does not contain $S_{\text {nat }}$ and $K=K_{S_{2}}$, but $T_{S_{2}}$ is saturated. Indeed, we have that $X=X^{2}+X(1-X) \in T_{S_{2}}$ and $1-X=(1-X)^{2}+X(1-X) \in T_{S_{2}}$, which imply $T_{S_{n a t}} \subseteq T_{S_{2}}$ and so that $\operatorname{Psd}(K)=T_{S_{2}}$.

Proposition 1.3.12. Let $K \subseteq \mathbb{R}$ be a non-compact bcsas of $\mathbb{R}[X]$ and S a finite subset of $\mathbb{R}[X]$ s.t. $K=K_{S}$. Then T_{S} is saturated $\Leftrightarrow S \supseteq S_{\text {nat }}$ (up to a positive scalar multiple factor).

Before proving this result, let us introduce the notion of width of a quadratic polynomial in one variable and an elementary related property which will be useful in the proof of Proposition 1.3.12.

Definition 1.3.13. Let $f \in \mathbb{R}[X]$ be such that $\operatorname{deg}(f)=2$. If r_{1}, r_{2} are the real roots of f and $r_{1} \leq r_{2}$, then width of f is denoted by $w(f)$ and defined to be $r_{2}-r_{1}$. If f has no real roots, then $w(f):=0$.
Lemma 1.3.14. Let $f_{1}, f_{2} \in \mathbb{R}[X]$ with $\operatorname{deg}\left(f_{1}\right)=2=\operatorname{deg}\left(f_{2}\right)$ and positive leading coefficients. Then $w\left(f_{1}+f_{2}\right) \leq \max \left\{w\left(f_{1}\right), w\left(f_{2}\right)\right\}$.

Proof. W.l.o.g. we can assume that $w\left(f_{1}\right) \geq w\left(f_{2}\right)$ and that $w\left(f_{1}\right)>0$ (otherwise $w\left(f_{1}\right)=w\left(f_{2}\right)=0$ and so $f_{1}+f_{2}$ has either one root or no roots, i.e. $\left.w\left(f_{1}+f_{2}\right)=0\right)$. Shifting and scaling we can always reduce to the case $f_{1}:=X^{2}-X$ and $f_{2}:=c(X-a)(X-(a+b))$ with $a, b, c \in \mathbb{R}$ such that $0 \leq b \leq 1$ and $c>0$. Thus, we get

$$
f_{1}+f_{2}=(c+1) X^{2}-(2 a c+b c+1) X+c a(a+b)
$$

whose roots are $\frac{2 a c+b c+1 \pm \sqrt{(2 a c+b c+1)^{2}-4 c a(a+b)(c+1)}}{2(c+1)}$ and so

$$
w\left(f_{1}+f_{2}\right)=\frac{\sqrt{(2 a c+b c+1)^{2}-4 c a(a+b)(c+1)}}{(c+1)} .
$$

We want to show that $w\left(f_{1}+f_{2}\right) \leq w\left(f_{1}\right)=1$, which by expanding is equivalent to show $\left(1-b^{2}\right)(c+1)+(2 a+b-1)^{2} \geq 0$. The latter indeed holds since $c>0$ and $0 \leq b \leq 1$.

Proof. of Proposition 1.3.12.
One direction always holds by Corollary 1.3.10, while for the converse the non-compactness is essential.

Suppose that K_{S} is not compact and $\operatorname{Psd}\left(K_{S}\right)=T_{S}$. We can assume that for any $g \in S$ we have $\operatorname{deg}(g) \geq 1$. Since K_{S} is not compact, it either contains
an interval of the form $[c,+\infty)$ or it contains an interval of the form $(-\infty, c]$. Replacing X by $-X$ when necessary in the following proof, we can assume that we are in the first case. This implies that every $g \in S$ is non-negative on $[c,+\infty)$ and so has positive leading coefficient.

