
1.3. Relation between Psd(K
S

) and T
S

(resp. M
S

)

To get Schmüdgen’s Positivstellensatz from Theorem 1.3.24, we need to
understand how the compactness of K

S

relates to the Archimedeanity of the
associated quadratic preordering T

S

. The following criterion was provided by
Wörmann in [24].

Theorem 1.3.30 (Wörmann Theorem). Let S ⇢ R[X] be finite. The corre-
sponding bcsas K

S

is compact if and only if the associated quadratic preorder-
ing T

S

is Archimedean.

Proof. (see e.g. [15, Theorem 6.1.1] or [12, Theorem 2.1, Lecture 28])

Theorem 1.3.31 (Schmüdgen’s Positivstellensatz). Let S ⇢ R[X] be finite
such that the associated bcsas K

S

is compact. Then for any f 2 R[X]

f > 0 on K
S

) f 2 T
S

.

Proof. By Wörmann Theorem, the quadratic preordering T
S

is Archimedean
and so a weakly torsion preprime. Hence, by taking T = M = T

S

in the
Representation Theorem 1.3.24 and using Remark 1.3.27, we obtain the con-
clusion.

Remark 1.3.32.

a) Schmüdgen’s Positivstellensatz fails in general if we drop the compactness
assumption on K

S

.

For example,

• for n = 1 and S = {X3}, we have that K
S

= [0,1) is non-compact
and X + 1 > 0 on K

S

but X + 1 /2 T
S

(otherwise there would exist
�
0

,�
1

2
P

R[X]2 such that X +1 = �
0

+ �
1

X3 but this impossible as
the right-hand side would have either even degree or odd degree � 3
(see Example 1.3.6)).

• for n = 2 and S = ;, we have that the strictly positive version of
the Motzkin polynomial 1�X2

1

X2

2

+X2

1

X4

2

+X4

1

X2

2

is indeed strictly
positive on K

S

= R2 but does not belong to T
S

=
P

R[X
1

, X
2

]2.
b) Schmüdgen’s Positivstellensatz fails in general if the assumption of strict

positivity on K
S

is replaced by the nonnegativity on K
S

. For example,
for n = 1 and S = {(1 � X2)3} we have that K

S

= [�1, 1] is compact,
1�X2 � 0 on K

S

but 1�X2 /2 T
S

.

c) Schmüdgen’s Positivstellensatz fails in general when the preordering T
S

is
replaced by the quadratic module M

S

. The question of whether this was
true was first posed by Putinar in [19] and got a negative answer in [8,
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Example 4.6], where Jacobi and Prestel showed that for n � 2 and S =
{g

1

, . . . , g
n+1

} with g
i

:= X
i

� 1

2

for i = 1, . . . , n and g
n+1

:= 1�
Q

n

i=1

X
i

we have that K
S

is compact but M
S

is not Archimedean (thus, there exists
N 2 N such that N �

P

n

i=1

X2

i

> 0 on K
S

but N �
P

n

i=1

X2

i

/2 M
S

). This
counterexample provides a general negative answer to Putinar’s question,
but there are actually cases in which the compactness of K

S

implies the
Archimedeanity of M

S

. For instance, this holds in each of the following
cases

• |S| = 1 (as in this case T
S

= M
S

)
• |S| = 2 (proof in [8]).
• n = 1 (proof in Sheet 2, Exercise 2)
• S consists only of linear polynomials (see [15, Theorem 7.1.3]).

Note that if M
S

is Archimedean then K
S

is always compact. Indeed,
Archimedeanity of M

S

implies that there exists N 2 N such that N �
P

n

i=1

X2

i

2 M
S

and so N �
P

n

i=1

X2

i

� 0 on K
S

. Hence, K
S

is contained
in the closed ball of radius

p
N in Rn endowed with the euclidean topology,

i.e. K
S

is bounded. This together with the fact that K
S

is closed provides
that K

S

is compact.

Let us give now a further application of the Representaton Theorem 1.3.24,
which shows the power of this very general version and allows to refine the
representation provided by Putinar’s Positivstellensatz (see Theorem 1.3.29).

Theorem 1.3.33. Let S := {g
1

, . . . , g
s

} be a finite subset of R[X] such that
the associated quadratic module M

S

is Archimedean. Then, for any real N >
0, any f > 0 on K

S

can be represented as f = �
0

+ �
1

g
1

+ · · · + �
s

g
s

where
each �

i

is a sum of squares of polynomials which are strictly positive on the
closed ball B

N

:= {x 2 Rn : kxk  N} (here k · k is the euclidean norm).

Proof. Let N be a strictly positive real number and f > 0 on K
S

. Define

T̃ ⇤ := {
X

f2

i

: f
i

2 R[X], f
i

> 0 on B
N

}, T̃ := T̃ ⇤ [ {0}

and
M̃⇤ := T̃ ⇤ + T̃ ⇤g

1

+ · · ·+ T̃ ⇤g
s

, M̃ := M̃⇤ [ {0}.

