
1. Positive Polynomials and Sum of Squares

In fact, if S is a finite subset of R[X] such that K

S

is compact and
dim(K

S

) � 3, then Corollary 1.3.42 ensures that Psd(K
S

) = (T
S

)
'

but by
Theorem 1.3.5 we also know that Psd(K

S

) 6= T

S

so T

S

6= (T
S

)
'

, i.e.T
S

is not
closed in (R[X],'). In the case when K

S

is not compact (and so M

S

is not
Archimedean), we cannot apply the previous closure results, so is it natural to
ask if we can get similar results by considering closures w.r.t. other topologies
rather than '.

Closures of even power modules of R[X
1

, . . . , X

n

] have been studied already
since the seventies. Indeed, the cone

P

R[X
1

, . . . , X

n

]2 is closed in (R[X],')
(see Sheet 3, Exercise 2), so taking its closure w.r.t. ' does not help to char-
acterize Psd(Rn) for n � 2 (as Psd(Rn) 6=

P

R[X]2 =
P

R[X]2
'

). However,
every polynomial in Psd(Rn) can be approximated by elements in

P

R[X]2

w.r.t. the topology induced by the norm k · k
1

, where kfk
1

:=
P

↵

|f
↵

| for
any f =

P

↵

f

↵

X

↵ 2 R[X]. In fact, in [2, Theorem 9.1] the authors show

that Psd([�1, 1]n) =
P

R[X]2
k·k1

, i.e.
P

R[X]2 is dense in Psd([�1, 1]n)
w.r.t. k · k

1

on R[X] (see also [23]). This result is actually established in
[2] as a corollary of a general result valid for any commutative semigroup.
In [3] and [4] the results in [2] were extended further, to include commuta-
tive semigroups with involution and topologies induced by absolute values. In
[11] a new proof of these results is given by using the Representation Theo-
rem 1.3.24 and they are at the same time extended from sums of squares to
sums of 2d�powers. In particular, the authors prove that for any d 2 N we

get Psd([�1, 1]n) =
P

R[X]2d
k·k1

. The closure of
P

R[X]2d w.r.t. to k · k
p

with 1  p  1 has been studied in [9], where it is showed that for any d 2 N
we have Psd([�1, 1]n) =

P

R[X]2d
k·kp

. In this same work also the closure of
P

R[X]2d w.r.t. weighted versions of k ·k
p

has been considered. In particular,
Lasserre in [22] identified a weighted version k · k

w

of the norm k · k
1

such that

for any S ✓ R[X] finite Psd(K
S

) = M

S

k·kw .

The question of establishing when the closure of an even power module
M in R[X] coincides with Psd(K) for some subset K of Rn can be clearly
considered also for even power modules in any unital commutative topological
R�algebra. Such a general setting was studied in [10] and [12]. We would
like to present here the main result [12] as it is a powerful application of the
Representation Theorem 1.3.24 and allows to deduce several of the closure
results mentioned above.
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S

) and T

S

(resp. M
S

)

Let A be a unital commutative R�algebra and denote by X(A) the char-
acter space of A (see Section 1.3.2 for the definition). For any M ✓ A, recall
that K

M

:= {↵ 2 X(A) : â(↵) � 0, 8a 2 M}, where â is the Gelfand transform
of a (see Section 1.3.2 for the definition).

Definition 1.3.43. A function ⇢ : A ! R is called a seminorm if

1. ⇢ is subadditive: 8x, y 2 A, ⇢(x+ y)  ⇢(x) + ⇢(y).

2. ⇢ is positively homogeneous: 8x 2 A, 8� 2 R, ⇢(�x) = |�|⇢(x).
A seminorm on a A is said to be submultiplicative if

8x, y 2 A, ⇢(xy)  ⇢(x)⇢(y).

If ⇢ is a submultiplicative seminorm on A, then (A, ⇢) is called a semi-
normed algebra. (In particular, A with a submultiplicative norm is said to
be a normed algebra). Note that any seminormed algebra is a topological
algebra with jointly continuous multiplication (c.f. [14, Proposition 1.2.14]).
We denote by sp(⇢) the set of all ⇢�continuous R�algebra homomorphisms
from A to R and we refer to sp(⇢) as the Gelfand spectrum of (A, ⇢), i.e.

sp(⇢) := {↵ 2 X(A) : ↵ is ⇢� continuous}.

Lemma 1.3.44.

For any seminormed R�algebra (A, ⇢) we have:

sp(⇢) = {↵ 2 X(A) : |↵(a)|  ⇢(a) for all a 2 A}.

Proof. The inclusion {↵ 2 X(A) : |↵(a)|  ⇢(a) for all a 2 A} ✓ sp(⇢) follows
straightforward from the definition of Gelfand spectrum of (A, ⇢). Let us prove
by contradiction the converse inclusion.

Suppose that ↵ 2 X(A) is ⇢�continuous but that there exists x 2 A

s.t. |↵(x)| > ⇢(x). Take � 2 R+ s.t. |↵(x)| > � > ⇢(x) and set y := x

�

.
Then we have ⇢(y) < 1 and |↵(y)| > 1, which imply that ⇢(yn) ! 0 and
|↵(yn)| ! 1 as n ! 1, contradicting the ⇢�continuity of ↵.

