representing measure for L. It remains

to show that p is actually supported on Kg.
For each i € {1,...,n} we have

0 < L(g;ih?) = / gih?dp, ¥ h € R[X].
Q
As (@ is compact, we can apply the Stone-Weierstrass Theorem 2.3.27, we get

0< Ligif?) = /Q gif?du, ¥ f € C(Q).
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Then
0< Ligif) = /Q gifdp, ¥ f €C(Q) st f>0omQ

and so the linear functional

L: CQ) — R
[ = Lgf)

is such that L(f) > 0 for all f > 0 on Q. Hence, by Riesz-Markov-Kakutani
Theorem 2.2.5, there exists a unique non-negative Radon measure v such that
L(f) = [ fdv for all f € C(Q). But L(f) = [ fgidu for all f € C(Q), so
the signed measure g;p must coincide with v. Hence, g;u is a non-negative
measure, which implies that the support of ; must be contained in the set of
non-negativity of each g;, i.e. u is supported in Kg.

O
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