
4.2. Determinacy in the one dimensional case

Remark 4.1.4. If (s
j

)
j2N0 is a log-convex sequence of positive real num-

bers such that s0 = 1, then in Corollary 4.1.3 also the converse implication
holds. Indeed, under these assumptions the sequence ( j

p
s
j

)
j2N is increasing

by Lemma 3.3.4 and so for each k 2 N we have inf
j�k

j

p
s
j

= k

p
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condition
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k

p
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= 1 is equivalent to
P1

k=1
1

inf
j�k

j

p
s

j

= 1 and so to the

quasi-analiticity of the class C{s
j

} by Theorem 4.1.2.

Using Corollary 4.1.3, we can easily produce some examples of quasi-
analytic classes.

Examples 4.1.5.

• The class C{jj} is quasi-analytic, since
P1

k=1
1

k

p
k

k

=
P1

k=1
1
k

= 1.

• The class C{j!} is quasi-analytic, since
P1

k=1
1

k

p
k!

� P1
k=1

1
k

p
k

k

= 1.

This is in fact the class of real analytic functions. Recall that a function
f is real analytic on I ✓ R if f 2 C1(I) and the Taylor series of f at
any point x0 2 I pointwise converges to f in a neighborhood of x0.

4.2 Determinacy in the one dimensional case

In this section we are going to exploit the theory of quasi-analytic functions on
R to prove the so-called Carleman’s Theorem, i.e. Theorem 3.3.9 for n = 1.
Carleman was indeed the first to approach the determinacy question with
methods involving quasi-analyticity theory in his famous work of 1926 (see [6,
Chapter VIII]).

Theorem 4.2.1 (Carleman’s Theorem).
If µ 2 M⇤(R) is such that its moment sequence (mµ

j

)
j2N0 fulfils the following

1
X

k=1

1

2k

q

mµ

2k

= 1, (4.1)

then µ is R�determinate.

The original proof by Carleman makes use of the Cauchy transform of
the given measure. Here, we propose a slightly di↵erent proof that uses the
Fourier-Stieltjes transform but maintains the same spirit of Carleman’s proof.
Before proving Theorem 4.2.1, let us recall the definition of Fourier-Stieltjes
transform of a measure and some fundamental properties of this object.
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4. Determinacy of the K�Moment Problem

Definition 4.2.2. Let µ 2 M⇤(R). The Fourier-Stieltjes transform of µ is
the function F

µ

2 C1(R) defined by

F
µ

(t) :=

Z

R
e�ixtdµ(x), 8 t 2 R.

Proposition 4.2.3. Let µ, ⌫ 2 M⇤(R).
a) If F

µ

⌘ F
⌫

on R, then µ ⌘ ⌫.
b) For any k 2 N0 and any t 2 R, we have (DkF

µ

)(t) =
R

R(�ix)ke�ixtdµ(x).

Proof. of Theorem 4.2.1
W.l.o.g. assume that all even moments of µ are positive. In fact, if mµ

2j = 0

for some j 2 N0, then µ is supported in {x 2 R : x2j = 0} = {0} and
thus, µ = mµ

0�{0} is the unique measure having these moments, which proves
already the determinacy of µ.

Let ⌫ 2 M⇤(R) having the same moment sequence as µ and let us consider
the Fourier-Stieltjes transforms of µ and ⌫. Then (F

µ

� F
⌫

) 2 C1(R) and for
any k 2 N0 and any t 2 R we get

(Dk(F
µ

� F
⌫

))(t) =

Z

R
(�ix)ke�ixtµ(dx)�

Z

R
(�ix)ke�ixt⌫(dx) (4.2)

and so
�

�

�

(Dk(F
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(t)� F
⌫

))(t)
�

�

�


Z

R
|x|kµ(dx) +
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R
|x|k⌫(dx)

Hölder
q
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0m
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2k

= 2
q
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0m
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2k  (1 + �)
q
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2k,

where � := 2
p

mµ

0 > 0. Hence, F
µ

� F
⌫

2 C{s
k

}, where s
k

:= (1 + �)
q

mµ

2k

for any k 2 N0.
Since

1
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k=1

1
k

p
s
k

=
1
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k=1

1

k

r

(1 + �)
q

mµ

2k

� 1
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1
X
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q

mµ
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(4.1)
= 1,

Corollary 4.1.3 guarantees that the class C{s
k

} is quasi-analytic.
Moreover, (4.2) gives in particular (Dk(F

µ

� F
⌫

))(0) = 0 for all k 2 N0.
Then the quasi-analyticity of the class C{s

k

} implies that F
µ

�F
⌫

is identically
zero on R. Consequently, Proposition 4.2.3-a) ensures that µ = ⌫.
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4.2. Determinacy in the one dimensional case

Carleman’s condition (4.1) is only su�cient for the R�determinacy. In-
deed, there exist R�determinate measures whose moments do not fulfilll Car-
leman’s condition (see [53] for examples).

