1.3 Relation between $Psd(K_S)$ and T_S

Fixed a finite subset $S := \{g_1, \ldots, g_s\} \subset \mathbb{R}[X_1, \ldots, X_n]$, we want to study the relation between the (quadratic) preordering associated to S, i.e.

$$T_{S} := \left\{ \sum_{e = (e_{1}, \dots, e_{s}) \in \{0, 1\}^{s}} \sigma_{e} g_{1}^{e_{1}} \dots g_{s}^{e_{s}} : \sigma_{e} \in \sum \mathbb{R}[\underline{X}]^{2}, \forall e \in \{0, 1\}^{s} \right\},\$$

and $Psd(K_S)$ where

$$K_S := \{ x \in \mathbb{R}^n : g_i(x) \ge 0, \ i = 1, \dots, s \}.$$

The first result in this direction is the so-called *Stengle Positivstellensatz*, whose proof is due to Stengle in 1974 even if most ideas were already contained in an article of Krivine of 1964.

Theorem 1.3.1. Let $S = \{g_1, \ldots, g_s\} \subset \mathbb{R}[\underline{X}]$ and $f \in \mathbb{R}[\underline{X}]$. Then:

(1) f > 0 on $K_S \Leftrightarrow \exists p, q \in T_S \ s.t. \ pf = 1 + q \ (Striktpositivstellensatz)$

- (2) $f \ge 0$ on $K_S \Leftrightarrow \exists m \in \mathbb{N}_0, \exists p, q \in T_S \ s.t. \ pf = f^{2m} + q$ (Nonnegativstellensatz)
- (3) f = 0 on $K_S \Leftrightarrow \exists m \in \mathbb{N}_0 \ s.t. \ -f^{2m} \in T_S \ (Real Nullstellensatz)$
- (4) $K_S = \phi \Leftrightarrow -1 \in T_S.$

Taking $S = \emptyset$ in (2) we obtain an alternative proof for Artin's solution (1927) to the Hilbert's 17th problem posed in 1900 of establishing whether or not a psd polynomial is always a sum of squares of rational functions.

Corollary 1.3.2. Let $f \in \mathbb{R}[\underline{X}]$. If $f(x) \ge 0$ for all $x \in \mathbb{R}^n$ then $f \in \sum \mathbb{R}(\underline{X})^2$.

Proof. Suppose that $f(x) \ge 0$ for all $x \in \mathbb{R}^n$ and $f \ne 0$. By taking $S = \emptyset$ in (2), we get that $\exists m \in \mathbb{N}_0, \exists p, q \in T_S = \sum \mathbb{R}[\underline{X}]^2$ s.t. $pf = f^{2m} + q$. Since $f \ne 0$, also $f^{2m} + q \ne 0$ and $p \ne 0$. Hence,

$$f = \frac{f^{2m} + q}{p} = \left(\frac{1}{p}\right)^2 p(f^{2m} + q) \in \sum \mathbb{R}(\underline{X})^2.$$

If $f \equiv 0$ then clearly the conclusion holds.

Theorem 1.3.1-(2) gives a representation of elements in $Psd(K_S)$ as quotients of elements in T_S . Therefore, it is natural to look for denominator free Positivstellensätze. In particular, for the rest of this section we are going to focus on saturation of preorderings.

Definition 1.3.3. Let $S \subset \mathbb{R}[\underline{X}]$ be finite. The preordering T_S in $\mathbb{R}[\underline{X}]$ is said to be saturated if $\operatorname{Psd}(K_S) = T_S$.

In [5, Lecture 24, 25] the following result was proved in details:

Proposition 1.3.4. Suppose $n \geq 3$. Let *S* be a finite subset of $\mathbb{R}[\underline{X}]$ such that $K_S \subseteq \mathbb{R}^n$ and $int(K_S) \neq \emptyset$. Then there exists $f \in \mathbb{R}[\underline{X}]$ such that $f \geq 0$ on \mathbb{R}^n and $f \notin T_S$.

This already excludes saturation already for an entire class of preorderings and can be actually obtained as a corollary of the following more general result due to Scheiderer [11, Proposition 6.1].

Theorem 1.3.5. Let S be a finite subset of $\mathbb{R}[\underline{X}]$ s.t. dim $(K_S) \ge 3$. Then there exists $f \in \mathbb{R}[\underline{X}]$ s.t. $f \ge 0$ on \mathbb{R}^n and $f \notin T_S$.

