In fact, if S is a finite subset of $\mathbb{R}[\underline{X}]$ such that K_{S} is compact and $\operatorname{dim}\left(K_{S}\right) \geq 3$, then Corollary 1.3.42 ensures that $\operatorname{Psd}\left(K_{S}\right)={\overline{\left(T_{S}\right)}}^{\varphi}$ but by Theorem 1.3.5 we also know that $\operatorname{Psd}\left(K_{S}\right) \neq T_{S}$ so $T_{S} \neq{\overline{\left(T_{S}\right)}}^{\varphi}$, i.e. T_{S} is not closed in $(\mathbb{R}[\underline{X}], \varphi)$. In the case when K_{S} is not compact (and so M_{S} is not Archimedean), we cannot apply the previous closure results, so is it natural to ask if we can get similar results by considering closures w.r.t. other topologies rather than φ.

Closures of even power modules of $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ have been studied already since the seventies. Indeed, the cone $\sum \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{2}$ is closed in $(\mathbb{R}[\underline{X}], \varphi)$ (see Sheet 3, Exercise 2), so taking its closure w.r.t. φ does not help to characterize $\operatorname{Psd}\left(\mathbb{R}^{n}\right)$ for $n \geq 2\left(\operatorname{as} \operatorname{Psd}\left(\mathbb{R}^{n}\right) \neq \sum \mathbb{R}[\underline{X}]^{2}=\overline{\sum \mathbb{R}[\underline{X}]^{2}}\right)$. However, every polynomial in $\operatorname{Psd}\left(\mathbb{R}^{n}\right)$ can be approximated by elements in $\sum \mathbb{R}[\underline{X}]^{2}$ w.r.t. the topology induced by the norm $\|\cdot\|_{1}$, where $\|f\|_{1}:=\sum_{\alpha}\left|f_{\alpha}\right|$ for any $f=\sum_{\alpha} f_{\alpha} \underline{X}^{\alpha} \in \mathbb{R}[\underline{X}]$. In fact, in [2, Theorem 9.1] the authors show that $\operatorname{Psd}\left([-1,1]^{n}\right)=\overline{\sum \mathbb{R}[\underline{X}]^{2}} \|^{\|}$, i.e. $\sum \mathbb{R}[\underline{X}]^{2}$ is dense in $\operatorname{Psd}\left([-1,1]^{n}\right)$ w.r.t. $\|\cdot\|_{1}$ on $\mathbb{R}[\underline{X}]$ (see also [23]). This result is actually established in [2] as a corollary of a general result valid for any commutative semigroup. In [3] and [4] the results in [2] were extended further, to include commutative semigroups with involution and topologies induced by absolute values. In [11] a new proof of these results is given by using the Representation Theorem 1.3.24 and they are at the same time extended from sums of squares to sums of $2 d$-powers. In particular, the authors prove that for any $d \in \mathbb{N}$ we get $\operatorname{Psd}\left([-1,1]^{n}\right)=\overline{\sum \mathbb{R}[\underline{X}]^{2 d}} \|^{\|\cdot\|_{1}}$. The closure of $\sum \mathbb{R}[\underline{X}]^{2 d}$ w.r.t. to $\|\cdot\|_{p}$ with $1 \leq p \leq \infty$ has been studied in [9], where it is showed that for any $d \in \mathbb{N}$ we have $\operatorname{Psd}\left([-1,1]^{n}\right)=\overline{\sum \mathbb{R}[\underline{X}]^{2 d}}{ }^{\|\cdot\|_{p}}$. In this same work also the closure of $\sum \mathbb{R}[\underline{X}]^{2 d}$ w.r.t. weighted versions of $\|\cdot\|_{p}$ has been considered. In particular, Lasserre in [22] identified a weighted version $\|\cdot\|_{w}$ of the norm $\|\cdot\|_{1}$ such that for any $S \subseteq \mathbb{R}[\underline{X}]$ finite $\operatorname{Psd}\left(K_{S}\right)={\overline{M_{S}}}^{\|\cdot\|_{w}}$.