Suppose that K_{S} has a smallest element a and consider $p:=X-a$. Then $p \in \operatorname{Psd}\left(K_{S}\right)$ and so by assumption we have $p \in T_{S}$. This together with the fact that $\operatorname{deg}(p)=1$ and that $\operatorname{deg}(g) \geq 1$, for all $g \in S$ ensures that $p=\sigma_{1} g_{1}+\ldots+\sigma_{t} g_{t}$, where $\sigma_{1}, \ldots, \sigma_{t} \in \mathbb{R}^{+}$and $g_{i} \in S$ with $\operatorname{deg}\left(g_{i}\right)=1$ for $i=1, \ldots, t$. As $p(a)=0$ and $g_{i}(a) \geq 0$ for all $i=1, \ldots, t$ (since $a \in K_{S}$), we can conclude that there exists at least one $i \in\{1, \ldots, t\}$ such that $g_{i}(a)=0$. Hence, there exists $r>0$ such that $g_{i}=r(X-a)$, i.e. $r(X-a) \in S$ as required.

Suppose now that $a, b \in K_{S}$ are such that $a<b$ and $(a, b) \cap K_{S}=\emptyset$ and set $p:=(X-a)(X-b)$. Then $p \in \operatorname{Psd}\left(K_{S}\right)$ and so by assumption $p \in T_{S}$. This together with the fact that $\operatorname{deg}(p)=2$ and that $\operatorname{deg}(g) \geq 1, \forall g \in S$ ensures that p is a sum of terms of the form σf and $\xi g h$ with $\sigma, \xi \in \mathbb{R}^{+}$and $f, g, h \in S$ with $\operatorname{deg}(f) \in\{1,2\}$ and $\operatorname{deg}(g)=1=\operatorname{deg}(h)$. Since any linear $g \in S$ is increasing and $g(a) \geq 0, g$ is positive on the interval (a, b). Thus, $p \geq \sigma_{1} g_{1}+\cdots+\sigma_{t} g_{t}$ on (a, b), where $\sigma_{1}, \ldots, \sigma_{t} \in \mathbb{R}^{+} \backslash\{0\}$ and $g_{1}, \ldots, g_{t} \in S$ are quadratics which assume at least one negative value on (a, b). Now for each $i \in\{1, \ldots, t\}$, we have that g_{i} opens upward, $g_{i}(a) \geq 0$ and $g_{i}(b) \geq 0$, which imply that g_{i} has its roots in $[a, b]$ and consequently $w\left(g_{i}\right) \leq b-a$ (see Definition 1.3.13). Since $w(p)=b-a$ and $p \geq \sigma_{1} g_{1}+\cdots+\sigma_{t} g_{t}$ on (a, b), we have that necessarily $w\left(\sigma_{1} g_{1}+\cdots+\sigma_{t} g_{t}\right)=b-a$. Hence, by Lemma 1.3.14, we get

$$
b-a=w\left(\sigma_{1} g_{1}+\cdots+\sigma_{t} g_{t}\right) \leq \max _{i=1, \ldots, t} w\left(\sigma_{i} g_{i}\right)=\max _{i=1, \ldots, t} w\left(g_{i}\right) \leq b-a,
$$

which implies that there exists $i \in\{1, \ldots, t\}$ such that $w\left(g_{i}\right)=b-a$. Hence, g_{i} necessarily has the form $r(X-a)(X-b)$ for some real $r>0$, that is, $r(X-a)(X-b) \in S$ as required.

Applying the so-called Scheiderer's Local Global Principle (see e.g. [29, Section 9]), one can provide examples of two dimensional compact bcsas which can be described by a saturated preordering.

Examples 1.3.15.

1. The preordering T_{S} for $S=\{X, 1-X, Y, 1-Y\}$ is saturated. Here K_{S} is the unit square in \mathbb{R}^{2}.
2. The preordering T_{S} for $S=\left\{1-X^{2}-Y^{2}\right\}$ is saturated. Here K_{S} is the unit disk in \mathbb{R}^{2}.

However, there are examples of two dimensional compact bcsas for which saturation does not hold.

Example 1.3.16. Let $S:=\left\{X^{3}-Y^{3}, 1-X\right\}$. Then K_{S} is compact in \mathbb{R}^{2} and T_{S} is not saturated. Indeed, the polynomial $X \in \mathbb{R}[X, Y]$ is nonnegative on K_{S} but does not belong to T_{S}.

