4.2

4.2. Determinacy in the one dimensional case

Remark 4.1.4. If (sj)jen, s a log-convex sequence of positive real num-
bers such that so = 1, then in Corollary 4.1.3 also the converse implication
holds. Indeed, under these assumptions the sequence (\J/s»)]eN 1S 1ncreasing
by Lemma 3.3.4 cmd so for each k € N we have inf]>k V/8j = ¥/si.Hence, the
condition Y g, \ﬁ = 00 is equivalent to Y po mf]>k 7 = > and so to the
quasi-analiticity of the class C{s;} by Theorem 4.1.2.

Using Corollary 4.1.3, we can easily produce some examples of quasi-
analytic classes.

Examples 4.1.5.
e The class C{j’} is quasi-analytic, since > o, \ﬁ =Yt =

e The class C{j!} is quasi-analytic, since Zk:l a2 >3 W =
This s in fact the class of real analytic functions. Recall that a function
f is real analytic on I C R if f € C*°(I) and the Taylor series of f at
any point xg € I pointwise converges to f in a neighborhood of xg.

Determinacy in the one dimensional case

In this section we are going to exploit the theory of quasi-analytic functions on
R to prove the so-called Carleman’s Theorem, i.e. Theorem 3.3.9 for n = 1.
Carleman was indeed the first to approach the determinacy question with
methods involving quasi-analyticity theory in his famous work of 1926 (see [0,
Chapter VIII)).

Theorem 4.2.1 (Carleman’s Theorem).
If n € M*(R) is such that its moment sequence (m?)jeNo fulfils the following

=1
> = 00, (4.1)
2k I

k=1

3

then p is R—determinate.

The original proof by Carleman makes use of the Cauchy transform of
the given measure. Here, we propose a slightly different proof that uses the
Fourier-Stieltjes transform but maintains the same spirit of Carleman’s proof.
Before proving Theorem 4.2.1, let us recall the definition of Fourier-Stieltjes
transform of a measure and some fundamental properties of this object.
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Definition 4.2.2. Let u € M*(R). The Fourier-Stieltjes transform of p is
the function F,, € C*°(R) defined by

Fu(t) = /Re_mtdu(:c)jv teR.

Proposition 4.2.3. Let u,v € M*(R).
a) If F, = F, on R, then p=v.
b) For any k € Ng and any t € R, we have (D*F,)(t) = [p(—iz)*e ™ du(x).

Proof. of Theorem 4.2.1
W.l.o.g. assume that all even moments of y are positive. In fact, if mgj =0
for some j € Ny, then p is supported in {z € R : 2% = 0} = {0} and
thus, p = my 5{0} is the unique measure having these moments, which proves
already the determinacy of u.

Let v € M*(R) having the same moment sequence as y and let us consider
the Fourier-Stieltjes transforms of 4 and v. Then (F,, — F,) € C*°(R) and for
any k € Ng and any ¢t € R we get

(DHF = F)(O) = [ (mia)e " utdo) = [ (iafeuldn) - (42)
and so

O E0 - F0| < [ lalutdn) + [ loltv(da

Holder " p —
< \/ MMy, + /mgmb,
= 2¢y/mmb, < (1+7)y/mby,

where v := 2y/mf > 0. Hence, F, — F, € C{sy}, where s; := (14 7)y/mb,
for any k € Ny.
Since
[e.e] oo oo
Z kls Z = (1i’Y) 2% : I = >
e v/ (1 + )/ mb, k=1 /M3y

Corollary 4.1.3 guarantees that the class C{sy} is quasi-analytic.

Moreover, (4.2) gives in particular (D¥(F, — F,))(0) = 0 for all k € Ny.
Then the quasi-analyticity of the class C'{s;} implies that F},—F, is identically
zero on R. Consequently, Proposition 4.2.3-a) ensures that yu = v. ]




4.2. Determinacy in the one dimensional case

Carleman’s condition (4.1) is only sufficient for the R—determinacy. In-
deed, there exist R—determinate measures whose moments do not fulfilll Car-
leman’s condition (see [53] for examples).