The question of establishing when the closure of an even power module M in $\mathbb{R}[\underline{X}]$ coincides with $\operatorname{Psd}(K)$ for some subset K of \mathbb{R}^{n} can be clearly considered also for even power modules in any unital commutative topological \mathbb{R}-algebra. Such a general setting was studied in [10] and [12]. We would like to present here the main result [12] as it is a powerful application of the Representation Theorem 1.3.24 and allows to deduce several of the closure results mentioned above.

Let A be a unital commutative \mathbb{R}-algebra and denote by $X(A)$ the character space of A (see Section 1.3.2 for the definition). For any $M \subseteq A$, recall that $\mathcal{K}_{M}:=\{\alpha \in X(A): \hat{a}(\alpha) \geq 0, \forall a \in M\}$, where \hat{a} is the Gelfand transform of a (see Section 1.3.2 for the definition).

Definition 1.3.43. A function $\rho: A \rightarrow \mathbb{R}$ is called a seminorm if

1. ρ is subadditive: $\forall x, y \in A, \rho(x+y) \leq \rho(x)+\rho(y)$.
2. ρ is positively homogeneous: $\forall x \in A, \forall \lambda \in \mathbb{R}, \rho(\lambda x)=|\lambda| \rho(x)$.
A seminorm on a A is said to be submultiplicative if

$$
\forall x, y \in A, \rho(x y) \leq \rho(x) \rho(y)
$$

If ρ is a submultiplicative seminorm on A, then (A, ρ) is called a seminormed algebra. (In particular, A with a submultiplicative norm is said to be a normed algebra). Note that any seminormed algebra is a topological algebra with jointly continuous multiplication (c.f. [14, Proposition 1.2.14]). We denote by $\mathfrak{s p}(\rho)$ the set of all ρ-continuous \mathbb{R}-algebra homomorphisms from A to \mathbb{R} and we refer to $\mathfrak{s p}(\rho)$ as the Gelfand spectrum of (A, ρ), i.e.

$$
\mathfrak{s p}(\rho):=\{\alpha \in \underline{X}(A): \alpha \text { is } \rho \text { - continuous }\} .
$$

Lemma 1.3.44.

For any seminormed \mathbb{R}-algebra (A, ρ) we have:

$$
\mathfrak{s p}(\rho)=\{\alpha \in \underline{X}(A):|\alpha(a)| \leq \rho(a) \text { for all } a \in A\} .
$$

Proof. The inclusion $\{\alpha \in \underline{X}(A):|\alpha(a)| \leq \rho(a)$ for all $a \in A\} \subseteq \mathfrak{s p}(\rho)$ follows straightforward from the definition of Gelfand spectrum of (A, ρ). Let us prove by contradiction the converse inclusion.

Suppose that $\alpha \in \underline{X}(A)$ is ρ-continuous but that there exists $x \in A$ s.t. $|\alpha(x)|>\rho(x)$. Take $\delta \in \mathbb{R}^{+}$s.t. $|\alpha(x)|>\delta>\rho(x)$ and set $y:=\frac{x}{\delta}$. Then we have $\rho(y)<1$ and $|\alpha(y)|>1$, which imply that $\rho\left(y^{n}\right) \rightarrow 0$ and $\left|\alpha\left(y^{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$, contradicting the ρ-continuity of α.

We are ready now to state the main result of [12].
Theorem 1.3.45. Let (A, ρ) be a unital commutative seminormed \mathbb{R}-algebra and $d \in \mathbb{N}$. If M is a $2 d$-power module of A, then $\bar{M}^{\rho}=\operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\rho)\right)$.

In order to prove this result, let us recall some fundamental properties of unital commutative seminormed \mathbb{R}-algebras.

Remark 1.3.46. Any seminormed algebra (A, ρ) can be topologically embedded into a Banach algebra $(\tilde{A}, \tilde{\rho})$, i.e. there exists $\iota:(A, \rho) \rightarrow(\tilde{A}, \tilde{\rho})$ continuous embedding (see [14, Corollary 3.3.21]). Hence, A and $\iota(A)$ are homeomorphic. Recall that a Banach algebra is a normed algebra whose underlying space is a complete normed space.

