Remark 4.1.4. If $(s_j)_{j \in \mathbb{N}_0}$ is a log-convex sequence of positive real numbers such that $s_0 = 1$, then in Corollary 4.1.3 also the converse implication holds. Indeed, under these assumptions the sequence $(\sqrt[i]{s_j})_{j \in \mathbb{N}}$ is increasing by Lemma 3.3.4 and so for each $k \in \mathbb{N}$ we have $\inf_{j \geq k} \sqrt[i]{s_j} = \sqrt[k]{s_k}$. Hence, the condition $\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{s_k}} = \infty$ is equivalent to $\sum_{k=1}^{\infty} \frac{1}{\inf_{j \geq k} \sqrt[j]{s_j}} = \infty$ and so to the quasi-analiticity of the class $C\{s_j\}$ by Theorem 4.1.2.

Using Corollary 4.1.3, we can easily produce some examples of quasianalytic classes.

Examples 4.1.5.

- The class $C\{j^j\}$ is quasi-analytic, since $\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{k^k}} = \sum_{k=1}^{\infty} \frac{1}{k} = \infty$.
- The class $C\{j!\}$ is quasi-analytic, since $\sum_{k=1}^{\infty} \frac{1}{\frac{k}{\sqrt{k!}}} \ge \sum_{k=1}^{\infty} \frac{1}{\frac{k}{\sqrt{k^k}}} = \infty$. This is in fact the class of real analytic functions. Recall that a function f is real analytic on $I \subseteq \mathbb{R}$ if $f \in C^{\infty}(I)$ and the Taylor series of f at any point $x_0 \in I$ pointwise converges to f in a neighborhood of x_0 .

4.2 Determinacy in the one dimensional case

In this section we are going to exploit the theory of quasi-analytic functions on \mathbb{R} to prove the so-called *Carleman's Theorem*, i.e. Theorem 3.3.9 for n = 1. Carleman was indeed the first to approach the determinacy question with methods involving quasi-analyticity theory in his famous work of 1926 (see [6, Chapter VIII]).

Theorem 4.2.1 (Carleman's Theorem). If $\mu \in \mathcal{M}^*(\mathbb{R})$ is such that its moment sequence $(m_j^{\mu})_{j \in \mathbb{N}_0}$ fulfils the following

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[2k]{m_{2k}^{\mu}}} = \infty, \tag{4.1}$$

then μ is \mathbb{R} -determinate.

The original proof by Carleman makes use of the Cauchy transform of the given measure. Here, we propose a slightly different proof that uses the Fourier-Stieltjes transform but maintains the same spirit of Carleman's proof. Before proving Theorem 4.2.1, let us recall the definition of Fourier-Stieltjes transform of a measure and some fundamental properties of this object. **Definition 4.2.2.** Let $\mu \in \mathcal{M}^*(\mathbb{R})$. The Fourier-Stieltjes transform of μ is the function $F_{\mu} \in \mathcal{C}^{\infty}(\mathbb{R})$ defined by

$$F_{\mu}(t) := \int_{\mathbb{R}} e^{-ixt} d\mu(x), \forall \ t \in \mathbb{R}.$$

Proposition 4.2.3. Let $\mu, \nu \in \mathcal{M}^*(\mathbb{R})$.

a) If $F_{\mu} \equiv F_{\nu}$ on \mathbb{R} , then $\mu \equiv \nu$. b) For any $k \in \mathbb{N}_0$ and any $t \in \mathbb{R}$, we have $(D^k F_{\mu})(t) = \int_{\mathbb{R}} (-ix)^k e^{-ixt} d\mu(x)$.

Proof. of Theorem 4.2.1

W.l.o.g. assume that all even moments of μ are positive. In fact, if $m_{2j}^{\mu} = 0$ for some $j \in \mathbb{N}_0$, then μ is supported in $\{x \in \mathbb{R} : x^{2j} = 0\} = \{0\}$ and thus, $\mu = m_0^{\mu} \delta_{\{0\}}$ is the unique measure having these moments, which proves already the determinacy of μ .

