Remark 4.1.4. If $\left(s_{j}\right)_{j \in \mathbb{N}_{0}}$ is a log-convex sequence of positive real numbers such that $s_{0}=1$, then in Corollary 4.1.3 also the converse implication holds. Indeed, under these assumptions the sequence $\left(\sqrt[j]{s_{j}}\right)_{j \in \mathbb{N}}$ is increasing by Lemma 3.3.4 and so for each $k \in \mathbb{N}$ we have $\inf _{j \geq k} \sqrt[j]{s_{j}}=\sqrt[k]{s_{k}}$. Hence, the condition $\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{s_{k}}}=\infty$ is equivalent to $\sum_{k=1}^{\infty} \frac{1}{\inf _{j \geq k} \sqrt[j]{s_{j}}}=\infty$ and so to the quasi-analiticity of the class $C\left\{s_{j}\right\}$ by Theorem 4.1.2.

Using Corollary 4.1.3, we can easily produce some examples of quasianalytic classes.

Examples 4.1.5.

- The class $\mathcal{C}\left\{j^{j}\right\}$ is quasi-analytic, since $\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{k^{k}}}=\sum_{k=1}^{\infty} \frac{1}{k}=\infty$.
- The class $\mathcal{C}\{j!\}$ is quasi-analytic, since $\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{\sqrt{l}}} \geq \sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{k^{k}}}=\infty$. This is in fact the class of real analytic functions. Recall that a function f is real analytic on $I \subseteq \mathbb{R}$ if $f \in \mathcal{C}^{\infty}(I)$ and the Taylor series of f at any point $x_{0} \in I$ pointwise converges to f in a neighborhood of x_{0}.

4.2 Determinacy in the one dimensional case

In this section we are going to exploit the theory of quasi-analytic functions on \mathbb{R} to prove the so-called Carleman's Theorem, i.e. Theorem 3.3.9 for $n=1$. Carleman was indeed the first to approach the determinacy question with methods involving quasi-analyticity theory in his famous work of 1926 (see [6, Chapter VIII]).

Theorem 4.2.1 (Carleman's Theorem).
If $\mu \in \mathcal{M}^{*}(\mathbb{R})$ is such that its moment sequence $\left(m_{j}^{\mu}\right)_{j \in \mathbb{N}_{0}}$ fulfils the following

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{\sqrt[2 k]{m_{2 k}^{\mu}}}=\infty \tag{4.1}
\end{equation*}
$$

then μ is \mathbb{R}-determinate.
The original proof by Carleman makes use of the Cauchy transform of the given measure. Here, we propose a slightly different proof that uses the Fourier-Stieltjes transform but maintains the same spirit of Carleman's proof. Before proving Theorem 4.2.1, let us recall the definition of Fourier-Stieltjes transform of a measure and some fundamental properties of this object.

Definition 4.2.2. Let $\mu \in \mathcal{M}^{*}(\mathbb{R})$. The Fourier-Stieltjes transform of μ is the function $F_{\mu} \in \mathcal{C}^{\infty}(\mathbb{R})$ defined by

$$
F_{\mu}(t):=\int_{\mathbb{R}} e^{-i x t} d \mu(x), \forall t \in \mathbb{R} .
$$

Proposition 4.2.3. Let $\mu, \nu \in \mathcal{M}^{*}(\mathbb{R})$.
a) If $F_{\mu} \equiv F_{\nu}$ on \mathbb{R}, then $\mu \equiv \nu$.
b) For any $k \in \mathbb{N}_{0}$ and any $t \in \mathbb{R}$, we have $\left(D^{k} F_{\mu}\right)(t)=\int_{\mathbb{R}}(-i x)^{k} e^{-i x t} d \mu(x)$.

Proof. of Theorem 4.2.1
W.l.o.g. assume that all even moments of μ are positive. In fact, if $m_{2 j}^{\mu}=0$ for some $j \in \mathbb{N}_{0}$, then μ is supported in $\left\{x \in \mathbb{R}: x^{2 j}=0\right\}=\{0\}$ and thus, $\mu=m_{0}^{\mu} \delta_{\{0\}}$ is the unique measure having these moments, which proves already the determinacy of μ.