As a consequence of Carleman’s Theorem, we can derive a su�cient con-
dition for the (R+)�determinacy.

Corollary 4.2.4.

Let µ 2 M⇤(R+). If
1
X

n=1

1

2k

q

mµ

k

= 1, (4.3)

then µ is (R+)�determinate realizing m.

Condition (4.3) is well-know as Stieltjes’ condition since it is su�cient for
the determinacy of the Stieltjes moment problem.

Before providing the proof of Corollary 4.2.4, recall that the image measure
of a measure µ on B(Rn) through a given Borel measurable map ' : Rn ! Rd

(n, d 2 N) is the measure '#µ on B(Rd) defined by '#µ(B) := µ('�1(B))
for all B 2 B(Rd). Moreover, for any g : Rd ! R integrable w.r.t. '#µ we
have that

Z

Rd

g(y)d('#µ)(y) =

Z
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(g � ')(x)dµ(x). (4.4)

Proof.
Let µ1, µ2 2 M⇤(R+) having the same moment sequence fulfilling Stieltjes’
condition. For j 2 {1, 2} we define

d⌫
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2
(f#µ

j

+ (�f)#µ
j

)) ,

where f : R+ ! R is given by f(x) :=
p
x. Then (4.4) implies that for any

k 2 N0 and any j 2 {1, 2} we have

m
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4. Determinacy of the K�Moment Problem

Then ⌫1 and ⌫2 have the same moments and

1
X

n=1

1

2k

q

m
⌫

j

2k

=
1
X

n=1

1

2k

q

m
µ

j

k

= 1.

Hence, Carleman’s Theorem 4.2.1 ensures that ⌫1 ⌘ ⌫2 on R and so µ1 ⌘ µ2

on R+.

Determinacy is also deeply connected to polynomial approximation. One
result in this direction is the following, which will be particularly useful in the
next section.

Lemma 4.2.5.

If µ 2 M⇤(R) is R�determinate, then C[x] is dense in L2(R, µ).

Proof. (see e.g. [50, Proposition 6.10])

4.3 Determinacy in higher dimensions

In this section we are going to prove a multivariate version of Carleman’s
Theorem 4.2.1, namely we give a proof of Theorem 3.3.9 which we restate
here for the convenience of the reader.

Theorem 4.3.1. Let n 2 N. If µ 2 M⇤(Rn) is s.t. its moment sequence
(mµ

↵

)
↵2Nn

0
fulfills

1
X

k=1

mµ

(0,...0, 2k
|{z}

j-th

,0,...,0)
� 1

2k = 1, 8j 2 {1, . . . , n}, (4.5)

then µ is (Rn)�determinate, i.e. the set

M
µ

:=

⇢

⌫ 2 M⇤(Rn) :

Z

x↵d⌫(x) =

Z

x↵dµ(x), 8↵ 2 Nn

0

�

is a singleton.

Note that the set M
µ

is convex and we have the following characterization
of its extreme points1.

1
Recall that ⌫ is an extreme point of M

µ

if the following implication holds:

(⌫ = �⌘1 + (1� �⌘2), for some � 2 [0, 1], ⌘1, ⌘2 2 M
µ

) ) (⌫ = ⌘1 or ⌫ = ⌘2).
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4.3. Determinacy in higher dimensions

Lemma 4.3.2. Let µ, ⌫ 2 M⇤(Rn). Then ⌫ is an extreme point of M
µ

if and
only if C[X1, . . . , Xn

] is dense in L1(Rn, ⌫).

Proof. (see e.g. [50, Proposition 1.21])

To prove Theorem 4.3.1, we can proceed in the two following ways:

• We generalize the theory of quasi-analytic functions to the higher di-
mensions and prove an analogue of the Denjoy-Carleman theorem in the
multivariate case. Using such results, we adapt the proof of Carleman’s
Theorem 4.2.1 to the higher dimensional case and provide a proof of
Theorem 4.3.1 (see [26]).

• Using the connection between determinacy and polynomial approxima-
tion, we prove the so-called Petersen’s theorem [39] about partial de-
terminacy and so to reduce the (Rn)�determinacy question to several
R�determinacy questions. Combining this result with Carleman’s The-
orem 4.2.1, we show that Theorem 4.3.1 holds (see [41]).