Let $\nu \in \mathcal{M}^*(\mathbb{R})$ having the same moment sequence as μ and let us consider the Fourier-Stieltjes transforms of μ and ν . Then $(F_{\mu} - F_{\nu}) \in \mathcal{C}^{\infty}(\mathbb{R})$ and for any $k \in \mathbb{N}_0$ and any $t \in \mathbb{R}$ we get

$$(D^{k}(F_{\mu} - F_{\nu}))(t) = \int_{\mathbb{R}} (-ix)^{k} e^{-ixt} \mu(dx) - \int_{\mathbb{R}} (-ix)^{k} e^{-ixt} \nu(dx)$$
(4.2)

and so

$$\begin{split} \left| (D^{k}(F_{\mu}(t) - F_{\nu}))(t) \right| &\leq \int_{\mathbb{R}} |x|^{k} \mu(dx) + \int_{\mathbb{R}} |x|^{k} \nu(dx) \\ &\stackrel{\text{H\"older}}{\leq} \sqrt{m_{0}^{\mu} m_{2k}^{\mu}} + \sqrt{m_{0}^{\nu} m_{2k}^{\nu}} \\ &= 2\sqrt{m_{0}^{\mu} m_{2k}^{\mu}} \leq (1+\gamma)\sqrt{m_{2k}^{\mu}}, \end{split}$$

where $\gamma := 2\sqrt{m_0^{\mu}} > 0$. Hence, $F_{\mu} - F_{\nu} \in \mathcal{C}\{s_k\}$, where $s_k := (1+\gamma)\sqrt{m_{2k}^{\mu}}$ for any $k \in \mathbb{N}_0$.

Since

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{s_k}} = \sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{(1+\gamma)\sqrt{m_{2k}^{\mu}}}} \ge \frac{1}{(1+\gamma)} \sum_{k=1}^{\infty} \frac{1}{\sqrt[2k]{m_{2k}^{\mu}}} \stackrel{(4.1)}{=} \infty,$$

Corollary 4.1.3 guarantees that the class $C\{s_k\}$ is quasi-analytic.

Moreover, (4.2) gives in particular $(D^k(F_{\mu} - F_{\nu}))(0) = 0$ for all $k \in \mathbb{N}_0$. Then the quasi-analyticity of the class $C\{s_k\}$ implies that $F_{\mu} - F_{\nu}$ is identically zero on \mathbb{R} . Consequently, Proposition 4.2.3-a) ensures that $\mu = \nu$. Carleman's condition (4.1) is only sufficient for the \mathbb{R} -determinacy. Indeed, there exist \mathbb{R} -determinate measures whose moments do not fulfill Carleman's condition (see [53] for examples).

As a consequence of Carleman's Theorem, we can derive a sufficient condition for the (\mathbb{R}^+) -determinacy.

Corollary 4.2.4.

Let $\mu \in \mathcal{M}^*(\mathbb{R}^+)$. If

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[2k]{m_k^{\mu}}} = \infty, \qquad (4.3)$$

then μ is (\mathbb{R}^+) -determinate realizing m.

Condition (4.3) is well-know as *Stieltjes' condition* since it is sufficient for the determinacy of the Stieltjes moment problem.

Before providing the proof of Corollary 4.2.4, recall that the image measure of a measure μ on $\mathcal{B}(\mathbb{R}^n)$ through a given Borel measurable map $\varphi : \mathbb{R}^n \to \mathbb{R}^d$ $(n, d \in \mathbb{N})$ is the measure $\varphi \# \mu$ on $\mathcal{B}(\mathbb{R}^d)$ defined by $\varphi \# \mu(B) := \mu(\varphi^{-1}(B))$ for all $B \in \mathcal{B}(\mathbb{R}^d)$. Moreover, for any $g : \mathbb{R}^d \to \mathbb{R}$ integrable w.r.t. $\varphi \# \mu$ we have that

$$\int_{\mathbb{R}^d} g(y) d(\varphi \# \mu)(y) = \int_{\mathbb{R}^n} (g \circ \varphi)(x) d\mu(x).$$
(4.4)

Proof.

Let $\mu_1, \mu_2 \in \mathcal{M}^*(\mathbb{R}^+)$ having the same moment sequence fulfilling Stieltjes' condition. For $j \in \{1, 2\}$ we define

$$d\nu_j(x) := \frac{1}{2} \left(f \# \mu_j + (-f) \# \mu_j \right) \right),$$

where $f : \mathbb{R}^+ \to \mathbb{R}$ is given by $f(x) := \sqrt{x}$. Then (4.4) implies that for any $k \in \mathbb{N}_0$ and any $j \in \{1, 2\}$ we have

$$\begin{split} m_{2k}^{\nu_j} &= \int_{\mathbb{R}} y^{2k} d\nu_j(y) = \frac{1}{2} \int_{\mathbb{R}} y^{2k} d(f \# \mu_j)(y) + \frac{1}{2} \int_{\mathbb{R}} y^{2k} d((-f) \# \mu_j)(y) \\ &= \frac{1}{2} \int_{\mathbb{R}^+} (\sqrt{x})^{2k} d\mu_j(x) + \frac{1}{2} \int_{\mathbb{R}^+} (-\sqrt{x})^{2k} d\mu_j(x) = \int_{\mathbb{R}^+} (\sqrt{x})^k d\mu_j(x) = m_k^{\mu_j} \end{split}$$

