
1. Positive Polynomials and Sum of Squares

1.3 Relation between Psd(K
S

) and T
S

Fixed a finite subset S := {g
1

, . . . , gs} ⇢ R[X
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, . . . , Xn], we want to study the
relation between the (quadratic) preordering associated to S, i.e.
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and Psd(KS) where

KS := {x 2 Rn : gi(x) � 0, i = 1, . . . , s}.

The first result in this direction is the so-called Stengle Positivstellensatz,
whose proof is due to Stengle in 1974 even if most ideas were already contained
in an article of Krivine of 1964.

Theorem 1.3.1. Let S = {g
1

, . . . , gs} ⇢ R[X] and f 2 R[X]. Then:
(1) f > 0 on KS , 9 p, q 2 TS s.t. pf = 1 + q (Striktpositivstellensatz)
(2) f � 0 on KS , 9 m 2 N

0

, 9 p, q 2 TS s.t. pf = f

2m + q (Nonnegativstel-
lensatz)

(3) f = 0 on KS , 9 m 2 N
0

s.t. �f

2m 2 TS (Real Nullstellensatz)
(4) KS = � , �1 2 TS.

Taking S = ; in (2) we obtain an alternative proof for Artin’s solution
(1927) to the Hilbert’s 17th problem posed in 1900 of establishing whether or
not a psd polynomial is always a sum of squares of rational functions.

Corollary 1.3.2. Let f 2 R[X].
If f(x) � 0 for all x 2 Rn then f 2

P

R(X)2.

Proof. Suppose that f(x) � 0 for all x 2 Rn and f 6⌘ 0. By taking S = ; in
(2), we get that 9 m 2 N

0

, 9 p, q 2 TS =
P

R[X]2 s.t. pf = f

2m + q. Since
f 6⌘ 0, also f

2m + q 6⌘ 0 and p 6⌘ 0. Hence,

f =
f

2m + q

p

=

✓

1

p

◆

2

p(f2m + q) 2
X

R(X)2.

If f ⌘ 0 then clearly the conclusion holds.

Theorem 1.3.1-(2) gives a representation of elements in Psd(KS) as quo-
tients of elements in TS . Therefore, it is natural to look for denominator free
Positivstellensätze. In particular, for the rest of this section we are going to
focus on saturation of preorderings.
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1.3. Relation between Psd(KS) and TS

Definition 1.3.3. Let S ⇢ R[X] be finite. The preordering TS in R[X] is
said to be saturated if Psd(KS) = TS.

In [5, Lecture 24, 25] the following result was proved in details:

Proposition 1.3.4. Suppose n � 3. Let S be a finite subset of R[X] such
that KS ✓ Rn and int(KS) 6= ;. Then there exists f 2 R[X] such that f � 0
on Rn and f /2 TS.

This already excludes saturation already for an entire class of preorderings
and can be actually obtained as a corollary of the following more general result
due to Scheiderer [11, Proposition 6.1].

Theorem 1.3.5. Let S be a finite subset of R[X] s.t. dim(KS) � 3. Then
there exists f 2 R[X] s.t. f � 0 on Rn and f /2 TS .

Recall that the dimension of a bcsas K ✓ Rn is defined as the Krull
dimension of R[X]

I(K)

where I(K) is the ideal of polynomials vanishing on K.
To derive Proposition 1.3.4 from Theorem 1.3.5, it is enough to prove that
int(KS) 6= ; implies dim(KS) = 3 (see [5, Lemma 2.7]).

For lower dimensional bcsas, there are examples in which saturation holds
and examples in which it fails. An example of one dimensional bcsas which
can be described both by a saturated preordering and by a non-saturated
preordering is R+.

Example 1.3.6. Let K = [0,+1). For S

1

:= {X}, we have that K = KS1

and Proposition 1.2.4-a) ensures that Psd([0,+1)) = TS1. Hence, TS1 is
saturated. However, by taking the representation K = KS2 with S

2

:= {X3},
we do not have anymore the saturation of the corresponding preordering. In
fact, X 2 Psd(K) but X /2 TS2.

