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Proof.

Since L(h%) > 0 for all h € R[X7,...,X,] = R[X] and L fulfills the Car-
leman condition (3.7), Theorem 3.3.2 guarantees that there exists a unique
R™—representing measure p for L. We want to show that p is actually sup-
ported on Kg.

Case s =1

For notational convenience, let us first consider the case s = 1 and so S := {g}.
Define L, : RX] — R as Ly(p) := L(pg) for all p € R[X]. Since Ly(h?) =
L(gh?) > 0 for all h € R[X] and L satisfies the Carleman condition (3.7),
Lemma 3.3.6 (applied for ¢ = X; with j = 1,...,n and f = g) ensures that
I:Q also fulfils Carleman’s condition. Hence, by applying again Theorem 3.3.2
we get that there exists a unique R"™—representing measure 7 for f/g. Thus,
we obtained that

X%n(X) = Ly(X*) = L(gX®) /X"‘ X), VaeNg. (3.17)
]R’n
=:dy(

v(X)

The measure v is a signed Radon measure on the Borel o—algebra B(R™) on
R™ and can be written as v = vy — v_, where

dvy := lprdv  with T'T:={z € R": g(x) > 0}
dv_ = —1lp-dv with T :={zeR":g(x) <0}

and so v4 and v_ are both non-negative Radon measures on R".

Claim: v— =0.

Proof.
Define the following two non-negative Radon measures on B(R™)

dps = Lp+dp and dp— := Lp-dpy.

Then p = p4 + p— and so we have

/ XFduy(X) < / XFdu(X), VkeNo,Vi=1,...,n. (3.18)
R” Rn
Consider ¢,,, : R[X] — R defined by ¢, (p) := [gn pdpi4. Then (3.18) can be

rewritten as

Cu (XPF) < L(XZY), VEeN,Vi=1,...,n,
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which implies that

i 1 . i 1
k=1 ZW k=1 X/ L(XFF)

i.e. £, fulfills the Carleman condition.
Consider £,, : R[X] — R defined by ¢, (p) := [g. pdvs. Then

® o, VEeNy,Yi=1,...,n,

b, (p) = / plp+gdp = / pgdpy =L, (pg), Vp € RIX]

and
ly, (h?) = / h*dvy > 0 Vh € R[X].

Hence, by Lemma 3.3.6 (applied for L = ¢, , ¢ = X;,f = g), we get that
also /,, fulfills the Carleman condition and so that v, is determinate by
Theorem 3.3.9.

Putting all together, we obtain that for all o € N

o def a
[ xedno  * [ X*g(X)du (X)

W=l X9(X)du(X) — / X*g(X)dp—(X)
R'n Rn

(3.17) Xdn(X) - | X%¢(X)du-(X)
R~ Rm

def X%n(X)+ [ X%dv_(X)

R” Rn

_ / Xd(y+v_)(X),
Rn

i.e. the non-negative Radon measures vy and n+ v_ have the same moments.
Since vy is determinate, they need to coincide, i.e. v; = n + v_. Hence, for
any B € B(R") we have 0 = v (I'") > v_(I'") > 0, that is, v_(I'") = 0. Since
by definition v_(I't) =0 and R" =TT UT~, we get that v =0.  O(Claim)

The Claim implies that yu is supported on I't| i.e. for any B € B(R") such
that BNT'T = () we have pu(B) = 0. In fact, suppose that this is not the case.
Then there exists € > 0 such that Be NT" = @ but p (B:) > 0, where B is
some closed ball in R™ of radius . Then for any x € B, we have that x € '~
and so g(z) <0, i.e. —g(x) > 0. Hence, we get

0y (B = [ v = [ a0 > (i ~9(0)) (B >0

r€B,
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which yields a contradiction.

Thus, we proved that u is supported on {z € R™ : g(z) > 0}, which in this
case coincides with Kg.
Case s > 2
Suppose now that s > 1 and S := {g1,...,9s}. By repeating for each g; the
same proof as above, we get that u is supported on each {z € R" : g;(z) > 0}
with ¢ € {1,...,s}. Hence, we get that

0<u(R"\Ks) = u<UR“\{xeR":gi<x>zO})
=1

IN

> n®R"\ {z €R": gi(x) > 0}) =0,
i=1

i.e. p is supported on Kg.
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4.1

Chapter 4

Determinacy of the K —Moment Problem

In this chapter we are going to investigate the so-called determinacy question,
which is certainly one of the most investigated aspects of the K—moment
problem. The determinacy question consists in finding under which conditions
a non-negative measure with given support K is completely determined by its
moments. In particular, we will see how the concept of quasi-analyticity enters
in the study of the determinacy question and give a proof of Theorem 3.3.9
first for n = 1 and then for higher dimensions.

From now on, for K C R" closed, we denote by M*(K) the collection of all
the non-negative Radon measures on R™ having finite moments of all orders
and which are supported in K.

Definition 4.0.1. A measure p € M*(K) is said to be K—determinate if
for any v € M*(K) such that [ x*du(z) = [x*dv(z),V o € Nj we have that
u = v. Equivalently a sequence of real numbers m (resp. a linear functional L
on R[X]) is called K —determinate if there exists at most one K —representing
measure for m (resp. for L).

Note that if K1 and K5 are closed subsets of R™ such that K; C K», then
the Ks—determinacy always implies the Kj—determinacy but the converse
does not hold in general.

Quasi-analytic classes

Let us recall the basic definitions and state some preliminary results concern-
ing the theory of quasi-analytic functions. In the following, we denote by
C>°(X) the space of all infinitely differentiable real valued functions defined
on a topological space X.
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Definition 4.1.1.
Given a sequence of positive real numbers (s;)jen, and an open I C R, we
define the class C{s;} as the set of all functions f € C°°( ) for which there
exists vy > 0 (only depending on f) such that HDka ’yf) sk, VkéeN,
where D* f is the k—th derivative of f and HDkaOO = SUDgcg ‘Dkf(xﬂ

The class C{s;} of functions on I is said to be quasi-analytic if the con-
ditions

feCs;}, ItgcIst. (D"f)(ty) =0, VkeNg

imply that f(x) =0 for allz € 1.

The problem to give necessary and sufficient conditions bearing on the
sequence (s;);en, such that the class C{s;} is quasi-analytic was proposed by
Hadamard in [17]. Denjoy was the first to provide sufficient conditions for
the quasi-analyticity of a class [10], but the problem was completely solved
by Carleman, who generalized Denjoy’s theorem and methods giving the first
characterization of quasi-analytic classes in [0].

Theorem 4.1.2 (The Denjoy-Carleman Theorem).
Let (sj)jen, be a sequence of positive real numbers. The class C{s} is quasi-
analytic if and only if

infj>k /55

k=1

Proof. see e.g. [3] for a simple but detailed proof. O
Corollary 4.1.3. If (sj) en, is a sequence of positive real numbers such that

o
1
>

k=1

k

then the class C{s;} is quasi-analytic.

Proof. For any k € N we have inf;>y /s; < /s and so

o0

Z 1nf]>k VS Z {f/?

Since by assumption the series on right-hand side diverges, so does the series
on the left-hand side. Hence, by Theorem 4.1.2, the class C'{s;} is quasi-
analytic. O
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