Proof.

Since $L(h^2) \geq 0$ for all $h \in \mathbb{R}[X_1, \ldots, X_n] =: \mathbb{R}[\underline{X}]$ and L fulfills the Carleman condition (3.7), Theorem 3.3.2 guarantees that there exists a unique \mathbb{R}^n -representing measure μ for L. We want to show that μ is actually supported on K_S .

Case s = 1

For notational convenience, let us first consider the case s = 1 and so $S := \{g\}$. Define $\tilde{L}_g : \mathbb{R}[\underline{X}] \to \mathbb{R}$ as $\tilde{L}_g(p) := L(pg)$ for all $p \in \mathbb{R}[\underline{X}]$. Since $\tilde{L}_g(h^2) = L(gh^2) \ge 0$ for all $h \in \mathbb{R}[\underline{X}]$ and L satisfies the Carleman condition (3.7), Lemma 3.3.6 (applied for $q = X_j$ with $j = 1, \ldots, n$ and f = g) ensures that \tilde{L}_g also fulfils Carleman's condition. Hence, by applying again Theorem 3.3.2 we get that there exists a unique \mathbb{R}^n -representing measure η for \tilde{L}_g . Thus, we obtained that

$$\int_{\mathbb{R}^n} \underline{X}^{\alpha} d\eta(\underline{X}) = \tilde{L}_g(\underline{X}^{\alpha}) = L(\underline{g}\underline{X}^{\alpha}) = \int_{\mathbb{R}^n} \underline{X}^{\alpha} \underbrace{\underline{g}(\underline{X})d\mu(\underline{X})}_{=:d\nu(\underline{X})}, \ \forall \ \alpha \in \mathbb{N}_0^n. \ (3.17)$$

The measure ν is a signed Radon measure on the Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$ on \mathbb{R}^n and can be written as $\nu = \nu_+ - \nu_-$, where

$$d\nu_{+} := \mathbb{1}_{\Gamma^{+}} d\nu \quad \text{with} \quad \Gamma^{+} := \{ x \in \mathbb{R}^{n} : g(x) \ge 0 \}$$

$$d\nu_{-} := -\mathbb{1}_{\Gamma^{-}} d\nu \quad \text{with} \quad \Gamma^{-} := \{ x \in \mathbb{R}^{n} : g(x) < 0 \}$$

and so ν_+ and ν_- are both non-negative Radon measures on \mathbb{R}^n .

<u>Claim</u>: $\nu_{-} \equiv 0$.

Proof.

Define the following two non-negative Radon measures on $\mathcal{B}(\mathbb{R}^n)$

$$d\mu_+ := 1\!\!1_{\Gamma^+} d\mu \text{ and } d\mu_- := 1\!\!1_{\Gamma^-} d\mu.$$

Then $\mu = \mu_+ + \mu_-$ and so we have

$$\int_{\mathbb{R}^n} X_j^{2k} d\mu_+(\underline{X}) \le \int_{\mathbb{R}^n} X_j^{2k} d\mu(\underline{X}), \ \forall \ k \in \mathbb{N}_0, \forall j = 1, \dots, n.$$
(3.18)

Consider $\ell_{\mu_+} : \mathbb{R}[\underline{X}] \to \mathbb{R}$ defined by $\ell_{\mu_+}(p) := \int_{\mathbb{R}^n} p d\mu_+$. Then (3.18) can be rewritten as

$$\ell_{\mu_+}(X_i^{2k}) \le L(X_j^{2k}), \quad \forall \ k \in \mathbb{N}_0, \forall j = 1, \dots, n,$$

64

which implies that

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[2k]{\ell_{\mu_+}(X_i^{2k})}} \ge \sum_{k=1}^{\infty} \frac{1}{\sqrt[2k]{L(X_j^{2k})}} \stackrel{\text{hp}}{=} \infty, \ \forall \ k \in \mathbb{N}_0, \forall j = 1, \dots, n,$$

i.e. ℓ_{μ_+} fulfills the Carleman condition.

Consider $\ell_{\nu_+} : \mathbb{R}[\underline{X}] \to \mathbb{R}$ defined by $\ell_{\nu_+}(p) := \int_{\mathbb{R}^n} p d\nu_+$. Then

$$\ell_{\nu_+}(p) = \int_{\mathbb{R}^n} p \mathbb{1}_{\Gamma^+} g d\mu = \int_{\mathbb{R}^n} p g d\mu_+ = \ell_{\mu_+}(pg), \ \forall p \in \mathbb{R}[\underline{X}]$$

and

$$\ell_{\nu_+}(h^2) = \int_{\mathbb{R}^n} h^2 d\nu_+ \ge 0 \ \forall h \in \mathbb{R}[\underline{X}]$$

Hence, by Lemma 3.3.6 (applied for $L = \ell_{\mu_+}$, $q = X_j, f = g$), we get that also ℓ_{ν_+} fulfills the Carleman condition and so that ν_+ is determinate by Theorem 3.3.9.