As we have already seen the power of the theory of quasi-analytic functions
in the study of the determinacy question in the one-dimensional case, we
are going now to use the second approach for the higher dimensional case.
Therefore, let us first show Petersen’s theorem.

Theorem 4.3.3 (Petersen’s Theorem).
Let µ 2 M⇤(Rn) and for each j 2 {1, . . . , n} define ⇡

j

(x) := x
j

for all
x = (x1, . . . , xn) 2 Rn. If ⇡1#µ, . . . ,⇡

n

#µ are all R�determinate, then µ
is (Rn)�determinate.

Proof.
Let ⌫ 2 M

µ

and j 2 {1, . . . , n}. Then for any k 2 N0 we have that

Z

R
ykd(⇡

j

#⌫)(y) =

Z

Rn

⇡
j

(x)kd⌫(x)

=

Z

Rn

x(0,...,0,k,0,...,0)d⌫(x)

=

Z

Rn

x(0,...,0,k,0,...,0)dµ(x)

=

Z

Rn

⇡
j

(x)kdµ(x)

=

Z

R
ykd(⇡

j

#µ)(y),
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4. Determinacy of the K�Moment Problem

i.e. (⇡
j

#⌫) 2 M
⇡

j

#µ

. This implies that

⇡
j

#⌫ = ⇡
j

#µ (4.6)

as ⇡
j

#µ is R�determinate. Moreover, the determinacy of ⇡
j

#µ implies that
C[X

j

] is dense in L2(R, µ) by Lemma 4.2.5 and so that
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we can rewrite (4.7) as
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Now the function (11
B1 � ⇡1) · · · (11Bn

� ⇡
n

) � (p1 � ⇡1) · · · (pn � ⇡
n

) on Rn can
be rewritten as

(11B1 � ⇡1) · · · (11Bn � ⇡n)� (p1 � ⇡1) · · · (pn � ⇡n) =

(11B1 � ⇡1 � p1 � ⇡1)(11B2 � ⇡2) · · · (11Bn � ⇡n) +

+ (p1 � ⇡1)(11B2 � ⇡2 � p2 � ⇡2)(11B3 � ⇡3) · · · (11Bn � ⇡n) +

+ · · ·+ (p1 � ⇡1) · · · (pn�1 � ⇡n�1)(11Bn � ⇡n � pn � ⇡n). (4.9)

and so

k(11
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)� (p1 � ⇡1) · · · (pn � ⇡
n

)k
L
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,⌫)

(4.9)

 k(11
B1 � ⇡1 � p1 � ⇡1)(11B2 � ⇡2) · · · (11Bn

� ⇡
n

)k
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,⌫) + · · ·
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)k
L
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,⌫)

Hölder k11
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,⌫) k11Bn

� ⇡
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 C",
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4.3. Determinacy in higher dimensions

where C > 0.
This shows that C[X1, . . . , Xn

] is dense in the subset

S := {(11
B1 � ⇡1) · · · (11Bn

� ⇡
n

) : B1, . . . , Bn

2 B(Rn)}

of L1(Rn, ⌫). Since span(S) is dense in L1(Rn, ⌫), we get that C[X1, . . . , Xn

]
is dense in L1(Rn, ⌫) and so by Lemma 4.3.2 we obtain that ⌫ is an extreme
point of M

µ

.
Since ⌫ was arbitrary in M

µ

, we have showed that every point of M
µ

is
extreme. In particular, ⌘ := 1

2(µ+⌫) 2 M
µ

is extreme and so ⌘ = µ or ⌘ = ⌫,
which imply ⌫ = µ. Hence, µ is (Rn)�determinate.

Proof. of Theorem 4.3.1
For any j 2 {1, . . . , n} and for any k 2 N we have that

m
⇡

j

#µ

2k =

Z

R
y2kd(⇡

j

#µ)(y) =

Z

Rn

(⇡
j

(x))2kdµ(x)

=

Z

Rn

x(0,...,0,2k,0,...,0)dµ(x) = mµ

(0,...,0,2k,0,...,0).

Hence, the assumption that µ fulfils (4.5) gives that each ⇡
j

#µ fulfils (4.1).
Therefore, Carleman’s Theorem 4.2.1 guarantees that each ⇡

j

#µ is R�determinate
and so by Petersen’s Theorem 4.3.3 we obtain that µ is (Rn)�determinate.
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