Recall that the dimension of a bcsas $K \subseteq \mathbb{R}^n$ is defined as the Krull dimension of $\frac{\mathbb{R}[\underline{X}]}{\mathcal{I}(K)}$ where $\mathcal{I}(K)$ is the ideal of polynomials vanishing on K. To derive Proposition 1.3.4 from Theorem 1.3.5, it is enough to prove that $\operatorname{int}(K_S) \neq \emptyset$ implies $\dim(K_S) = 3$ (see [5, Lemma 2.7]).

For lower dimensional bcsas, there are examples in which saturation holds and examples in which it fails. An example of one dimensional bcsas which can be described both by a saturated preordering and by a non-saturated preordering is \mathbb{R}^+ .

Example 1.3.6. Let $K = [0, +\infty)$. For $S_1 := \{X\}$, we have that $K = K_{S_1}$ and Proposition 1.2.4-a) ensures that $Psd([0, +\infty)) = T_{S_1}$. Hence, T_{S_1} is saturated. However, by taking the representation $K = K_{S_2}$ with $S_2 := \{X^3\}$, we do not have anymore the saturation of the corresponding preordering. In fact, $X \in Psd(K)$ but $X \notin T_{S_2}$.

Suppose that there exist $\sigma_1, \sigma_2 \in \sum \mathbb{R}[X]^2$ s.t. $X = \underbrace{\sigma_1 + X^3 \sigma_2}_{=:q}$. Then we have four possibilities:

- if $\sigma_1 \equiv 0 \equiv \sigma_2$ then $q(X) \equiv 0$.
- if $\sigma_1 \equiv 0$ and $\sigma_2 \not\equiv 0$ then $\deg(q)$ is odd and ≥ 3 .
- if $\sigma_1 \not\equiv 0$ and $\sigma_2 \equiv 0$ then $\deg(q)$ is even.
- if $\sigma_1 \neq 0$ and $\sigma_2 \neq 0$ then $\deg(q) = \max\{\deg(\sigma_1), \deg(X^3\sigma_2)\}$ which is either even or odd ≥ 3 .

Hence, $X \not\equiv q$) which leads to the desired contradiction.

In the one variable case, it is possible to show that for any bcsas K of $\mathbb{R}[X]$ there exists $S \subset \mathbb{R}[X]$ finite such that $K = K_S$ and T_S is saturated. Such a S is called the *natural description* of K.

Definition 1.3.7. Let K be a non-empty boson of \mathbb{R} , i.e. K is a finite union of intervals and points. The natural description of K is defined as the finite subset S_{nat} of $\mathbb{R}[X]$ s.t.

- (i) if $a \in \mathbb{R}$ is the smallest element of K, then $X a \in S_{nat}$
- (ii) if $a \in \mathbb{R}$ is the greatest element of K, then $a X \in S_{nat}$
- (iii) if $a, b \in K$, a < b and $(a, b) \cap K = \phi$, then $(X a)(X b) \in S_{nat}$
- (iv) no other polynomial is in S_{nat} .

Examples 1.3.8.

- If K = [0,+∞) then S_{nat} = {X}, since 0 is the smallest element of K, K has no greatest element and for all a, b ∈ K with a < b we have (a, b) ∩ K ≠ Ø.
- If K = [0,1] then S_{nat} = {X, 1 − X}, since 0 is the smallest element of K, 1 is the greatest element of K and for all a, b ∈ K with a < b we have (a, b) ∩ K ≠ Ø.
- If $K = -1 \cup [0, 1]$ then $S_{nat} = \{X + 1, 1 X, X(X + 1)\}$, since -1 is the smallest element of K, 1 is the greatest element of K and $(-1, 0) \cap K = \emptyset$.

Theorem 1.3.9. Let K be a non-empty bcsas of \mathbb{R} . Then the preordering associated to the natural description S_{nat} of K is saturated.

Proof. For notational convenience, set S equal to the natural description S_{nat} of K. We want to show that $Psd(K) = T_S$.

If $K = \mathbb{R}$ then $S = \emptyset$ and $T_S = \sum \mathbb{R}[X]^2$, so the conclusion holds. Therefore, we can assume that $K \subsetneq \mathbb{R}$. Then Definition 1.3.7 provides the following information:

• If K has a smallest element a, then $X - a \in S$ and so

$$\forall d \le a, X - d = (X - a) \cdot 1^2 + (a - d) \in T_S.$$
(1.2)

• if K has a greatest element a, then $a - X \in S$ and so

$$\forall d \ge a, d - X = (a - X) \cdot 1^2 + (d - a) \in T_S.$$
 (1.3)

• if $a, b \in K$, a < b and $(a, b) \cap K = \phi$, then $(X - a)(X - b) \in S$ and, by Exercise 1 in Sheet 1 we have that

$$\forall d, e \in \mathbb{R} \text{ s.t. } a \le d \le e \le b, (X - d)(X - e) \in T_S.$$
(1.4)

Suppose that $f \in Psd(K)$ and proceed by induction on deg(f).