Let $\nu \in \mathcal{M}^{*}(\mathbb{R})$ having the same moment sequence as μ and let us consider the Fourier-Stieltjes transforms of μ and ν. Then $\left(F_{\mu}-F_{\nu}\right) \in \mathcal{C}^{\infty}(\mathbb{R})$ and for any $k \in \mathbb{N}_{0}$ and any $t \in \mathbb{R}$ we get

$$
\begin{equation*}
\left(D^{k}\left(F_{\mu}-F_{\nu}\right)\right)(t)=\int_{\mathbb{R}}(-i x)^{k} e^{-i x t} \mu(d x)-\int_{\mathbb{R}}(-i x)^{k} e^{-i x t} \nu(d x) \tag{4.2}
\end{equation*}
$$

and so

$$
\begin{aligned}
\left|\left(D^{k}\left(F_{\mu}(t)-F_{\nu}\right)\right)(t)\right| & \leq \int_{\mathbb{R}}|x|^{k} \mu(d x)+\int_{\mathbb{R}}|x|^{k} \nu(d x) \\
& \stackrel{\text { Hölder }}{\leq} \sqrt{m_{0}^{\mu} m_{2 k}^{\mu}}+\sqrt{m_{0}^{\nu} m_{2 k}^{\nu}} \\
& =2 \sqrt{m_{0}^{\mu} m_{2 k}^{\mu}} \leq(1+\gamma) \sqrt{m_{2 k}^{\mu}}
\end{aligned}
$$

where $\gamma:=2 \sqrt{m_{0}^{\mu}}>0$. Hence, $F_{\mu}-F_{\nu} \in \mathcal{C}\left\{s_{k}\right\}$, where $s_{k}:=(1+\gamma) \sqrt{m_{2 k}^{\mu}}$ for any $k \in \mathbb{N}_{0}$.

Since

$$
\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{s_{k}}}=\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{(1+\gamma) \sqrt{m_{2 k}^{\mu}}}} \geq \frac{1}{(1+\gamma)} \sum_{k=1}^{\infty} \frac{1}{\sqrt[2 k]{m_{2 k}^{\mu}}} \stackrel{(4.1)}{=} \infty
$$

Corollary 4.1.3 guarantees that the class $\mathcal{C}\left\{s_{k}\right\}$ is quasi-analytic.
Moreover, (4.2) gives in particular $\left(D^{k}\left(F_{\mu}-F_{\nu}\right)\right)(0)=0$ for all $k \in \mathbb{N}_{0}$. Then the quasi-analyticity of the class $C\left\{s_{k}\right\}$ implies that $F_{\mu}-F_{\nu}$ is identically zero on \mathbb{R}. Consequently, Proposition 4.2.3-a) ensures that $\mu=\nu$.

Carleman's condition (4.1) is only sufficient for the \mathbb{R}-determinacy. Indeed, there exist \mathbb{R}-determinate measures whose moments do not fulfill Carleman's condition (see [53] for examples).

As a consequence of Carleman's Theorem, we can derive a sufficient condition for the $\left(\mathbb{R}^{+}\right)$-determinacy.

Corollary 4.2.4.

Let $\mu \in \mathcal{M}^{*}\left(\mathbb{R}^{+}\right)$. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\sqrt[2 k]{m_{k}^{\mu}}}=\infty \tag{4.3}
\end{equation*}
$$

then μ is $\left(\mathbb{R}^{+}\right)$-determinate realizing m.
Condition (4.3) is well-know as Stieltjes' condition since it is sufficient for the determinacy of the Stieltjes moment problem.

Before providing the proof of Corollary 4.2.4, recall that the image measure of a measure μ on $\mathcal{B}\left(\mathbb{R}^{n}\right)$ through a given Borel measurable map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ $(n, d \in \mathbb{N})$ is the measure $\varphi \# \mu$ on $\mathcal{B}\left(\mathbb{R}^{d}\right)$ defined by $\varphi \# \mu(B):=\mu\left(\varphi^{-1}(B)\right)$ for all $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$. Moreover, for any $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ integrable w.r.t. $\varphi \# \mu$ we have that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} g(y) d(\varphi \# \mu)(y)=\int_{\mathbb{R}^{n}}(g \circ \varphi)(x) d \mu(x) . \tag{4.4}
\end{equation*}
$$