We are ready now to state the main result of [12].

Theorem 1.3.45. Let (A, ⇢) be a unital commutative seminormed R�algebra
and d 2 N. If M is a 2d�power module of A, then M

⇢

= Psd(K
M

\ sp(⇢)).

In order to prove this result, let us recall some fundamental properties of
unital commutative seminormed R-algebras.
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1. Positive Polynomials and Sum of Squares

Remark 1.3.46. Any seminormed algebra (A, ⇢) can be topologically embed-
ded into a Banach algebra (Ã, ⇢̃), i.e. there exists ◆ : (A, ⇢) ! (Ã, ⇢̃) contin-
uous embedding (see [14, Corollary 3.3.21]). Hence, A and ◆(A) are homeo-
morphic. Recall that a Banach algebra is a normed algebra whose underlying
space is a complete normed space.

Lemma 1.3.47. For any unital commutative Banach R�algebra (B,�), any
b 2 B and r 2 R such that r > �(b), and any k 2 N, there exists p 2 B such
that pk = r + b.

Proof. The standard power series expansion

(r + x)
1
k = r

1
k

⇣

1 +
x

r

⌘

1
k
= r

1
k

1
X

j=0

1

k

�

1

k

� 1
�

· · ·
�

1

k

� j

�

j!

⇣

x

r

⌘

j

converges absolutely for |x| < r. This together with the fact that (B,�) is a
Banach algebra implies that, for any b 2 B and any r 2 R such that r > �(b),
we have

p := r

1
k

1
X

j=0

1

k

�

1

k

� 1
�

· · ·
�

1

k

� j

�

j!

✓

b

r

◆

j

2 B

and p

k = (r + b).

Lemma 1.3.48. Let (B,�) be a unital Banach R-algebra and L : B ! R a
linear functional. If there exists d 2 N such that L(b2d) � 0 for all b 2 B,
then L is ��continuous.

Proof. By Lemma 1.3.47, for all n 2 N and all a 2 B we have that 1

n

+�(a)±
a = 1+ �(±a) + (±a) 2 B

2d. Applying L, we obtain |L(a)|  ( 1
n

+ �(a))L(1)
for all n 2 N and all a 2 B, so |L(a)|  �(a)L(1) for all a 2 B. Hence, L is
��continuous.

We are finally ready to show Theorem 1.3.45.

Proof. of Theorem 1.3.45
Since

Psd(K
M

\ sp(⇢)) =
\

↵2KM\sp(⇢)

↵

�1([0,+1))

and any ↵ 2 K
M

\ sp(⇢) is ⇢�continuous, we have that Psd(K
M

\ sp(⇢)) is
closed in (A, ⇢). Hence, M

⇢ ✓ Psd(K
M

\ sp(⇢))
⇢

= Psd(K
M

\ sp(⇢)). For
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the reverse inclusion, let us consider b 2 Psd(K
M

\ sp(⇢)) and denote by fM

the closure of the image of M in the Banach algebra (Ã, ⇢̃), i.e. fM := ◆(M)
⇢̃

(see Remark 1.3.46). Then fM is a 2d�power module of Ã as addition and
multiplication on Ã are both ⇢̃-continuous and M is a 2d�power module of A.
By Lemma 1.3.47, for any n 2 N and all a 2 Ã we have 1

n

+⇢̃(a)±a 2 Ã

2d ✓ f

M .

Hence, ⇢̃(a) ± a 2 f

M which implies that fM is Archimedean. Now, for any

↵ 2 Kf
M

we have that ↵(a) � 0 for all a 2 fM , which gives in particular that ↵

is a linear functional on Ã s.t. ↵(a2d) � 0 for all a 2 Ã and so Lemma 1.3.48
ensures that ↵ is ⇢̃�continuous. Hence, ↵� ◆ is ⇢�continuous and ↵(◆(m)) � 0
for all m 2 M , i.e.

(↵ � ◆) 2 K
M

\ sp(⇢), 8↵ 2 Kf
M

. (1.5)

Denote by b̃ := ◆(b). Then (1.5) ensures that for all ↵ 2 Kf
M

we have ↵(b̃) =
(↵ � ◆)(b) � 0 as by assumption b 2 Psd(K

M

\ sp(⇢)). By Jacobi-Prestel

Nichnegativstellensatz we have that for all n 2 N, b̃ + 1

n

2 f

M and so by the

completeness of Ã we get b̃ 2 fM . This yields ◆(b) 2 ◆(M)
⇢̃

= ◆(M
⇢

) where the
latter equality holds since A and ◆(A) are homeomorphic (see Remark 1.3.46).
Hence, b 2 M

⇢

.

Keeping in mind the identification between X(R[X]) and Rn proved in
Proposition 1.3.26 and applying Theorem 1.3.45 for A = R[X], we obtain
some of the closure results mentioned above.