Putting all together, we obtain that for all $\alpha \in \mathbb{N}_0^n$

$$\int_{\mathbb{R}^{n}} \underline{X}^{\alpha} d\nu_{+}(\underline{X}) \stackrel{\text{def}}{=} \int_{\mathbb{R}^{n}} \underline{X}^{\alpha} g(\underline{X}) d\mu_{+}(\underline{X}) \\
\stackrel{\mu=\mu_{+}\mu_{-}}{=} \int_{\mathbb{R}^{n}} \underline{X}^{\alpha} g(\underline{X}) d\mu(\underline{X}) - \int_{\mathbb{R}^{n}} \underline{X}^{\alpha} g(\underline{X}) d\mu_{-}(\underline{X}) \\
\stackrel{(3.17)}{=} \int_{\mathbb{R}^{n}} \underline{X}^{\alpha} d\eta(\underline{X}) - \int_{\mathbb{R}^{n}} \underline{X}^{\alpha} g(\underline{X}) d\mu_{-}(\underline{X}) \\
\stackrel{\text{def}}{=} \int_{\mathbb{R}^{n}} \underline{X}^{\alpha} d\eta(\underline{X}) + \int_{\mathbb{R}^{n}} \underline{X}^{\alpha} d\nu_{-}(\underline{X}) \\
= \int_{\mathbb{R}^{n}} \underline{X}^{\alpha} d(\eta + \nu_{-})(\underline{X}),$$

i.e. the non-negative Radon measures ν_+ and $\eta + \nu_-$ have the same moments. Since ν_+ is determinate, they need to coincide, i.e. $\nu_+ \equiv \eta + \nu_-$. Hence, for any $B \in \mathcal{B}(\mathbb{R}^n)$ we have $0 = \nu_+(\Gamma^-) \ge \nu_-(\Gamma^-) \ge 0$, that is, $\nu_-(\Gamma^-) = 0$. Since by definition $\nu_-(\Gamma^+) = 0$ and $\mathbb{R}^n = \Gamma^+ \cup \Gamma^-$, we get that $\nu_- \equiv 0$. \Box (Claim)

The Claim implies that μ is supported on Γ^+ , i.e. for any $B \in \mathcal{B}(\mathbb{R}^n)$ such that $B \cap \Gamma^+ = \emptyset$ we have $\mu(B) = 0$. In fact, suppose that this is not the case. Then there exists $\varepsilon > 0$ such that $\overline{B}_{\varepsilon} \cap \Gamma^+ = \emptyset$ but $\mu(\overline{B}_{\varepsilon}) > 0$, where $\overline{B}_{\varepsilon}$ is some closed ball in \mathbb{R}^n of radius ε . Then for any $x \in \overline{B}_{\varepsilon}$ we have that $x \in \Gamma^-$ and so g(x) < 0, i.e. -g(x) > 0. Hence, we get

$$0 \stackrel{\text{Claim}}{=} \nu_{-}(\overline{B}_{\varepsilon}) = \int_{\overline{B}_{\varepsilon}} -\mathbbm{1}_{\Gamma^{-}} d\nu = \int_{\overline{B}_{\varepsilon}} -g(\underline{X}) d\mu(\underline{X}) \ge \left(\min_{x\in\overline{B}_{\varepsilon}} -g(x)\right) \mu(\overline{B}_{\varepsilon}) > 0.$$

65

which yields a contradiction.

Thus, we proved that μ is supported on $\{x \in \mathbb{R}^n : g(x) \ge 0\}$, which in this case coincides with K_S .

Case $s \ge 2$

Suppose now that s > 1 and $S := \{g_1, \ldots, g_s\}$. By repeating for each g_i the same proof as above, we get that μ is supported on each $\{x \in \mathbb{R}^n : g_i(x) \ge 0\}$ with $i \in \{1, \ldots, s\}$. Hence, we get that

$$0 \le \mu \left(\mathbb{R}^n \setminus K_S\right) = \mu \left(\bigcup_{i=1}^s \mathbb{R}^n \setminus \{x \in \mathbb{R}^n : g_i(x) \ge 0\}\right)$$
$$\le \sum_{i=1}^s \mu \left(\mathbb{R}^n \setminus \{x \in \mathbb{R}^n : g_i(x) \ge 0\}\right) = 0,$$

i.e. μ is supported on K_S .