As B
N

is compact, for any g 2 R[X] there exists r 2 Q positive such that
r+ g > 0 on B

N

and so (r+ g)2 2 T̃ ⇤. Hence, T̃ is a weakly torsion preprime.
Claim: For any h 2 R[X] there exists l 2 N such that l + h 2 M̃⇤.
(see Sheet 2, Exercise 3 for a proof of the Claim).

Since T̃ is a preprime, it easily follows from the definitions that M̃ + M̃ ✓
M̃ and T̃ M̃ ✓ M̃ . Moreover, applying the claim for h = 0, we have that there
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exists l 2 N such that l 2 M̃⇤ and so 1 = l · 1

l

2 QM̃⇤ ✓ M̃⇤ ✓ M̃ . Thus, M̃

is a T̃�module. By the Claim, M̃ is also Archimedean.
To apply Theorem 1.3.24, it remains to show that K

S

= K
˜

M

. Once this

is proved, the theorem ensures that f 2 M̃ .
(✓) As M̃ ✓ M

S

, we have that K
S

✓ {x 2 Rn : g(x) � 0, 8g 2 M̃} = K
˜

M

.
(◆) Suppose there exists x 2 K

˜

M

such that x /2 K
S

. Then there exists
i 2 {1, . . . , s} such that g

i

(x) < 0. Take h :=
P

s

j=0

r
j

g
j

with g
0

:= 1, r
j

= 1
for all j 6= i, and r

i

> ls where l 2 N such that g
j

(x) < �lg
i

(x) for all
j 6= i. Thus, h 2 M̃ but h(x) =

P

j 6=i

g
j

(x) + r
i

g
i

(x) < �lsg
i

(x) + r
i

g
i

(x) =
(r

i

� ls)g
i

(x) < 0, which yields x /2 K
˜

M

that is a contradiction.

1.3.3 Closure of even power modules

In this section, we are going to see how the Positivstellensätze considered in
the previous section can be used to better understand the relation between
Psd(K

S

) and T
S

(resp. M
S

). For this purpose, let us recall the following
application of Hahn-Banach Theorem which we have studied in [6, Section 5.2].

Corollary 1.3.34. Let (X, ⌧) be a locally convex t.v.s. over the real numbers.
If C is a nonempty closed cone of X and x and x

0

2 X \C, then there exists a
linear ⌧�continuous functional L : X ! R non identically zero s.t. L(C) � 0
and L(x

0

) < 0.

Recall that a cone of X is a subset C ✓ X such that C + C ✓ C and
�C ✓ C for all � 2 R+.

Proof. As C is closed in (X, ⌧) and x
0

2 X \C, we have that X \C is an open
neighbourhood of x

0

. Then the local convexity of (X, ⌧) guarantees that there
exists an open convex neighbourhood V of x

0

s.t. V ✓ X \ C i.e. V \ C = ;.
By the Geometric form of Hahn-Banach theorem, we have that there exists a
closed hyperplane H of X separating V and C, i.e. there exists L : X ! R
linear ⌧�continuous and not identically zero s.t. L(C) � 0 and L(V ) < 0
(see [6, Proposition 5.2.1-c)] for more details). In particular, L(C) � 0 and
L(x

0

) < 0.

Given a convex cone C in any t.v.s. (X, ⌧) we define the first and the
second dual of C w.r.t. ⌧ respectively as follows:

C_
⌧

:= {` : X ! R linear |` is ⌧ � continuous and `(C) � 0}

C__
⌧

:= {x 2 X |8 ` 2 C_
⌧

, `(x) � 0}.
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Note that
• C ✓ C__

⌧

, because if x 2 C then for all ` 2 C_
⌧

we have `(x) � 0 by
definition of C_

⌧

.
• C__

⌧

is closed in (X, ⌧), because C__
⌧

=
T

`2C_
⌧

`�1([0,1)) and each

` 2 C_
⌧

is by definition ⌧�continuous.
Hence, C

⌧ ✓ C__
⌧

always holds.

Corollary 1.3.35. Let (X, ⌧) be a locally convex t.v.s. over the real numbers.
If C is a nonempty convex cone in X, then C

⌧

= C__
⌧

.

Proof. Suppose there exists x0 2 C__
⌧

\ C⌧

. By Corollary 1.3.34, there exists
a ⌧�continuous functional L : X ! R non identically zero s.t. L(C

⌧

) � 0
and L(x0) < 0. As L(C) � 0 and L is ⌧�continuous, we have L 2 C_

⌧

. This
together with the fact that L(x0) < 0 give x0 /2 C__

⌧

, which is a contradiction.
Hence, C

⌧

= C__
⌧

.