Proof.
Let $\mu_{1}, \mu_{2} \in \mathcal{M}^{*}\left(\mathbb{R}^{+}\right)$having the same moment sequence fulfilling Stieltjes' condition. For $j \in\{1,2\}$ we define

$$
\left.d \nu_{j}(x):=\frac{1}{2}\left(f \# \mu_{j}+(-f) \# \mu_{j}\right)\right),
$$

where $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is given by $f(x):=\sqrt{x}$. Then (4.4) implies that for any $k \in \mathbb{N}_{0}$ and any $j \in\{1,2\}$ we have

$$
\begin{aligned}
m_{2 k}^{\nu_{j}} & =\int_{\mathbb{R}^{2 k}} y^{2 k} d \nu_{j}(y)=\frac{1}{2} \int_{\mathbb{R}} y^{2 k} d\left(f \# \mu_{j}\right)(y)+\frac{1}{2} \int_{\mathbb{R}} y^{2 k} d\left((-f) \# \mu_{j}\right)(y) \\
& =\frac{1}{2} \int_{\mathbb{R}^{+}}(\sqrt{x})^{2 k} d \mu_{j}(x)+\frac{1}{2} \int_{\mathbb{R}^{+}}(-\sqrt{x})^{2 k} d \mu_{j}(x)=\int_{\mathbb{R}^{+}}(\sqrt{x})^{k} d \mu_{j}(x)=m_{k}^{\mu_{j}} .
\end{aligned}
$$

and

$$
\begin{aligned}
m_{2 k+1}^{\nu_{j}} & =\int_{\mathbb{R}} y^{2 k+1} d \nu_{j}(y)=\frac{1}{2} \int_{\mathbb{R}} y^{2 k+1} d\left(f \# \mu_{j}\right)(y)+\frac{1}{2} \int_{\mathbb{R}} y^{2 k+1} d\left((-f) \# \mu_{j}\right)(y) \\
& =\frac{1}{2} \int_{\mathbb{R}^{+}}(\sqrt{x})^{2 k+1} d \mu_{j}(x)+\frac{1}{2} \int_{\mathbb{R}^{+}}(-\sqrt{x})^{2 k+1} d \mu_{j}(x)=0 .
\end{aligned}
$$

Then ν_{1} and ν_{2} have the same moments and

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[2 k]{m_{2 k}^{\nu_{j}}}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt[2 k]{m_{k}^{\mu_{j}}}}=\infty
$$

Hence, Carleman's Theorem 4.2.1 ensures that $\nu_{1} \equiv \nu_{2}$ on \mathbb{R} and so $\mu_{1} \equiv \mu_{2}$ on \mathbb{R}^{+}.

Determinacy is also deeply connected to polynomial approximation. One result in this direction is the following, which will be particularly useful in the next section.

Lemma 4.2.5.

If $\mu \in \mathcal{M}^{*}(\mathbb{R})$ is \mathbb{R}-determinate, then $\mathbb{C}[x]$ is dense in $L^{2}(\mathbb{R}, \mu)$.
Proof. (see e.g. [50, Proposition 6.10])

4.3 Determinacy in higher dimensions

In this section we are going to prove a multivariate version of Carleman's Theorem 4.2.1, namely we give a proof of Theorem 3.3.9 which we restate here for the convenience of the reader.

Theorem 4.3.1. Let $n \in \mathbb{N}$. If $\mu \in \mathcal{M}^{*}\left(\mathbb{R}^{n}\right)$ is s.t. its moment sequence $\left(m_{\alpha}^{\mu}\right)_{\alpha \in \mathbb{N}_{0}^{n}}$ fulfills

$$
\begin{equation*}
\sum_{k=1}^{\infty} m_{(0, \ldots 0,}^{\mu} \underbrace{2 k}_{j-t h}, 0, \ldots, 0)-\frac{1}{2 k}=\infty, \quad \forall j \in\{1, \ldots, n\} \tag{4.5}
\end{equation*}
$$

then μ is $\left(\mathbb{R}^{n}\right)$-determinate, i.e. the set

$$
\mathcal{M}_{\mu}:=\left\{\nu \in \mathcal{M}^{*}\left(\mathbb{R}^{n}\right): \int x^{\alpha} d \nu(x)=\int x^{\alpha} d \mu(x), \forall \alpha \in \mathbb{N}_{0}^{n}\right\}
$$

is a singleton.
Note that the set \mathcal{M}_{μ} is convex and we have the following characterization of its extreme points ${ }^{1}$.