_	

Chapter 4

Determinacy of the *K***-Moment Problem**

In this chapter we are going to investigate the so-called *determinacy question*, which is certainly one of the most investigated aspects of the K-moment problem. The determinacy question consists in finding under which conditions a non-negative measure with given support K is completely determined by its moments. In particular, we will see how the concept of quasi-analyticity enters in the study of the determinacy question and give a proof of Theorem 3.3.9 first for n = 1 and then for higher dimensions.

From now on, for $K \subseteq \mathbb{R}^n$ closed, we denote by $\mathcal{M}^*(K)$ the collection of all the non-negative Radon measures on \mathbb{R}^n having finite moments of all orders and which are supported in K.

Definition 4.0.1. A measure $\mu \in \mathcal{M}^*(K)$ is said to be K-determinate if for any $\nu \in \mathcal{M}^*(K)$ such that $\int x^{\alpha} d\mu(x) = \int x^{\alpha} d\nu(x), \forall \alpha \in \mathbb{N}_0^n$ we have that $\mu \equiv \nu$. Equivalently a sequence of real numbers m (resp. a linear functional L on $\mathbb{R}[\underline{X}]$) is called K-determinate if there exists at most one K-representing measure for m (resp. for L).

Note that if K_1 and K_2 are closed subsets of \mathbb{R}^n such that $K_1 \subset K_2$, then the K_2 -determinacy always implies the K_1 -determinacy but the converse does not hold in general.

4.1 Quasi-analytic classes

Let us recall the basic definitions and state some preliminary results concerning the theory of quasi-analytic functions. In the following, we denote by $\mathcal{C}^{\infty}(X)$ the space of all infinitely differentiable real valued functions defined on a topological space X.

Definition 4.1.1.

Given a sequence of positive real numbers $(s_j)_{j\in\mathbb{N}_0}$ and an open $I\subseteq\mathbb{R}$, we define the class $C\{s_j\}$ as the set of all functions $f\in\mathcal{C}^{\infty}(I)$ for which there exists $\gamma_f>0$ (only depending on f) such that $\|D^k f\|_{\infty} \leq (\gamma_f)^k s_k, \quad \forall k\in\mathbb{N}_0,$ where $D^k f$ is the k-th derivative of f and $\|D^k f\|_{\infty} := \sup_{x\in I} |D^k f(x)|.$

The class $C\{s_j\}$ of functions on I is said to be quasi-analytic if the conditions

$$f \in C\{s_j\}, \exists t_0 \in Is.t. \ (D^k f)(t_0) = 0, \quad \forall k \in \mathbb{N}_0$$

imply that f(x) = 0 for all $x \in I$.

The problem to give necessary and sufficient conditions bearing on the sequence $(s_j)_{j \in \mathbb{N}_0}$ such that the class $C\{s_j\}$ is quasi-analytic was proposed by Hadamard in [17]. Denjoy was the first to provide sufficient conditions for the quasi-analyticity of a class [10], but the problem was completely solved by Carleman, who generalized Denjoy's theorem and methods giving the first characterization of quasi-analytic classes in [6].

Theorem 4.1.2 (The Denjoy-Carleman Theorem).

Let $(s_j)_{j \in \mathbb{N}_0}$ be a sequence of positive real numbers. The class $C\{s_k\}$ is quasianalytic if and only if

$$\sum_{k=1}^{\infty} \frac{1}{\inf_{j \ge k} \sqrt[j]{s_j}} = \infty.$$

Proof. see e.g. [8] for a simple but detailed proof.

Corollary 4.1.3. If $(s_j)_{j \in \mathbb{N}_0}$ is a sequence of positive real numbers such that

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{s_k}} = \infty,$$

then the class $C\{s_j\}$ is quasi-analytic.

Proof. For any $k \in \mathbb{N}$ we have $\inf_{j \ge k} \sqrt[j]{s_j} \le \sqrt[k]{s_k}$ and so

$$\sum_{k=1}^{\infty} \frac{1}{\inf_{j \ge k} \sqrt[j]{s_j}} \ge \sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{s_k}}.$$

Since by assumption the series on right-hand side diverges, so does the series on the left-hand side. Hence, by Theorem 4.1.2, the class $C\{s_j\}$ is quasi-analytic.