The previous results clearly apply to R[X] endowed with the finite topology
⌧
f

. Indeed, we have already observed in Section 1.1 that ⌧
f

is actually the
finest locally convex topology on R[X] and so that (R[X], ⌧f) is a locally
convex t.v.s.. Moreover, keeping in mind [21, Theorem 3.1.1], it is easy to prove
that (R[X], ⌧

f

) is actually a topological algebra, i.e. a t.v.s. with separately
continuous multiplication. Hence, we can prove the following properties.

Proposition 1.3.36. Let d 2 N, M a 2d�power module of R[X] and ' the
finest locally convex topology on R[X]. Then
(a) M

'

is a 2d�power module of R[X]
(b) If M is a preordering, then M

'

is a preordering.
(c) M

'

= M__
'

✓ Psd(K
M

)

Proof. (a) As M is a 2d�power module of R[X] and (R[X],') is a topological
algebra, we have that 1 2 M ✓ M

'

, M
'

+ M
' ✓ M +M

' ✓ M
'

and
p2dM

' ✓ p2dM
' ✓ M

'

. Hence, M
'

is a 2d�power module.
(b) IfM is a 2d�power preordering, then (a) ensures thatM

'

is a 2d�power
module. Moreover, using that M ·M ✓ M and (R[X],') is a topological al-
gebra, we get that M

' ·M' ✓ M ·M' ✓ M
'

. Hence, M
'

is a preordering.
(c) Since every 2d�power module is a cone, Corollary 1.3.35 guarantees

that M
'

= M__
'

. For any x 2 Rn, the map e
x

: R[X] ! R defined by e
x

(p) :=
p(x) is a R�algebra homomorphism. Hence, for all x 2 Rn, e

x

is linear and
so '�continuous. Also, for all x 2 K

M

, we have that e
x

(g) = g(x) � 0 for all
g 2 M , i.e. e

x

2 M_
'

. Then for any f 2 M__
'

we get that f(x) = e
x

(f) � 0
for all x 2 K

M

, i.e. f 2 Psd(K
S

).
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Let us now come back to the Positivstellensätze introduced in the last
sections and derive from them the corresponding Nichtnegativstellensätze.

Corollary 1.3.37 (Jacobi-Prestel’s Nichtnegativstellensatz). Let M be an
Archimedean 2d�power module of R[X] with d 2 N. Then for any f 2 R[X]

f � 0 on K
M

) 8" > 0, f + " 2 M.

Proof. Let f 2 R[X] be such that f � 0 on K
M

. Then for any " > 0, we have
that f + " > 0 on K

M

and so Theorem 1.3.28 ensures that f + " 2 M.

Corollary 1.3.38 (Putinar’s Nichtnegativstellensatz). Let S ⇢ R[X] be finite
such that the quadratic module M

S

generated by S is Archimedean. Then for
any f 2 R[X]

f � 0 on K
S

) 8" > 0, f + " 2 M
S

.

Corollary 1.3.39 (Schmüdgen’s Nichtnegativstellensatz). Let S ⇢ R[X] be
finite such that the associated bcsas K

S

is compact. Then for any f 2 R[X]

f � 0 on K
S

) 8" > 0, f + " 2 T
S

.

Using Proposition 1.3.36 and the Nichtnegativstellensätze, we easily get
the following closure results.

Corollary 1.3.40. Let M be an Archimedean 2d�power module of R[X] with
d 2 N. Then Psd(K

M

) = M
'

.

Proof. By Proposition 1.3.36-(c), Psd(K
M

) ◆ M
'

. For the converse inclusion,
let f 2 Psd(K

M

) and " > 0. The Jacobi-Prestel’s Nichtnegativstellensatz
1.3.37 guarantees that f + " 2 M and so, for any ` 2 M_

'

, we have that

`(f + ") � 0, i.e. `(f) � �"`(1). Then `(f) � 0 and so f 2 M__
'

Cor1.3.35

=

M
'

.

Corollary 1.3.41. Let S ⇢ R[X] be finite such that the quadratic module M
S

generated by S is Archimedean. Then Psd(K
S

) = (M
S

)
'

Corollary 1.3.42. Let S ⇢ R[X] be finite such that the associated bcsas K
S

is compact. Then Psd(K
S

) = (T
S

)
'

These results make us understanding that even when we do not have satu-
ration of the preordering we still have cases when Psd(K

S

) can be character-
ized in terms of T

S

or M
S

, namely as closures of these cones w.r.t. the finest
locally convex topology '. Note that typically T

S

is not closed.
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In fact, if S is a finite subset of R[X] such that K
S

is compact and
dim(K

S

) � 3, then Corollary 1.3.42 ensures that Psd(K
S

) = (T
S

)
'

but by
Theorem 1.3.5 we also know that Psd(K

S

) 6= T
S

so T
S

6= (T
S

)
'

, i.e.T
S

is not
closed in (R[X],').

In the case when K
S

is not compact (and so M
S

is not Archimedean), we
cannot apply the previous closure results so is it natural to ask if we can get
similar results by considering closures w.r.t. other locally convex topologies.
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