As a consequence of Carleman’s Theorem, we can derive a sufficient con-
dition for the (R*)—determinacy.

Corollary 4.2.4.
Let p € M*(RY). If
o0

> ! = o0, (4.3)

el 2k ml]:

then p is (RY)—determinate realizing m.

Condition (4.3) is well-know as Stieltjes’ condition since it is sufficient for
the determinacy of the Stieltjes moment problem.

Before providing the proof of Corollary 4.2.4, recall that the image measure
of a measure x on B(R") through a given Borel measurable map ¢ : R* — R?
(n,d € N) is the measure p#p on B(R?) defined by o#u(B) = u(e 1 (B))
for all B € B(R?). Moreover, for any g : R? — R integrable w.r.t. p#pu we
have that

/ o()d(#in)(y) = / (90 @) (@)du(z). (4.4)
Rd n

Proof.
Let 1, pe € M*(RT) having the same moment sequence fulfilling Stieltjes’
condition. For j € {1,2} we define

1
dvj(z) = 5 (f#n + (=F)#n;)
where f : RT — R is given by f(x) := y/z. Then (4.4) implies that for any
k € Ny and any j € {1,2} we have

mg = [P =5 [P arEne+ g [P aEn#n )
— 5 [ W@ 5 [ e = [ WD s =l

and

mia = [ =5 [ A0+ 5 [P R))

1

= 5 [V @) £ 5 [ (VP o
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Then 11 and v have the same moments and

Hence, Carleman’s Theorem 4.2.1 ensures that 11 = v5 on R and so 1 = po
on RT. O

Determinacy is also deeply connected to polynomial approximation. One
result in this direction is the following, which will be particularly useful in the
next section.

Lemma 4.2.5.
If i € M*(R) is R—determinate, then Clx] is dense in L*(R, p1).

Proof. (see e.g. [50, Proposition 6.10]) O

Determinacy in higher dimensions

In this section we are going to prove a multivariate version of Carleman’s
Theorem 4.2.1, namely we give a proof of Theorem 3.3.9 which we restate
here for the convenience of the reader.

Theorem 4.3.1. Let n € N. If p € M*(R"™) is s.t. its moment sequence
(m)acny fulfills

oo
1 .
Zmﬁo,..‘o, % 0,00 =00 Vje{l,...,n}, (4.5)
~—

k=1 j-th

then u is (R™)—determinate, i.e. the set

M= {ve s @) s [orante) = [ aauta. va ey

s a singleton.

Note that the set M, is convex and we have the following characterization
of its extreme points'.

'Recall that v is an extreme point of M, if the following implication holds:
(v =21 + (1 — Anz), for some A € [0,1],m1,m2 € M) = (v =m1 or v =12).



4.3. Determinacy in higher dimensions

Lemma 4.3.2. Let p,v € M*(R"). Then v is an extreme point of M,, if and
only if C[X1, ..., Xy] is dense in LY(R™, v).

Proof. (see e.g. [50, Proposition 1.21]) O

To prove Theorem 4.3.1, we can proceed in the two following ways:

e We generalize the theory of quasi-analytic functions to the higher di-
mensions and prove an analogue of the Denjoy-Carleman theorem in the
multivariate case. Using such results, we adapt the proof of Carleman’s
Theorem 4.2.1 to the higher dimensional case and provide a proof of
Theorem 4.3.1 (see [20]).

e Using the connection between determinacy and polynomial approxima-
tion, we prove the so-called Petersen’s theorem [39] about partial de-
terminacy and so to reduce the (R™)—determinacy question to several
R—determinacy questions. Combining this result with Carleman’s The-
orem 4.2.1, we show that Theorem 4.3.1 holds (see [11]).