Suppose that there exists $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4} \in \sum \mathbb{R}[X, Y]^{2}$ s.t.

$$
X=\underbrace{\sigma_{1}+\left(X^{3}-Y^{3}\right) \sigma_{2}+(1-X) \sigma_{3}+\left(X^{3}-Y^{3}\right)(1-X) \sigma_{4}}_{=: q} .
$$

Evaluating at $Y=0$, we have that $X \equiv q(X, 0)=\sigma_{1}(X, 0)+X^{3} \sigma_{2}(X, 0)+(1-$ $X) \sigma_{3}(X, 0)+X^{3}(1-X) \sigma_{4}(X, 0)$, i.e. X belongs to the preordering generated by $\left\{X^{3}, 1-X\right\}$ in $\mathbb{R}[X]$ which is false as showed in Sheet 1, Exercise 2.

For non-compact two dimensional bcsas, we have both saturated and nonsaturated associated preorderings.

Examples 1.3.17.

1. If $S=\emptyset \subset \mathbb{R}[X, Y]$ then $T_{S}=\sum \mathbb{R}[X, Y]^{2}$ is not saturated as $K_{S}=\mathbb{R}^{2}$.
2. If $S=\{X(1-X)\} \subset \mathbb{R}[X, Y]$, then $\operatorname{Psd}(\underbrace{[0,1] \times \mathbb{R}}_{=K_{S}})=T_{S}$,
i.e. T_{S} is saturated (see [30]).

Summarizing we have that a preordering T_{S} in $\mathbb{R}[\underline{X}]$ is always not saturated if $\operatorname{dim}\left(K_{S}\right) \geq 3$, but can be or cannot be saturated if $\operatorname{dim}\left(K_{S}\right) \in\{1,2\}$ (depending on the geometry of K_{S} and the chosen description S).

1.3.2 Representation Theorem and Positivstellensätze

We have seen that saturation of preorderings does not occur for a large class of bcsas. Therefore, in the cases when saturation does not occur, it is still standing our question of how to characterise $\operatorname{Psd}\left(K_{S}\right)$ in terms of T_{S} without using quotients of its elements. For compact bcsas, a denominator free Positivstellensatz was provided by Schmüdgen in [36] as a corollary of a fundamental result for the $K-\mathrm{MP}$ for K compact bcsas. This rather surprising result had a great impact in this area and it can be considered a breakthrough in both the theory of positive polynomials and the moment problem. Generalizations of this result were proved by Putinar in [33] and Jacobi in [17] in the coming ten years. Moreover, the Schmüdgen Positivstellensatz gave the impulse to a lively research activity about the moment problem in the non-compact case.

In this section, we are not providing the original Schmüdgen proof but we will derive his Positivstellensatz from a general version of the so-called

Representation Theorem due to Marshall [27]. Actually, Schmüdgen's Positivstellensatz can be obtained as a corollary of a less general and earlier version of the Representation Theorem due to Krivine [21, 22]. This was first noticed by Wörmann in [40], but there was no obvious way to derive Putinar's Positivstellensatz from the Krivine Representation Theorem. Only in 2001 with Jacobi's generalized version of the Representation Theorem [17] it became possible to give a completely algebraic proof of Putinar's Positivstellensatz. The further extension of the Representation Theorem we give here (see Theorem 1.3.24) allows to derive all the above mentioned Positivstellensätze as well as a nice refinement of Putinar's result (see Theorem ??). In order to state such a Representation Theorem we need to introduce the following general setting.

Let A be a commutative ring with 1 and for simplicity let us assume that $\mathbb{Q} \subseteq A$. We denote by $X(A)$ the character space of A, i.e. the set of all unitary ring homomorphisms from A to \mathbb{R}. For any $a \in A$, we define the Gelfand transform $\hat{a}: X(A) \rightarrow \mathbb{R}$ as $\hat{a}(\alpha):=\alpha(a), \forall \alpha \in X(A)$.

