1.

POSITIVE POLYNOMIALS AND SUM OF SQUARES

1.3

Relation between Psd(Kg) and T

Fixed a finite subset S := {g1,...,9s} C R[X1,..., X,], we want to study the
relation between the (quadratic) preordering associated to S, i.e.

Ty = Z o, gfl...ggs:aeEZR[XFaVGG{O’l}S ;
61(61 ,,,,, 63)6{071}5

and Psd(Kg) where
Kg:={zeR":¢i(x) >0,i=1,...,s}.

The first result in this direction is the so-called Stengle Positivstellensatz,
whose proof is due to Stengle in 1974 even if most ideas were already contained
in an article of Krivine of 1964.

Theorem 1.3.1. Let S ={g1,...,9s} C RIX] and f € R[X]. Then:

(1) f>0o0n Kg< 3p,q€Ts s.t. pf =1+ q (Striktpositivstellensatz)

(2) f>0o0nKg<3meNy,3p,q€cTs st pf=f>"+q (Nonnegativstel-
lensatz)

(3) f=0o0nKs< 3ImecNy s.t. —f>™ cTs (Real Nullstellensatz)

(4) Ks=¢p<= —-1€Ts.

Taking S = 0 in (2) we obtain an alternative proof for Artin’s solution
(1927) to the Hilbert’s 17th problem posed in 1900 of establishing whether or
not a psd polynomial is always a sum of squares of rational functions.

Corollary 1.3.2. Let f € R[X].
If f(z) >0 for all x € R™ then f € Y. R(X)2

Proof. Suppose that f(z) > 0 for all x € R™ and f # 0. By taking S = () in

(2), we get that 3 m € No,3 p,q € Ts = Y. R[X]? s.t. pf = f2™ + q. Since
f#0,also f™ 4+ q# 0 and p # 0. Hence,

_f2m+Q_<1>2 2m
f="——=\;) P +a e} RX)

If f =0 then clearly the conclusion holds. 0

Theorem 1.3.1-(2) gives a representation of elements in Psd(Kg) as quo-
tients of elements in Tg. Therefore, it is natural to look for denominator free
Positivstellensatze. In particular, for the rest of this section we are going to
focus on saturation of preorderings.
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Definition 1.3.3. Let S C R[X] be finite. The preordering Ts in R[X] is
said to be saturated if Psd(Kg) = Ts.

In [5, Lecture 24, 25] the following result was proved in details:

Proposition 1.3.4. Suppose n > 3. Let S be a finite subset of R[X] such
that Kg C R™ and int(Kg) # (0. Then there exists f € R[X]| such that f > 0
on R" and f ¢ Tg.

This already excludes saturation already for an entire class of preorderings
and can be actually obtained as a corollary of the following more general result
due to Scheiderer [11, Proposition 6.1].

Theorem 1.3.5. Let S be a finite subset of R[X] s.t. dim(Kg) > 3. Then
there exists f € RX] s.t. f>0 onR™ and f ¢ Ts.

Recall that the dimension of a besas K C R™ is defined as the Krull
dimension of % where Z(K) is the ideal of polynomials vanishing on K.
To derive Proposition 1.3.4 from Theorem 1.3.5, it is enough to prove that
int(Kg) # () implies dim(Kg) = 3 (see [5, Lemma 2.7]).

For lower dimensional bcsas, there are examples in which saturation holds
and examples in which it fails. An example of one dimensional bcsas which
can be described both by a saturated preordering and by a non-saturated

preordering is RT.

Example 1.3.6. Let K = [0,+00). For Sy := {X}, we have that K = Kg,
and Proposition 1.2.4-a) ensures that Psd([0,+o0)) = Ts,. Hence, Ts, is
saturated. However, by taking the representation K = Kg, with Sy := {X3},
we do not have anymore the saturation of the corresponding preordering. In
fact, X € Psd(K) but X ¢ Ts,.

Suppose that there exist 01,09 € S.R[X]? s.t. X = 01 + X309, Then we
have four possibilities: =q

e if o1 =0 =0y then q(X) =0.

e if 01 =0 and o2 # 0 then deg(q) is odd and > 3.

e if 01 Z0 and o9 =0 then deg(q) is even.

o if o1 0 and o3 Z 0 then deg(q) = max{deg(o1),deg(X>02)} which is

either even or odd > 3.