[^0]Lemma 4.3.2. Let $\mu, \nu \in \mathcal{M}^{*}\left(\mathbb{R}^{n}\right)$. Then ν is an extreme point of \mathcal{M}_{μ} if and only if $\mathcal{C}\left[X_{1}, \ldots, X_{n}\right]$ is dense in $L^{1}\left(\mathbb{R}^{n}, \nu\right)$.

Proof. (see e.g. [50, Proposition 1.21])
To prove Theorem 4.3.1, we can proceed in the two following ways:

- We generalize the theory of quasi-analytic functions to the higher dimensions and prove an analogue of the Denjoy-Carleman theorem in the multivariate case. Using such results, we adapt the proof of Carleman's Theorem 4.2.1 to the higher dimensional case and provide a proof of Theorem 4.3.1 (see [26]).
- Using the connection between determinacy and polynomial approximation, we prove the so-called Petersen's theorem [39] about partial determinacy and so to reduce the $\left(\mathbb{R}^{n}\right)$-determinacy question to several \mathbb{R}-determinacy questions. Combining this result with Carleman's Theorem 4.2.1, we show that Theorem 4.3.1 holds (see [41]).
As we have already seen the power of the theory of quasi-analytic functions in the study of the determinacy question in the one-dimensional case, we are going now to use the second approach for the higher dimensional case. Therefore, let us first show Petersen's theorem.

Theorem 4.3.3 (Petersen's Theorem).
Let $\mu \in \mathcal{M}^{*}\left(\mathbb{R}^{n}\right)$ and for each $j \in\{1, \ldots, n\}$ define $\pi_{j}(x):=x_{j}$ for all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. If $\pi_{1} \# \mu, \ldots, \pi_{n} \# \mu$ are all \mathbb{R}-determinate, then μ is $\left(\mathbb{R}^{n}\right)$-determinate.

Proof.
Let $\nu \in \mathcal{M}_{\mu}$ and $j \in\{1, \ldots, n\}$. Then for any $k \in \mathbb{N}_{0}$ we have that

$$
\begin{aligned}
\int_{\mathbb{R}} y^{k} d\left(\pi_{j} \# \nu\right)(y) & =\int_{\mathbb{R}^{n}} \pi_{j}(x)^{k} d \nu(x) \\
& =\int_{\mathbb{R}^{n}} x^{(0, \ldots, 0, k, 0, \ldots, 0)} d \nu(x) \\
& =\int_{\mathbb{R}^{n}} x^{(0, \ldots, 0, k, 0, \ldots, 0)} d \mu(x) \\
& =\int_{\mathbb{R}^{n}} \pi_{j}(x)^{k} d \mu(x) \\
& =\int_{\mathbb{R}^{2}} y^{k} d\left(\pi_{j} \# \mu\right)(y),
\end{aligned}
$$

i.e. $\left(\pi_{j} \# \nu\right) \in \mathcal{M}_{\pi_{j} \# \mu}$. This implies that

$$
\begin{equation*}
\pi_{j} \# \nu=\pi_{j} \# \mu \tag{4.6}
\end{equation*}
$$

as $\pi_{j} \# \mu$ is \mathbb{R}-determinate. Moreover, the determinacy of $\pi_{j} \# \mu$ implies that $\mathbb{C}\left[X_{j}\right]$ is dense in $L^{2}(\mathbb{R}, \mu)$ by Lemma 4.2.5 and so that

$$
\begin{equation*}
\forall \varepsilon>0, \forall B_{j} \in \mathcal{B}(\mathbb{R}), \exists p_{j} \in \mathbb{C}\left[X_{j}\right] \text { s.t. }\left\|\mathbb{1}_{B_{j}}-p_{j}\right\|_{L^{2}\left(\mathbb{R}, \pi_{j} \# \mu\right)} \leq \varepsilon \tag{4.7}
\end{equation*}
$$