For any subset M of A, we set

$$
\mathcal{K}_{M}:=\{\alpha \in X(A): \hat{a}(\alpha) \geq 0, \forall a \in M\} .
$$

If $M=\sum A^{2 d}$ then $\mathcal{K}_{M}=X(A)$. If M is the $2 d$-power module of A generated by $\left\{p_{j}\right\}_{j \in J}$ then $\mathcal{K}_{M}=\left\{\alpha \in X(A): \hat{p}_{j}(\alpha) \geq 0, \forall j \in J\right\}$.

If $a \in M$, then clearly $\hat{a} \geq 0$ on \mathcal{K}_{M}. Does the converse hold, i.e. is it true that if $a \in A$ is such that $\hat{a} \geq 0$ on \mathcal{K}_{M}, then $a \in M$? The Representation Theorem exactly provides an answer to this question. In order to rigorously formulate this result, we need some further notions and properties.

Definition 1.3.18. A preprime of A is a subset T of A such that $T+T \subseteq T$, $T \cdot T \subseteq T$ and $\mathbb{Q}^{+} \subseteq T$.
Definition 1.3.19. Let T be a preprime of A.

- $A T$-module of A is a subset M of A such that $M+M \subseteq M, T \cdot M \subseteq M$ and $1 \in M$.
- A T-module is said to be Archimedean if for each $a \in A$ there exists $N \in \mathbb{N}$ such that $N \pm a \in M$.

Remark 1.3.20.

- A preprime T is itself a T-module.
- If a preprime T is Archimedian, then any T-module is also Archimedian since $T \subseteq M$.

Note that, for $d \in \mathbb{N}$, any $2 d$-power preordering of A is a preprime and any $2 d$-power module of A is a $\sum_{A}^{2 d}$-module (see Definition 1.2.5). In particular, any quadratic module of A is a $\sum A^{2}$-module and the following holds.

Proposition 1.3.21. Let M be a quadratic module of A. Then
a) $H_{M}:=\{a \in A: \exists N \in \mathbb{N}$ s.t. $N \pm a \in M\}$ is a subring of A.
b) $M \cap H_{M}$ is an Archimedean quadratic module of H_{M}.
c) M is Archimedean if and only if $H_{M}=A$.
d) $\forall a \in A, a^{2} \in H_{M} \Rightarrow a \in H_{M}$.
e) $\forall a_{1}, \ldots, a_{k} \in A, \sum_{i=1}^{k} a_{i}^{2} \in H_{M} \Rightarrow a_{i} \in H_{M} \forall i=1, \ldots, k$.

Proof. (see e.g. [23, Proposition 2.1, Lecture 28] and [29, Proposition 5.2.3])

Corollary 1.3.22. Let M be a quadratic module of $\mathbb{R}[\underline{X}]$. The following are equivalent:
(1) M is Archimedean
(2) $\exists N \in \mathbb{N}$ such that $N-\sum_{i=1}^{n} X_{i}^{2} \in M$.
(3) $\exists N \in \mathbb{N}$ such that $N \pm X_{i} \in M$ for $i=1, \ldots, n$.

Proof.
$(1) \Rightarrow(2)$ This is clear from the definition of Archimedean quadratic module.
$(2) \Rightarrow(3)$ Suppose that there exists $k \in \mathbb{N}$ such that $k-\sum_{i=1}^{n} X_{i}^{2} \in M$. Then $\sum_{i=1}^{n} X_{i}^{2} \in H_{M}$ and so Proposition 1.3.21-e) ensures that for each $i \in\{1, \ldots, n\}$ we have that $X_{i} \in H_{M}$. Hence, there exists $N \in \mathbb{N}$ such that $N \pm X_{i} \in M$, i.e. (3) holds.
$(3) \Rightarrow(1)$ Suppose that there exists $k \in \mathbb{N}$ such that $k \pm X_{i} \in M$ for $i=1, \ldots, n$. Then $X_{i} \in H_{M}$ for $i=1, \ldots, n$ and since $\mathbb{R}^{+} \subseteq M$ we also have that $\mathbb{R} \subseteq H_{M}$. Hence, Proposition 1.3.21-a) guarantees that $H_{M}=\mathbb{R}[\underline{X}]$, which is equivalent to the Archimedeanity of M by Proposition 1.3.21-c).

For the general version of the Representation Theorem, we need to strengthen a bit our assumptions on T.