Suppose that there exist �
1

,�

2

2
P

R[X]2 s.t. X = �

1

+X

3

�

2

| {z }

=:q

. Then we

have four possibilities:

• if �
1

⌘ 0 ⌘ �

2

then q(X) ⌘ 0.
• if �

1

⌘ 0 and �

2

6⌘ 0 then deg(q) is odd and � 3.
• if �

1

6⌘ 0 and �

2

⌘ 0 then deg(q) is even.

• if �
1

6⌘ 0 and �

2

6⌘ 0 then deg(q) = max{deg(�
1

), deg(X3

�

2

)} which is
either even or odd � 3.

Hence, X 6⌘ q) which leads to the desired contradiction.

In the one variable case, it is possible to show that for any bcsas K of R[X]
there exists S ⇢ R[X] finite such that K = KS and TS is saturated. Such a S

is called the natural description of K.
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1. Positive Polynomials and Sum of Squares

Definition 1.3.7. Let K be a non-empty bcsas of R, i.e. K is a finite union
of intervals and points. The natural description of K is defined as the finite
subset Snat of R[X] s.t.
(i) if a 2 R is the smallest element of K, then X � a 2 Snat

(ii) if a 2 R is the greatest element of K, then a�X 2 Snat

(iii) if a, b 2 K, a < b and (a, b) \K = �, then (X � a)(X � b) 2 Snat

(iv) no other polynomial is in Snat.

Examples 1.3.8.

• If K = [0,+1) then Snat = {X}, since 0 is the smallest element of
K, K has no greatest element and for all a, b 2 K with a < b we have
(a, b) \K 6= ;.

• If K = [0, 1] then Snat = {X, 1�X}, since 0 is the smallest element of
K, 1 is the greatest element of K and for all a, b 2 K with a < b we
have (a, b) \K 6= ;.

• If K = �1[ [0, 1] then Snat = {X+1, 1�X,X(X+1)}, since �1 is the
smallest element of K, 1 is the greatest element of K and (�1, 0)\K = ;.

Theorem 1.3.9. Let K be a non-empty bcsas of R. Then the preordering
associated to the natural description Snat of K is saturated.

Proof. For notational convenience, set S equal to the natural description Snat

of K. We want to show that Psd(K) = TS .
If K = R then S = ; and TS =

P

R[X]2, so the conclusion holds. There-
fore, we can assume that K ( R. Then Definition 1.3.7 provides the following
information:

• If K has a smallest element a, then X � a 2 S and so

8d  a,X � d = (X � a) · 12 + (a� d) 2 TS . (1.2)

• if K has a greatest element a, then a�X 2 S and so

8d � a, d�X = (a�X) · 12 + (d� a) 2 TS . (1.3)

• if a, b 2 K, a < b and (a, b) \K = �, then (X � a)(X � b) 2 S and, by
Exercise 1 in Sheet 1 we have that

8d, e 2 R s.t. a  d  e  b, (X � d)(X � e) 2 TS . (1.4)

Suppose that f 2 Psd(K) and proceed by induction on deg(f).
If deg(f) = 0 then f(x) = k for all x 2 Rd with k � 0. Hence, f 2

P

R[X]2 ⇢ TS .
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1.3. Relation between Psd(KS) and TS

Suppose that deg(f) = m � 1 and that for all g 2 Psd(K) with deg(g) 
m � 1 we know that g 2 TS . W.l.o.g. we can assume that there exists c 2 R
s.t. f(c) < 0 (otherwise f � 0 on R which gives f 2

P

R[X]2 ⇢ TS). Then
there are the following three possibilities: either K has a least element a and
c < a or K has a largest element a and c > a or there exist a, b 2 K with
a < b, (a, b) \K = ; and a < c < b.