and

$$m_{2k+1}^{\nu_j} = \int_{\mathbb{R}} y^{2k+1} d\nu_j(y) = \frac{1}{2} \int_{\mathbb{R}} y^{2k+1} d(f \# \mu_j)(y) + \frac{1}{2} \int_{\mathbb{R}} y^{2k+1} d((-f) \# \mu_j)(y)$$

$$= \frac{1}{2} \int_{\mathbb{R}^+} (\sqrt{x})^{2k+1} d\mu_j(x) + \frac{1}{2} \int_{\mathbb{R}^+} (-\sqrt{x})^{2k+1} d\mu_j(x) = 0.$$

7	1
- 1	1
•	-

Then ν_1 and ν_2 have the same moments and

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[2k]{m_{2k}^{\nu_j}}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt[2k]{m_k^{\mu_j}}} = \infty.$$

Hence, Carleman's Theorem 4.2.1 ensures that $\nu_1 \equiv \nu_2$ on \mathbb{R} and so $\mu_1 \equiv \mu_2$ on \mathbb{R}^+ .

Determinacy is also deeply connected to polynomial approximation. One result in this direction is the following, which will be particularly useful in the next section.

Lemma 4.2.5.

If $\mu \in \mathcal{M}^*(\mathbb{R})$ is \mathbb{R} -determinate, then $\mathbb{C}[x]$ is dense in $L^2(\mathbb{R},\mu)$.

Proof. (see e.g. [50, Proposition 6.10])

4.3 Determinacy in higher dimensions

In this section we are going to prove a multivariate version of Carleman's Theorem 4.2.1, namely we give a proof of Theorem 3.3.9 which we restate here for the convenience of the reader.

Theorem 4.3.1. Let $n \in \mathbb{N}$. If $\mu \in \mathcal{M}^*(\mathbb{R}^n)$ is s.t. its moment sequence $(m^{\mu}_{\alpha})_{\alpha \in \mathbb{N}^n_0}$ fulfills

$$\sum_{k=1}^{\infty} m^{\mu}_{(0,\dots,0,\underbrace{2k}_{j-th}},0,\dots,0)^{-\frac{1}{2k}} = \infty, \quad \forall j \in \{1,\dots,n\},$$
(4.5)

then μ is (\mathbb{R}^n) -determinate, i.e. the set

$$\mathcal{M}_{\mu} := \left\{ \nu \in \mathcal{M}^*(\mathbb{R}^n) : \int x^{\alpha} d\nu(x) = \int x^{\alpha} d\mu(x), \ \forall \alpha \in \mathbb{N}_0^n \right\}$$

is a singleton.

Note that the set \mathcal{M}_{μ} is convex and we have the following characterization of its extreme points¹.

¹Recall that ν is an extreme point of \mathcal{M}_{μ} if the following implication holds: $(\nu = \lambda \eta_1 + (1 - \lambda \eta_2), \text{ for some } \lambda \in [0, 1], \eta_1, \eta_2 \in \mathcal{M}_{\mu}) \Rightarrow (\nu = \eta_1 \text{ or } \nu = \eta_2).$

Lemma 4.3.2. Let $\mu, \nu \in \mathcal{M}^*(\mathbb{R}^n)$. Then ν is an extreme point of \mathcal{M}_{μ} if and only if $\mathcal{C}[X_1, \ldots, X_n]$ is dense in $L^1(\mathbb{R}^n, \nu)$.

Proof. (see e.g. [50, Proposition 1.21])

To prove Theorem 4.3.1, we can proceed in the two following ways:

- We generalize the theory of quasi-analytic functions to the higher dimensions and prove an analogue of the Denjoy-Carleman theorem in the multivariate case. Using such results, we adapt the proof of Carleman's Theorem 4.2.1 to the higher dimensional case and provide a proof of Theorem 4.3.1 (see [26]).
- Using the connection between determinacy and polynomial approximation, we prove the so-called Petersen's theorem [39] about partial determinacy and so to reduce the (ℝⁿ)-determinacy question to several ℝ-determinacy questions. Combining this result with Carleman's Theorem 4.2.1, we show that Theorem 4.3.1 holds (see [41]).

As we have already seen the power of the theory of quasi-analytic functions in the study of the determinacy question in the one-dimensional case, we are going now to use the second approach for the higher dimensional case. Therefore, let us first show Petersen's theorem.