Examples 1.3.49. Let M :=
P

R[X]2 and so K

M

= Rn.
(a) If we consider the norm k · k

1

defined by kfk
1

:=
P

�

|f
�

| for all f =
P

�

f

�

X

� 2 R[X], then (R[X], k · k
1

) is a normed algebra. Hence, Theo-

rem 1.3.45 gives
P

R[X]2
k·k1

= Psd(Rn \ sp(k · k
1

)). Let us now compute
the Gelfand spectrum of (R[X], k · k

1

).
If y = (y

1

, . . . , y

n

) 2 sp(k · k
1

), then by Lemma 1.3.44 we obtain that
|p(y)|  kpk

1

for all p 2 R[X] and in particular for each i = 1, . . . , n
we have |y

i

|  kX
i

k
1

= 1. Hence, y 2 [�1, 1]n. Conversely, for any
y = (y

1

, . . . , y

n

) 2 [�1, 1]n we have that |y
i

| = 1 for i = 1, . . . , n and so
for any p =

P

�

p

�

X

� 2 R[X] we get

|p(y)| 
X

�

|p
�

||y
1

|�1 · |y
n

|�n 
X

�

|p
�

| = kpk
1

.

Hence, by Lemma 1.3.44, y 2 sp(k · k
1

).

We have therefore showed that
P

R[X]2
k·k1

= Psd([�1, 1]n), retrieving
the result of [2] and [23].
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1. Positive Polynomials and Sum of Squares

(b) Let 1  p < 1 and consider k·k
p

, where for any f =
P

�

f

�

X

� 2 R[X] we

define kfk
p

:=
⇣

P

�

|f
�

|p
⌘

1
p
for 1  p < 1 and kfk1 := max

�

|f
�

|. As

kfk
p

 kfk
1

for all f 2 R[X], we have that
P

R[X]2
k·k1 ✓

P

R[X]2
k·kp

and so by (a) we obtain Psd([�1, 1]n) ✓
P

R[X]2
k·kp

. Furthermore, for
any y 2 [�1, 1]n we have that the map e

y

: R[X] ! R, defined by
e

y

(f) := f(y) for any f 2 R[X], is k · k
p

�continuous. Indeed, for any
y = (y

1

, . . . , y

n

) 2 [�1, 1]n and any f =
P

�

f

�

X

� 2 R[X] we have that

|e
y

(f)| = |f(y)| 
X

�

|f
�

||y
1

|�1 · · · |y
n

|�n
Hölder ineq.

 C

q

kfk
p

,

where 1  q  1 is such that 1

p

+ 1

q

= 1 and

C

q

:=

8

>

>

<

>

>

:

 

P

�

|y
1

|q�1 · · · |y
n

|q�n

!

1
q

if q < 1

max
�

|y
1

|�1 · · · |y
n

|�n if q = 1

which is finite as y = (y
1

, . . . , y

n

) 2 [�1, 1]n.
Hence, Psd([�1, 1]n) =

T

y2[�1,1]

n

e

�1

y

([0,+1)) is closed in (R[X], k·k
p

),

which yields
P

R[X]2
k·kp ✓ Psd([�1, 1]n)

k·kp
= Psd([�1, 1]n). We have

therefore showed that Psd([�1, 1]n) =
P

R[X]2
k·kp

, for all 1  p  1,
retrieving the result of [9].

Theorem 1.3.45 easily extends to locally multiplicatively convex algebras.

Definition 1.3.50. A unital commutative R�algebra A endowed with a locally
convex topology induced by a family of submultiplicative seminorms on A is
called locally multiplicatively convex (lmc).

If (A, ⌧) is an lmc algebra, then it is a topological algebra with jointly
continuous multiplication (c.f. [14, Proposition 2.1.9]). Moreover, we denote
by sp(⌧) the set of all ⌧�continuous R�algebra homomorphisms from A to R
and we refer to sp(⌧) as the Gelfand spectrum of (A, ⌧).

Using that any locally convex topology can be always generated by a family
of directed seminorms (see [13, Proposition 4.2.14]) we get the following result.

Proposition 1.3.51. Let (A, ⌧) be an lmc algebra with ⌧ generated by a di-
rected family F of submultiplicative seminorms. Then sp(⌧) =

S

⇢2F sp(⇢).
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Proof. Applying [13, Proposition 4.6.1] and the definition of Gelfand spec-
trum, we easily obtain

sp(⌧) = {↵ 2 X(A) : ↵ is ⌧�continuous}
=

[

⇢2F
{↵ 2 X(A) : ↵ is ⇢�continuous} =

[

⇢2F
sp(⇢).

It is then clear how to extend Theorem 1.3.45 to any lmc algebra.

Theorem 1.3.52. Let (A, ⌧) be an lmc algebra and d 2 N. If M is a 2d�power
module of A, then M

⌧

= Psd(K
M

\ sp(⌧)).

Proof. Let F be a directed family of submultiplicative seminorms generating ⌧ .
Then by Proposition 1.3.51, we get

M

⌧

=
\

⇢2F
M

⇢

=
\

⇢2F
Psd (K

M

\ sp(⇢))

= Psd

0

@K
M

\
[

⇢2F
sp(⇢)

1

A = Psd (K
M

\ sp(⌧)) .
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