Hence, X # q) which leads to the desired contradiction.

~— —

In the one variable case, it is possible to show that for any besas K of R[X]
there exists S C R[X] finite such that K = Kg and Ty is saturated. Such a S
is called the natural description of K.
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Definition 1.3.7. Let K be a non-empty bcsas of R, i.e. K is a finite union
of intervals and points. The natural description of K is defined as the finite
subset Spar of RIX] s.t.

(i) if a € R is the smallest element of K, then X —a € Spat

(ii) if a € R is the greatest element of K, then a — X € Spat
(i) if a,b € K, a <b and (a,b) N K = ¢, then (X —a)(X —b) € Spat

(iv) mo other polynomial is in Spat.

Examples 1.3.8.

o [f K = [0,400) then Spat = {X}, since 0 is the smallest element of
K, K has no greatest element and for all a,b € K with a < b we have
(a,b) N K # 0.

o [f K =10,1] then Spat = {X,1 — X}, since 0 is the smallest element of
K, 1 is the greatest element of K and for all a,b € K with a < b we
have (a,b) N K # ().

o I[fK=—-1U]0,1] then Spat = {X +1,1—-X, X(X +1)}, since —1 is the
smallest element of K, 1 is the greatest element of K and (—1,0)NK = ().

Theorem 1.3.9. Let K be a non-empty besas of R. Then the preordering
associated to the natural description Snpqt of K is saturated.

Proof. For notational convenience, set S equal to the natural description Spq+
of K. We want to show that Psd(K) = T&s.

If K =R then S = () and Ts = >_ R[X]?, so the conclusion holds. There-
fore, we can assume that K C R. Then Definition 1.3.7 provides the following
information:

e If K has a smallest element a, then X —a € S and so

Vi<a,X —d= (X —a) 1>+ (a —d) € Ts. (1.2)
e if K has a greatest element a, then a — X € § and so
Vd>a,d—X=(a—X) -1+ (d—a) € Ts. (1.3)

e ifa,be K,a<band (a,b) N K = ¢, then (X —a)(X —b) € S and, by
Exercise 1 in Sheet 1 we have that

Vd,ecRst. a<d<e<b (X —-d)(X —e)eTs. (1.4)

Suppose that f € Psd(K) and proceed by induction on deg(f).
If deg(f) = 0 then f(z) = k for all z € R? with k > 0. Hence, f €
S R[X]? C Ts.
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Suppose that deg(f) = m > 1 and that for all g € Psd(K) with deg(g) <
m — 1 we know that g € Tg. W.l.o.g. we can assume that there exists ¢ € R
s.t. f(e) < 0 (otherwise f > 0 on R which gives f € Y. R[X]? C Ts). Then
there are the following three possibilities: either K has a least element a and
¢ < a or K has a largest element a and ¢ > a or there exist a,b € K with
a<b, (a,b)NK=0and a <c<b.

Case 1: if K has a least element a and ¢ < a, then f has a root d in the
interval (¢, a]. Therefore, f = (X —d)g for some g € R[X] with deg(g) = m—1.
As f>0on K and X —d > 0 on K, we get that g € Psd(K). Hence, by
inductive assumption we have that g € Tg. Also, X —d € Tis by (1.2) and so
feTs.

Case 2: If K has a largest element a and ¢ > a, then f has a root d in the
interval [a, ¢). Therefore, f = (d—X)g for some g € R[X] with deg(g) = m—1.
As f > 0on K and d — X > 0 on K, we get that g € Psd(K). Hence, by
inductive assumption we have that g € Ts. Also, d — X € T by (1.3) and so
feTs.

Case 3: If there exist a,b € K with a < b, (a,b) N K = and a < ¢ < b,
then f has a greatest root d in the interval [a,c) and a least root e in the
interval (c,b]. Therefore, f = (X — d)(X — e)g for some g € R[X] with
deg(g)=m—2. As f > 0on K and (X —d)(X —e) > 0 on K, we get that
g € Psd(K). Hence, by inductive assumption we have that g € Ts. Also,
(X —d)(X —e) €Ts by (1.4) and so f € Ts. O

Corollary 1.3.10. Let K be a non-empty besas of R. If S C R[X] is finite
s.t. K= Kg and S O Spat (up to a positive scalar multiple factor), then Ts
s saturated.