Definition 1.3.23. A preprime T is said to be weakly torsion if for any $a \in A$ there exists a positive rational r and $m \in \mathbb{N}$ such that $(r+a)^{m} \in T$.

Clearly, any Archimedean preprime is weakly torsion. Also, for $d \in \mathbb{N}$, any $2 d$-power preordering of A is a weakly torsion preprime (just take $m=2 d$).

We are finally ready to state the general version of the Representation Theorem we had announced (for a proof see [27], [17] and [29, Theorem 5.4.4]). Other versions of the Representation Theorem can be found in [1], [19], [21, 22], [8], [39].

Theorem 1.3.24. Let A be a commutative ring with 1 such that $\mathbb{Q} \subseteq A$. If T is a weakly torsion preprime of A and M an Archimedean T-module of A, then for any $a \in A$ we have:

$$
\hat{a}>0 \text { on } \mathcal{K}_{M} \Rightarrow a \in M .
$$

Remark 1.3.25.

a) Taking $M=T$ with T Archimedean preprime, we get Krivine's version of the Representation Theorem (see [21, 22] and also [23, Corollary 2.1, Lecture 27]). From this version, we can already derive the Schmüdgen Positivstellensatz as it was first noted by Wörmann in [40] (see Theorem 1.3.31).
b) Taking $d \in \mathbb{N}$ and $T=\sum A^{2 d}$, we get the Jacobi-Prestel Positivstellensatz (see Theorem 1.3.28) from which one can straightforwardly derive Putinar's Positivstellensatz (see Theorem 1.3.29).
To understand the meaning of the Representation Theorem 1.3.24 for $A=$ $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, we need to understand what the Gelfand transform and the characters are in this special case.

Proposition 1.3.26.
a) The identity id: $\mathbb{R} \rightarrow \mathbb{R}$ is the unique ring homomorphism from \mathbb{R} to \mathbb{R}
b) $X\left(\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right)$ is in a one-to-one correspondence with \mathbb{R}^{n}.

Proof.

a) Suppose that $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ is a ring homomorphism such that $\alpha \neq i d$. Then there exists $a \in \mathbb{R}$ such that $\alpha(a) \neq i d(a)$, say $\alpha(a)<i d(a)$. Thus, there exists $q \in \mathbb{Q}$ such that $\alpha(a)<q<i d(a)$ and so $\alpha(a-q)<0$ while $i d(a-q)>0$, i.e. $a-q \notin \alpha^{-1}\left(\mathbb{R}^{+}\right)$and $a-q \in i d^{-1}\left(\mathbb{R}^{+}\right)$. Hence, we have that $\alpha^{-1}\left(\mathbb{R}^{+}\right) \neq i d^{-1}\left(\mathbb{R}^{+}\right)$. However, α maps squares to squares and so we also have that $\alpha^{-1}\left(\mathbb{R}^{+}\right)=\mathbb{R}^{+}=i d^{-1}\left(\mathbb{R}^{+}\right)$, which yields a contradiction.
b) By a), for any $\alpha \in X\left(\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right)$ we have that $\alpha \upharpoonright_{\mathbb{R}}=i d$, which easily implies that α is completely determined by $\left(\alpha\left(X_{1}\right), \ldots, \alpha\left(X_{n}\right)\right) \in \mathbb{R}^{n}$.

In fact, for any $p:=\sum_{\beta} p_{\beta} \underline{X}^{\beta} \in \mathbb{R}[\underline{X}]$ with $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}_{0}^{n}$ and $\underline{X}^{\beta}:=X_{1}^{\beta_{1}} \cdots X_{n}^{\beta_{n}}$, we have that

$$
\begin{aligned}
\alpha(p) & =\alpha\left(\sum_{\beta} p_{\beta} \underline{X}^{\beta}\right)=\sum_{\beta} \alpha\left(p_{\beta}\right) \alpha\left(X_{1}\right)^{\beta_{1}} \cdots \alpha\left(X_{n}\right)^{\beta_{n}} \\
& =\sum_{\beta} p_{\beta} \alpha\left(X_{1}\right)^{\beta_{1}} \cdots \alpha\left(X_{n}\right)^{\beta_{n}}=p\left(\alpha\left(X_{1}\right), \ldots, \alpha\left(X_{n}\right)\right) .
\end{aligned}
$$