Theorem 4.3.3 (Petersen's Theorem).

Let $\mu \in \mathcal{M}^*(\mathbb{R}^n)$ and for each $j \in \{1, \ldots, n\}$ define $\pi_j(x) := x_j$ for all $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. If $\pi_1 \# \mu, \ldots, \pi_n \# \mu$ are all \mathbb{R} -determinate, then μ is (\mathbb{R}^n) -determinate.

Proof.

Let $\nu \in \mathcal{M}_{\mu}$ and $j \in \{1, \ldots, n\}$. Then for any $k \in \mathbb{N}_0$ we have that

$$\begin{split} \int_{\mathbb{R}} y^k d(\pi_j \# \nu)(y) &= \int_{\mathbb{R}^n} \pi_j(x)^k d\nu(x) \\ &= \int_{\mathbb{R}^n} x^{(0,\dots,0,k,0,\dots,0)} d\nu(x) \\ &= \int_{\mathbb{R}^n} x^{(0,\dots,0,k,0,\dots,0)} d\mu(x) \\ &= \int_{\mathbb{R}^n} \pi_j(x)^k d\mu(x) \\ &= \int_{\mathbb{R}} y^k d(\pi_j \# \mu)(y), \end{split}$$

73

i.e. $(\pi_j \# \nu) \in \mathcal{M}_{\pi_j \# \mu}$. This implies that

$$\pi_j \# \nu = \pi_j \# \mu \tag{4.6}$$

as $\pi_j \# \mu$ is \mathbb{R} -determinate. Moreover, the determinacy of $\pi_j \# \mu$ implies that $\mathbb{C}[X_j]$ is dense in $L^2(\mathbb{R}, \mu)$ by Lemma 4.2.5 and so that

$$\forall \varepsilon > 0, \forall B_j \in \mathcal{B}(\mathbb{R}), \exists p_j \in \mathbb{C}[X_j] \text{ s.t. } \|\mathbf{1}_{B_j} - p_j\|_{L^2(\mathbb{R}, \pi_j \# \mu)} \le \varepsilon.$$
(4.7)

Since

$$\begin{split} \|\mathbf{1}_{B_{j}} - p_{j}\|_{L^{2}(\mathbb{R}, \pi_{j} \# \mu)} &\stackrel{(4.6)}{=} &\|\mathbf{1}_{B_{j}} - p_{j}\|_{L^{2}(\mathbb{R}, \pi_{j} \# \nu)} \\ &= &\left(\int_{\mathbb{R}} (\mathbf{1}_{B_{j}}(y) - p_{j}(y))^{2} d(\pi_{j} \# \nu)(y)\right)^{\frac{1}{2}} \\ &= &\left(\int_{\mathbb{R}^{n}} (\mathbf{1}_{B_{j}}(\pi_{j}(x)) - p_{j}(\pi_{j}(x)))^{2} d\nu(x)\right)^{\frac{1}{2}} \\ &= &\|\mathbf{1}_{B_{j}} \circ \pi_{j} - p_{j} \circ \pi_{j}\|_{L^{2}(\mathbb{R}^{n}, \nu)}, \end{split}$$

we can rewrite (4.7) as

$$\forall \varepsilon > 0, \forall B_j \in \mathcal{B}(\mathbb{R}), \exists p_j \in \mathbb{C}[X_j] \text{ s.t. } \|\mathbb{1}_{B_j} \circ \pi_j - p_j \circ \pi_j\|_{L^2(\mathbb{R}^n, \nu)} \le \varepsilon.$$
(4.8)

Now the function $(\mathbb{1}_{B_1} \circ \pi_1) \cdots (\mathbb{1}_{B_n} \circ \pi_n) - (p_1 \circ \pi_1) \cdots (p_n \circ \pi_n)$ on \mathbb{R}^n can be rewritten as

$$(\mathbb{1}_{B_{1}} \circ \pi_{1}) \cdots (\mathbb{1}_{B_{n}} \circ \pi_{n}) - (p_{1} \circ \pi_{1}) \cdots (p_{n} \circ \pi_{n}) = (\mathbb{1}_{B_{1}} \circ \pi_{1} - p_{1} \circ \pi_{1}) (\mathbb{1}_{B_{2}} \circ \pi_{2}) \cdots (\mathbb{1}_{B_{n}} \circ \pi_{n}) + + (p_{1} \circ \pi_{1}) (\mathbb{1}_{B_{2}} \circ \pi_{2} - p_{2} \circ \pi_{2}) (\mathbb{1}_{B_{3}} \circ \pi_{3}) \cdots (\mathbb{1}_{B_{n}} \circ \pi_{n}) + + \cdots + (p_{1} \circ \pi_{1}) \cdots (p_{n-1} \circ \pi_{n-1}) (\mathbb{1}_{B_{n}} \circ \pi_{n} - p_{n} \circ \pi_{n}).$$