If deg(f) = 0 then f(x) = k for all $x \in \mathbb{R}^d$ with $k \ge 0$. Hence, $f \in \sum \mathbb{R}[X]^2 \subset T_S$.

Suppose that $\deg(f) = m \ge 1$ and that for all $g \in Psd(K)$ with $\deg(g) \le m-1$ we know that $g \in T_S$. W.l.o.g. we can assume that there exists $c \in \mathbb{R}$ s.t. f(c) < 0 (otherwise $f \ge 0$ on \mathbb{R} which gives $f \in \sum \mathbb{R}[X]^2 \subset T_S$). Then there are the following three possibilities: either K has a least element a and c < a or K has a largest element a and c > a or there exist $a, b \in K$ with $a < b, (a, b) \cap K = \emptyset$ and a < c < b.

<u>Case 1</u>: if K has a least element a and c < a, then f has a root d in the interval (c, a]. Therefore, f = (X-d)g for some $g \in \mathbb{R}[X]$ with $\deg(g) = m-1$. As $f \ge 0$ on K and $X - d \ge 0$ on K, we get that $g \in Psd(K)$. Hence, by inductive assumption we have that $g \in T_S$. Also, $X - d \in T_S$ by (1.2) and so $f \in T_S$.

<u>Case 2</u>: If K has a largest element a and c > a, then f has a root d in the interval [a, c). Therefore, f = (d-X)g for some $g \in \mathbb{R}[X]$ with $\deg(g) = m-1$. As $f \ge 0$ on K and $d - X \ge 0$ on K, we get that $g \in Psd(K)$. Hence, by inductive assumption we have that $g \in T_S$. Also, $d - X \in T_S$ by (1.3) and so $f \in T_S$.

<u>Case 3</u>: If there exist $a, b \in K$ with a < b, $(a, b) \cap K = \emptyset$ and a < c < b, then f has a greatest root d in the interval [a, c) and a least root e in the interval (c, b]. Therefore, f = (X - d)(X - e)g for some $g \in \mathbb{R}[X]$ with $\deg(g) = m - 2$. As $f \ge 0$ on K and $(X - d)(X - e) \ge 0$ on K, we get that $g \in \operatorname{Psd}(K)$. Hence, by inductive assumption we have that $g \in T_S$. Also, $(X - d)(X - e) \in T_S$ by (1.4) and so $f \in T_S$.

Corollary 1.3.10. Let K be a non-empty besas of \mathbb{R} . If $S \subset \mathbb{R}[X]$ is finite s.t. $K = K_S$ and $S \supseteq S_{nat}$ (up to a positive scalar multiple factor), then T_S is saturated.

Proof. By Theorem 1.3.9, we know that $Psd(K) = T_{S_{nat}}$. As $S \supseteq S_{nat}$ (up to a positive scalar multiple factor), we also have that $T_{S_{nat}} \subseteq T_S$. Hence, $Psd(K) = T_S$, i.e. T_S is saturated.

Note that the converse of this result does not hold in general. In fact, if S does not contain the natural description then T_S might be or not be saturated as showed by the following example. However, for non-compact bcsas of \mathbb{R} the converse holds.

Example 1.3.11. Let K = [0,1]. Then $S_{nat} = \{X, 1-X\}$ is the natural description of K. Hence, by Theorem 1.3.9, $T_{S_{nat}}$ is saturated. If we take now $S_1 := \{X^3, 1-X\}$, then $K = K_{S_1}$, S_1 does not contain S_{nat} and T_{S_1} is not saturated (see Sheet 1, Exercise 2 for a proof). However, also $S_2 = \{X(1-X)\}$

does not contain S_{nat} and $K = K_{S_2}$, but T_{S_2} is saturated. Indeed, we have that $X = X^2 + X(1 - X) \in T_{S_2}$ and $1 - X = (1 - X)^2 + X(1 - X) \in T_{S_2}$, which imply $T_{S_{nat}} \subseteq T_{S_2}$ and so that $\operatorname{Psd}(K) = T_{S_2}$.