Since

$$
\begin{aligned}
&\left\|\mathbb{1}_{B_{j}}-p_{j}\right\|_{L^{2}\left(\mathbb{R}, \pi_{j} \# \mu\right)} \stackrel{\stackrel{4.6)}{=}}{=}\left\|\mathbb{1}_{B_{j}}-p_{j}\right\|_{L^{2}\left(\mathbb{R}, \pi_{j} \# \nu\right)} \\
&=\left(\int_{\mathbb{R}}\left(\mathbb{1}_{B_{j}}(y)-p_{j}(y)\right)^{2} d\left(\pi_{j} \# \nu\right)(y)\right)^{\frac{1}{2}} \\
&=\left(\int_{\mathbb{R}^{n}}\left(\mathbb{1}_{B_{j}}\left(\pi_{j}(x)\right)-p_{j}\left(\pi_{j}(x)\right)\right)^{2} d \nu(x)\right)^{\frac{1}{2}} \\
&=\left\|\mathbb{1}_{B_{j}} \circ \pi_{j}-p_{j} \circ \pi_{j}\right\|_{L^{2}\left(\mathbb{R}^{n}, \nu\right)},
\end{aligned}
$$

we can rewrite (4.7) as

$$
\begin{equation*}
\forall \varepsilon>0, \forall B_{j} \in \mathcal{B}(\mathbb{R}), \exists p_{j} \in \mathbb{C}\left[X_{j}\right] \text { s.t. }\left\|\mathbb{1}_{B_{j}} \circ \pi_{j}-p_{j} \circ \pi_{j}\right\|_{L^{2}\left(\mathbb{R}^{n}, \nu\right)} \leq \varepsilon \tag{4.8}
\end{equation*}
$$

Now the function $\left(\mathbb{1}_{B_{1}} \circ \pi_{1}\right) \cdots\left(\mathbb{1}_{B_{n}} \circ \pi_{n}\right)-\left(p_{1} \circ \pi_{1}\right) \cdots\left(p_{n} \circ \pi_{n}\right)$ on \mathbb{R}^{n} can be rewritten as

$$
\begin{align*}
& \left(\mathbb{1}_{B_{1}} \circ \pi_{1}\right) \cdots\left(\mathbb{1}_{B_{n}} \circ \pi_{n}\right)-\left(p_{1} \circ \pi_{1}\right) \cdots\left(p_{n} \circ \pi_{n}\right)= \\
& \left(\mathbb{1}_{B_{1}} \circ \pi_{1}-p_{1} \circ \pi_{1}\right)\left(\mathbb{1}_{B_{2}} \circ \pi_{2}\right) \cdots\left(\mathbb{1}_{B_{n}} \circ \pi_{n}\right)+ \\
& \quad+\quad\left(p_{1} \circ \pi_{1}\right)\left(\mathbb{1}_{B_{2}} \circ \pi_{2}-p_{2} \circ \pi_{2}\right)\left(\mathbb{1}_{B_{3}} \circ \pi_{3}\right) \cdots\left(\mathbb{1}_{B_{n}} \circ \pi_{n}\right)+ \\
& \quad+\cdots+\left(p_{1} \circ \pi_{1}\right) \cdots\left(p_{n-1} \circ \pi_{n-1}\right)\left(\mathbb{1}_{B_{n}} \circ \pi_{n}-p_{n} \circ \pi_{n}\right) . \tag{4.9}
\end{align*}
$$