Proof. By Theorem 1.3.9, we know that Psd(K) = Tg,,,. As S D Spat (up
to a positive scalar multiple factor), we also have that Tg,,, C Ts. Hence,
Psd(K) =Tg, i.e. Ts is saturated. O

Note that the converse of this result does not hold in general. In fact, if S
does not contain the natural description then T's might be or not be saturated
as showed by the following example. However, for non-compact bcsas of R
the converse holds.

Example 1.3.11. Let K = [0,1]. Then Spa = {X,1 — X} is the natural
description of K. Hence, by Theorem 1.5.9, Ty, ,, is saturated. If we take now
Sp = {X31— X}, then K = Kg,, S1 does not contain Spa; and Ts, is not
saturated (see Sheet 1, Exercise 2 for a proof). However, also So = {X(1—X)}
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does not contain Spet and K = Kg,, but Ts, is saturated. Indeed, we have
that X = X?+ X1 -X)€Ts, and 1 - X = (1 - X)2+ X(1 - X) € Ts,,
which imply Ts,,, C Ts, and so that Psd(K) = Tg,.

Proposition 1.3.12. Let K C R be a non-compact besas of R[X] and S C
R[X] finite s.t. K = Kg. Then Tg is saturated < S D Spa (up to a positive
scalar multiple factor).

Proof. One direction always holds by Corollary 1.3.10, while for the converse
the non-compactness is essential.

Suppose that Kg is not compact and Psd(Kg) = Ts . We can assume that
for any g € S we have deg(g) > 1. Since K is not compact, it either contains
an interval of the form [c, +00) or it contains an interval of the form (—oo, c].
Replacing X by —X when necessary in the following proof, we can assume
that we are in the first case. This implies that every g € S is non-negative on
[¢, +00) and so has positive leading coefficient.

Suppose that Kg has a smallest element a and consider p := X — a. Then
p € Psd(Ks) and so by assumption we have p € Ts. This together with
the fact that deg(p) = 1 and that deg(g) > 1, for all g € S ensures that
p=o0191 + ...+ 0.9;, where 01,...,0, € Rt and g; € S with deg(g;) = 1 for
i=1,...,t. Asp(a) =0and g;(a) >0foralli=1,...,¢ (since a € Kg), we
can conclude that there exists at least one ¢ € {1,...,t} such that g;(a) = 0.
Hence, there exists r > 0 such that g; = (X —a), i.e. (X —a) € S as
required.

... TO BE CONTINUED IN THE NEXT LECTURE. O

Applying the so-called Scheiderer’s Local Global Principle (see e.g. [7,
Section 9]), one can provide examples of two dimensional compact besas which
can be described by a saturated preordering.

Examples 1.3.13.
1. The preordering Ts for S = {X,1 — X,Y,1 —Y} is saturated. Here Kg
is the unit square in R2.
2. The preordering Ts for S = {1 — X% —Y?} is saturated. Here K is the
unit disk in R2.

However, there are examples of two dimensional compact bcsas for which
saturation does not hold.
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Example 1.3.14. Let S := {X? — Y3 1 — X}. Then Kg is compact in R>
and Ts is not saturated. Indeed, the polynomial X € R[X,Y] is nonnegative
on Kg but does not belong to Ts.

Suppose that there exists o1,09,03,04 € Y R[X,Y]? s.t.

X=0+(X>=Y3oo+ (1 - X)o3 + (X> -Y>)(1 - X)oy.

Evaluating at Y = 0, we have that X = ¢(X,0) = 01(X,0)+X302(X,0)+(1—
X)o3(X,0) + X3(1 — X)o4(X,0), i.e. X belongs to the preordering generated
by {X3,1 — X} in R[X] which is false as showed in Sheet 1, Ezercise 2.

For non-compact two dimensional bcsas, we have both saturated and non-
saturated associated preorderings.

Examples 1.3.15.
1. If S =0 C R[X,Y] then Ts = Y. R[X,Y]? is not saturated as Kg = R2.
2. If S = {X(1 — X)} C RIX,Y], then Psd([0,1] x R) = T, i.e. Ty is
~—

=Ks
saturated (see [5]).

Summarizing we have that a preordering T in R[X] is always not saturated
if dim(Kg) > 3, but can be or cannot be saturated if dim(Kg) € {1,2}
(depending on the geometry of Kg and the chosen description .5).
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