Proposition 1.3.12. Let $K \subseteq \mathbb{R}$ be a non-compact besas of $\mathbb{R}[X]$ and $S \subset \mathbb{R}[X]$ finite s.t. $K = K_S$. Then T_S is saturated $\Leftrightarrow S \supseteq S_{nat}$ (up to a positive scalar multiple factor).

Proof. One direction always holds by Corollary 1.3.10, while for the converse the non-compactness is essential.

Suppose that K_S is not compact and $\operatorname{Psd}(K_S) = T_S$. We can assume that for any $g \in S$ we have $\operatorname{deg}(g) \geq 1$. Since K_S is not compact, it either contains an interval of the form $[c, +\infty)$ or it contains an interval of the form $(-\infty, c]$. Replacing X by -X when necessary in the following proof, we can assume that we are in the first case. This implies that every $g \in S$ is non-negative on $[c, +\infty)$ and so has positive leading coefficient.

Suppose that K_S has a smallest element a and consider p := X - a. Then $p \in Psd(K_S)$ and so by assumption we have $p \in T_S$. This together with the fact that deg(p) = 1 and that $deg(g) \ge 1$, for all $g \in S$ ensures that $p = \sigma_1 g_1 + \ldots + \sigma_t g_t$, where $\sigma_1, \ldots, \sigma_t \in \mathbb{R}^+$ and $g_i \in S$ with $deg(g_i) = 1$ for $i = 1, \ldots, t$. As p(a) = 0 and $g_i(a) \ge 0$ for all $i = 1, \ldots, t$ (since $a \in K_S$), we can conclude that there exists at least one $i \in \{1, \ldots, t\}$ such that $g_i(a) = 0$. Hence, there exists r > 0 such that $g_i = r(X - a)$, i.e. $r(X - a) \in S$ as required.

... TO BE CONTINUED IN THE NEXT LECTURE.

Applying the so-called Scheiderer's Local Global Principle (see e.g. [7, Section 9]), one can provide examples of two dimensional compact bcsas which can be described by a saturated preordering.

Examples 1.3.13.

- 1. The preordering T_S for $S = \{X, 1 X, Y, 1 Y\}$ is saturated. Here K_S is the unit square in \mathbb{R}^2 .
- 2. The preordering T_S for $S = \{1 X^2 Y^2\}$ is saturated. Here K_S is the unit disk in \mathbb{R}^2 .

However, there are examples of two dimensional compact bcsas for which saturation does not hold.

Example 1.3.14. Let $S := \{X^3 - Y^3, 1 - X\}$. Then K_S is compact in \mathbb{R}^2 and T_S is not saturated. Indeed, the polynomial $X \in \mathbb{R}[X, Y]$ is nonnegative on K_S but does not belong to T_S .

Suppose that there exists $\sigma_1, \sigma_2, \sigma_3, \sigma_4 \in \sum \mathbb{R}[X, Y]^2$ s.t.

$$X = \underbrace{\sigma_1 + (X^3 - Y^3)\sigma_2 + (1 - X)\sigma_3 + (X^3 - Y^3)(1 - X)\sigma_4}_{=:q}$$

Evaluating at Y = 0, we have that $X \equiv q(X,0) = \sigma_1(X,0) + X^3 \sigma_2(X,0) + (1-X)\sigma_3(X,0) + X^3(1-X)\sigma_4(X,0)$, i.e. X belongs to the preordering generated by $\{X^3, 1-X\}$ in $\mathbb{R}[X]$ which is false as showed in Sheet 1, Exercise 2.

For non-compact two dimensional bcsas, we have both saturated and nonsaturated associated preorderings.

Examples 1.3.15.

1. If
$$S = \emptyset \subset \mathbb{R}[X, Y]$$
 then $T_S = \sum \mathbb{R}[X, Y]^2$ is not saturated as $K_S = \mathbb{R}^2$.
2. If $S = \{X(1-X)\} \subset \mathbb{R}[X, Y]$, then $\operatorname{Psd}(\underbrace{[0,1] \times \mathbb{R}}_{=K_S}) = T_S$, i.e. T_S is saturated (see [8]).

Summarizing we have that a preordering T_S in $\mathbb{R}[\underline{X}]$ is always not saturated if dim $(K_S) \geq 3$, but can be or cannot be saturated if dim $(K_S) \in \{1,2\}$ (depending on the geometry of K_S and the chosen description S).