Case 1: if K has a least element a and c < a, then f has a root d in the
interval (c, a]. Therefore, f = (X�d)g for some g 2 R[X] with deg(g) = m�1.
As f � 0 on K and X � d � 0 on K, we get that g 2 Psd(K). Hence, by
inductive assumption we have that g 2 TS . Also, X � d 2 TS by (1.2) and so
f 2 TS .

Case 2: If K has a largest element a and c > a, then f has a root d in the
interval [a, c). Therefore, f = (d�X)g for some g 2 R[X] with deg(g) = m�1.
As f � 0 on K and d � X � 0 on K, we get that g 2 Psd(K). Hence, by
inductive assumption we have that g 2 TS . Also, d�X 2 TS by (1.3) and so
f 2 TS .

Case 3: If there exist a, b 2 K with a < b, (a, b) \K = ; and a < c < b,
then f has a greatest root d in the interval [a, c) and a least root e in the
interval (c, b]. Therefore, f = (X � d)(X � e)g for some g 2 R[X] with
deg(g) = m � 2. As f � 0 on K and (X � d)(X � e) � 0 on K, we get that
g 2 Psd(K). Hence, by inductive assumption we have that g 2 TS . Also,
(X � d)(X � e) 2 TS by (1.4) and so f 2 TS .

Corollary 1.3.10. Let K be a non-empty bcsas of R. If S ⇢ R[X] is finite
s.t. K = KS and S ◆ Snat (up to a positive scalar multiple factor), then TS

is saturated.

Proof. By Theorem 1.3.9, we know that Psd(K) = TSnat . As S ◆ Snat (up
to a positive scalar multiple factor), we also have that TSnat ✓ TS . Hence,
Psd(K) = TS , i.e. TS is saturated.

Note that the converse of this result does not hold in general. In fact, if S
does not contain the natural description then TS might be or not be saturated
as showed by the following example. However, for non-compact bcsas of R
the converse holds.

Example 1.3.11. Let K = [0, 1]. Then Snat = {X, 1 � X} is the natural
description of K. Hence, by Theorem 1.3.9, TSnat is saturated. If we take now
S

1

:= {X3

, 1 � X}, then K = KS1, S1

does not contain Snat and TS1 is not
saturated (see Sheet 1, Exercise 2 for a proof). However, also S

2

= {X(1�X)}
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1.3. Relation between Psd(KS) and TS

Example 1.3.14. Let S := {X3 � Y

3

, 1 � X}. Then KS is compact in R2

and TS is not saturated. Indeed, the polynomial X 2 R[X,Y ] is nonnegative
on KS but does not belong to TS.

Suppose that there exists �

1

,�

2

,�

3

,�

4

2
P

R[X,Y ]2 s.t.

X = �

1

+ (X3 � Y

3)�
2

+ (1�X)�
3

+ (X3 � Y

3)(1�X)�
4

| {z }

=:q

.

Evaluating at Y = 0, we have that X ⌘ q(X, 0) = �

1

(X, 0)+X

3

�

2

(X, 0)+(1�
X)�

3

(X, 0) +X

3(1�X)�
4

(X, 0), i.e. X belongs to the preordering generated
by {X3

, 1�X} in R[X] which is false as showed in Sheet 1, Exercise 2.

For non-compact two dimensional bcsas, we have both saturated and non-
saturated associated preorderings.

Examples 1.3.15.

1. If S = ; ⇢ R[X,Y ] then TS =
P

R[X,Y ]2 is not saturated as KS = R2.
2. If S = {X(1 � X)} ⇢ R[X,Y ], then Psd([0, 1]⇥ R

| {z }

=KS

) = TS, i.e. TS is

saturated (see [8]).

Summarizing we have that a preordering TS in R[X] is always not saturated
if dim(KS) � 3, but can be or cannot be saturated if dim(KS) 2 {1, 2}
(depending on the geometry of KS and the chosen description S).
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