As we have already seen the power of the theory of quasi-analytic functions
in the study of the determinacy question in the one-dimensional case, we
are going now to use the second approach for the higher dimensional case.
Therefore, let us first show Petersen’s theorem.

Theorem 4.3.3 (Petersen’s Theorem).

Let p € M*(R") and for each j € {1,...,n} define mj(x) = z; for all
x = (x1,...,2n) € R". If m#u,...,mp#u are all R—determinate, then p
is (R™)—determinate.

Proof.
Let v € M, and j € {1,...,n}. Then for any k € Ny we have that

[damanw = [ m@taw)
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ie. (mj#v) € My, 4,. This implies that
7'(']'#1/ = ﬂj#u (4.6)

as mj# is R—determinate. Moreover, the determinacy of 7;# ;. implies that
C[X;] is dense in L*(R, u) by Lemma 4.2.5 and so that

Ve > 0,YB; € B(R),3 p; € C[X;] st gy = pjl| oy <6 (47
Since
(4.6)
H]lBj _ijL2(R77rj#u) = H]lBj _ijLz(R,ﬂ'j#l/)

_ (/R@Bj(y)—pj<y>>2d<ﬂj#”><y>>

1
2

2

_ </ (1, (mj(x)) —pj(ﬂj(x)))2dv(a?)>
Rn
= ||ip,om; —ijWme(R",u)’

we can rewrite (4.7) as

Ve > 0,VB; € B(R),3 p; € C[X;] s.t. ||1p, omj —pj o ﬂjHL%Rmu) <e. (4.8)
Now the function (Ip, om)---(1p, om,) — (p1om) - (pp o ™) on R™ can
be rewritten as

(Ip,om)--- (g, omy) —(prom) - (pnomy) =
(Ip,om —prom)(lp, omg) - (g, om,) +
+ (p1om)(Lp, om —paom)(lp, oms) -+ (Lp, omn) +
+oo+ (prom) - (Pno10omn_1)(lB, © Ty — Pn O Tn). (4.9)

and so

I(Lp, 071) -+ (L, 0 7a) = (p1 o T1) -~ (P © W)l 1 o)

(4.9)
< (M, om —prom)(Up, ome) -~ (Up, o mn)|l pr(rn )+
+ H(pl © 7T1) ce (pnfl © anl)(]an OTp — Pn© 7T7L)||L1(]RTL7V)
Holder
< HﬂBl 0Tl —pP1° 7T1||L2(]R",1/) ||(]132 o 77-2) T (ﬂBn © 7rn)HL2(R”,1/) + -
Fllprom) - (Pa-1 0 Tn-1)ll2n ) 1B, © T = P o Tall 2 (rn o)
(4.8)
< Ck,
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where C' > 0.
This shows that C[X1,...,X,] is dense in the subset

S = {(]lBl Oﬂ'l)-“(]an O7Tn) :B1,...,B, € B(Rn)}

of LY(R",v). Since span(S) is dense in L!(R™,v), we get that C[X7, ..., X,]
is dense in L'(R™,v) and so by Lemma 4.3.2 we obtain that v is an extreme
point of M,,.

Since v was arbitrary in M,,, we have showed that every point of M, is
extreme. In particular, n := %(,u—k v) € M,, is extreme and son = por n = v,
which imply v = u. Hence, p is (R™)—determinate. O

Proof. of Theorem 4.3.1
For any j € {1,...,n} and for any k € N we have that

mi# = [P = [ )

_ (0,11:10,2k,0,...,0) o
= /n 4” dp(z) = Mo,....0,2k,0,...,0)

Hence, the assumption that p fulfils (4.5) gives that each m;#p fulfils (4.1).
Therefore, Carleman’s Theorem 4.2.1 guarantees that each 7;#u is R—determinate
and so by Petersen’s Theorem 4.3.3 we obtain that p is (R")—determinate. [J
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