and so

$$
\begin{aligned}
& \left\|\left(\mathbb{1}_{B_{1}} \circ \pi_{1}\right) \cdots\left(\mathbb{1}_{B_{n}} \circ \pi_{n}\right)-\left(p_{1} \circ \pi_{1}\right) \cdots\left(p_{n} \circ \pi_{n}\right)\right\|_{L^{1}\left(\mathbb{R}^{n}, \nu\right)} \\
& \text { (4.9) } \\
& \leq\left\|\left(\mathbb{1}_{B_{1}} \circ \pi_{1}-p_{1} \circ \pi_{1}\right)\left(\mathbb{1}_{B_{2}} \circ \pi_{2}\right) \cdots\left(\mathbb{1}_{B_{n}} \circ \pi_{n}\right)\right\|_{L^{1}\left(\mathbb{R}^{n}, \nu\right)}+\cdots \\
& \cdots \quad+\left\|\left(p_{1} \circ \pi_{1}\right) \cdots\left(p_{n-1} \circ \pi_{n-1}\right)\left(\mathbb{1}_{B_{n}} \circ \pi_{n}-p_{n} \circ \pi_{n}\right)\right\|_{L^{1}\left(\mathbb{R}^{n}, \nu\right)} \\
& \stackrel{\text { Hölder }}{\leq}\left\|\mathbb{1}_{B_{1}} \circ \pi_{1}-p_{1} \circ \pi_{1}\right\|_{L^{2}\left(\mathbb{R}^{n}, \nu\right)}\left\|\left(\mathbb{1}_{B_{2}} \circ \pi_{2}\right) \cdots\left(\mathbb{1}_{B_{n}} \circ \pi_{n}\right)\right\|_{L^{2}\left(\mathbb{R}^{n}, \nu\right)}+\cdots \\
& \cdots \quad+\left\|\left(p_{1} \circ \pi_{1}\right) \cdots\left(p_{n-1} \circ \pi_{n-1}\right)\right\|_{L^{2}\left(\mathbb{R}^{n}, \nu\right)}\left\|\mathbb{1}_{B_{n}} \circ \pi_{n}-p_{n} \circ \pi_{n}\right\|_{L^{2}\left(\mathbb{R}^{n}, \nu\right)} \\
& \stackrel{(4.8)}{\leq} C \varepsilon,
\end{aligned}
$$

where $C>0$.
This shows that $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is dense in the subset

$$
\mathcal{S}:=\left\{\left(\mathbb{1}_{B_{1}} \circ \pi_{1}\right) \cdots\left(\mathbb{1}_{B_{n}} \circ \pi_{n}\right): B_{1}, \ldots, B_{n} \in \mathcal{B}\left(\mathbb{R}^{n}\right)\right\}
$$

of $L^{1}\left(\mathbb{R}^{n}, \nu\right)$. Since $\operatorname{span}(\mathcal{S})$ is dense in $L^{1}\left(\mathbb{R}^{n}, \nu\right)$, we get that $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is dense in $L^{1}\left(\mathbb{R}^{n}, \nu\right)$ and so by Lemma 4.3.2 we obtain that ν is an extreme point of \mathcal{M}_{μ}.

Since ν was arbitrary in \mathcal{M}_{μ}, we have showed that every point of \mathcal{M}_{μ} is extreme. In particular, $\eta:=\frac{1}{2}(\mu+\nu) \in \mathcal{M}_{\mu}$ is extreme and so $\eta=\mu$ or $\eta=\nu$, which imply $\nu=\mu$. Hence, μ is $\left(\mathbb{R}^{n}\right)$-determinate.

Proof. of Theorem 4.3.1
For any $j \in\{1, \ldots, n\}$ and for any $k \in \mathbb{N}$ we have that

$$
\begin{aligned}
m_{2 k}^{\pi_{j} \# \mu} & =\int_{\mathbb{R}^{2 k}} y^{2 k} d\left(\pi_{j} \# \mu\right)(y)=\int_{\mathbb{R}^{n}}\left(\pi_{j}(x)\right)^{2 k} d \mu(x) \\
& =\int_{\mathbb{R}^{n}} x^{(0, \ldots, 0,2 k, 0, \ldots, 0)} d \mu(x)=m_{(0, \ldots, 0,2 k, 0, \ldots, 0)}^{\mu}
\end{aligned}
$$

Hence, the assumption that μ fulfils (4.5) gives that each $\pi_{j} \# \mu$ fulfils (4.1).
Therefore, Carleman's Theorem 4.2.1 guarantees that each $\pi_{j} \# \mu$ is \mathbb{R}-determinate and so by Petersen's Theorem 4.3 .3 we obtain that μ is $\left(\mathbb{R}^{n}\right)$-determinate.

[^0]: ${ }^{1}$ Recall that ν is an extreme point of \mathcal{M}_{μ} if the following implication holds: $\left(\nu=\lambda \eta_{1}+\left(1-\lambda \eta_{2}\right)\right.$, for some $\left.\lambda \in[0,1], \eta_{1}, \eta_{2} \in \mathcal{M}_{\mu}\right) \Rightarrow\left(\nu=\eta_{1}\right.$ or $\left.\nu=\eta_{2}\right)$.