$$(4.9)$$

and so

$$\begin{aligned} \|(\mathbb{1}_{B_{1}} \circ \pi_{1}) \cdots (\mathbb{1}_{B_{n}} \circ \pi_{n}) - (p_{1} \circ \pi_{1}) \cdots (p_{n} \circ \pi_{n})\|_{L^{1}(\mathbb{R}^{n},\nu)} \\ & \leq \\ \|(\mathbb{1}_{B_{1}} \circ \pi_{1} - p_{1} \circ \pi_{1})(\mathbb{1}_{B_{2}} \circ \pi_{2}) \cdots (\mathbb{1}_{B_{n}} \circ \pi_{n})\|_{L^{1}(\mathbb{R}^{n},\nu)} + \cdots \\ & \cdots \\ & + \|(p_{1} \circ \pi_{1}) \cdots (p_{n-1} \circ \pi_{n-1})(\mathbb{1}_{B_{n}} \circ \pi_{n} - p_{n} \circ \pi_{n})\|_{L^{1}(\mathbb{R}^{n},\nu)} \\ \\ & \text{Hölder} \\ & \leq \\ \|\mathbb{1}_{B_{1}} \circ \pi_{1} - p_{1} \circ \pi_{1}\|_{L^{2}(\mathbb{R}^{n},\nu)} \|(\mathbb{1}_{B_{2}} \circ \pi_{2}) \cdots (\mathbb{1}_{B_{n}} \circ \pi_{n})\|_{L^{2}(\mathbb{R}^{n},\nu)} + \cdots \\ & \cdots \\ & + \|(p_{1} \circ \pi_{1}) \cdots (p_{n-1} \circ \pi_{n-1})\|_{L^{2}(\mathbb{R}^{n},\nu)} \|\mathbb{1}_{B_{n}} \circ \pi_{n} - p_{n} \circ \pi_{n}\|_{L^{2}(\mathbb{R}^{n},\nu)} \\ \\ & \leq \\ & \leq \\ C\varepsilon, \end{aligned}$$

74

where C > 0.

This shows that $\mathbb{C}[X_1, \ldots, X_n]$ is dense in the subset

$$\mathcal{S} := \{ (\mathbb{1}_{B_1} \circ \pi_1) \cdots (\mathbb{1}_{B_n} \circ \pi_n) : B_1, \dots, B_n \in \mathcal{B}(\mathbb{R}^n) \}$$

of $L^1(\mathbb{R}^n, \nu)$. Since span(\mathcal{S}) is dense in $L^1(\mathbb{R}^n, \nu)$, we get that $\mathbb{C}[X_1, \ldots, X_n]$ is dense in $L^1(\mathbb{R}^n, \nu)$ and so by Lemma 4.3.2 we obtain that ν is an extreme point of \mathcal{M}_{μ} .

Since ν was arbitrary in \mathcal{M}_{μ} , we have showed that every point of \mathcal{M}_{μ} is extreme. In particular, $\eta := \frac{1}{2}(\mu + \nu) \in \mathcal{M}_{\mu}$ is extreme and so $\eta = \mu$ or $\eta = \nu$, which imply $\nu = \mu$. Hence, μ is (\mathbb{R}^n) -determinate.

Proof. of Theorem 4.3.1

For any $j \in \{1, \ldots, n\}$ and for any $k \in \mathbb{N}$ we have that

$$\begin{split} m_{2k}^{\pi_j \# \mu} &= \int_{\mathbb{R}} y^{2k} d(\pi_j \# \mu)(y) = \int_{\mathbb{R}^n} (\pi_j(x))^{2k} d\mu(x) \\ &= \int_{\mathbb{R}^n} x^{(0,\dots,0,2k,0,\dots,0)} d\mu(x) = m_{(0,\dots,0,2k,0,\dots,0)}^{\mu}. \end{split}$$

Hence, the assumption that μ fulfils (4.5) gives that each $\pi_j \# \mu$ fulfils (4.1). Therefore, Carleman's Theorem 4.2.1 guarantees that each $\pi_j \# \mu$ is \mathbb{R} -determinate and so by Petersen's Theorem 4.3.3 we obtain that μ is (\mathbb{R}^n) -determinate. \Box