Conversely, for any $y \in \mathbb{R}^{n}$ we can define the map $\alpha_{y}: \mathbb{R}\left[X_{1}, \ldots, X_{n}\right] \rightarrow \mathbb{R}$ by $\alpha_{y}(p):=p(y)$ for any $p \in \mathbb{R}[\underline{X}]$, which is clearly a ring homomorphism, i.e. $\alpha_{y} \in X\left(\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right)$. Hence, $X\left(\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right) \cong \mathbb{R}^{n}$.

Remark 1.3.27. Using the isomorphism between $X\left(\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right)$ and \mathbb{R}^{n} we get that for any $p \in \mathbb{R}[\underline{X}]$ the Gelfand transform \hat{p} is identified with the polynomial p itself. Moreover, if M is a $2 d$-power module of $\mathbb{R}[\underline{X}]$ then

$$
\begin{aligned}
\mathcal{K}_{M} & =\left\{\alpha \in X\left(\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]\right): \hat{q}(\alpha) \geq 0, \forall q \in M\right\} \\
& \cong\left\{x \in \mathbb{R}^{n}: q(x) \geq 0, \forall q \in M\right\}=K_{M} .
\end{aligned}
$$

In particular, if $S \subset \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and M_{S} is the $2 d$-power module generated by S then

$$
\begin{aligned}
\mathcal{K}_{M_{S}} \cong K_{M_{S}} & =\left\{x \in \mathbb{R}^{n}: q(x) \geq 0, \forall q \in M_{S}\right\} \\
& =\left\{x \in \mathbb{R}^{n}: q(x) \geq 0, \forall q \in S\right\}=K_{S} .
\end{aligned}
$$

Applying the Representation theorem 1.3.24 for $T=\sum \mathbb{R}[\underline{X}]^{2 d}$ with $d \in \mathbb{N}$ and using Remark 1.3.27 we easily get the following results.

Theorem 1.3.28 (Jacobi-Prestel's Positivstellensatz). Let M be an Archimedean $2 d$-power module of $\mathbb{R}[\underline{X}]$ with $d \in \mathbb{N}$. Then for any $f \in \mathbb{R}[\underline{X}]$

$$
f>0 \text { on } K_{M} \Rightarrow f \in M
$$

In particular, taking $d=1$ we easily get:
Theorem 1.3.29 (Putinar's Positivstellensatz). Let $S \subset \mathbb{R}[\underline{X}]$ be finite such that the quadratic module M_{S} generated by S is Archimedean. Then for any $f \in \mathbb{R}[\underline{X}]$

$$
f>0 \text { on } K_{S} \Rightarrow f \in M_{S} .
$$

1.3. Relation between $\operatorname{Psd}\left(K_{S}\right)$ and T_{S} (resp. $\left.M_{S}\right)$

To get Schmüdgen's Positivstellensatz from Theorem 1.3.24, we need to understand how the compactness of K_{S} relates to the Archimedeanity of the associated quadratic preordering T_{S}. The following criterion was provided by Wörmann in [40].
Theorem 1.3.30 (Wörmann Theorem). Let $S \subset \mathbb{R}[\underline{X}]$ be finite. The corresponding bcsas K_{S} is compact if and only if the associated quadratic preordering T_{S} is Archimedean.

Proof. (see e.g. [29, Theorem 6.1.1] or [23, Theorem 2.1, Lecture 28])
Theorem 1.3.31 (Schmüdgen's Positivstellensatz). Let $S \subset \mathbb{R}[\underline{X}]$ be finite such that the associated bcsas K_{S} is compact. Then for any $f \in \mathbb{R}[\underline{X}]$

$$
f>0 \text { on } K_{S} \Rightarrow f \in T_{S} .
$$

Proof. By Wörmann Theorem, the quadratic preordering T_{S} is Archimedean and so a weakly torsion preprime. Hence, by taking $T=M=T_{S}$ in the Representation Theorem 1.3.24 and using Remark 1.3.27, we obtain the conclusion.