Lemma 1.3.47. For any unital commutative Banach \mathbb{R}-algebra (B, σ), any $b \in B$ and $r \in \mathbb{R}$ such that $r>\sigma(b)$, and any $k \in \mathbb{N}$, there exists $p \in B$ such that $p^{k}=r+b$.

Proof. The standard power series expansion

$$
(r+x)^{\frac{1}{k}}=r^{\frac{1}{k}}\left(1+\frac{x}{r}\right)^{\frac{1}{k}}=r^{\frac{1}{k}} \sum_{j=0}^{\infty} \frac{\frac{1}{k}\left(\frac{1}{k}-1\right) \cdots\left(\frac{1}{k}-j\right)}{j!}\left(\frac{x}{r}\right)^{j}
$$

converges absolutely for $|x|<r$. This together with the fact that (B, σ) is a Banach algebra implies that, for any $b \in B$ and any $r \in \mathbb{R}$ such that $r>\sigma(b)$, we have

$$
p:=r^{\frac{1}{k}} \sum_{j=0}^{\infty} \frac{\frac{1}{k}\left(\frac{1}{k}-1\right) \cdots\left(\frac{1}{k}-j\right)}{j!}\left(\frac{b}{r}\right)^{j} \in B
$$

and $p^{k}=(r+b)$.
Lemma 1.3.48. Let (B, σ) be a unital Banach \mathbb{R}-algebra and $L: B \rightarrow \mathbb{R} a$ linear functional. If there exists $d \in \mathbb{N}$ such that $L\left(b^{2 d}\right) \geq 0$ for all $b \in B$, then L is σ-continuous.

Proof. By Lemma 1.3.47, for all $n \in \mathbb{N}$ and all $a \in B$ we have that $\frac{1}{n}+\sigma(a) \pm$ $a=1+\sigma(\pm a)+(\pm a) \in B^{2 d}$. Applying L, we obtain $|L(a)| \leq\left(\frac{1}{n}+\sigma(a)\right) L(1)$ for all $n \in \mathbb{N}$ and all $a \in B$, so $|L(a)| \leq \sigma(a) L(1)$ for all $a \in B$. Hence, L is σ-continuous.

We are finally ready to show Theorem 1.3.45.
Proof. of Theorem 1.3.45
Since

$$
\operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\rho)\right)=\bigcap_{\alpha \in \mathcal{K}_{M} \cap \mathfrak{s p}(\rho)} \alpha^{-1}([0,+\infty))
$$

and any $\alpha \in \mathcal{K}_{M} \cap \mathfrak{s p}(\rho)$ is ρ-continuous, we have that $\operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\rho)\right)$ is closed in (A, ρ). Hence, $\bar{M}^{\rho} \subseteq{\overline{\operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\rho)\right)}}^{\rho}=\operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\rho)\right)$. For
the reverse inclusion, let us consider $b \in \operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\rho)\right)$ and denote by \widetilde{M} the closure of the image of M in the Banach algebra $(\tilde{A}, \tilde{\rho})$, i.e. $\widetilde{M}:=\overline{\iota(M)^{\tilde{\rho}}}$ (see Remark 1.3.46). Then \widetilde{M} is a $2 d$-power module of \tilde{A} as addition and multiplication on \tilde{A} are both $\tilde{\rho}$-continuous and M is a $2 d-$ power module of A. By Lemma 1.3.47, for any $n \in \mathbb{N}$ and all $a \in \tilde{A}$ we have $\frac{1}{n}+\tilde{\rho}(a) \pm a \in \tilde{A}^{2 d} \subseteq \widetilde{M}$. Hence, $\tilde{\rho}(a) \pm a \in \widetilde{M}$ which implies that \widetilde{M} is Archimedean. Now, for any $\alpha \in \mathcal{K}_{\widetilde{M}}$ we have that $\alpha(a) \geq 0$ for all $a \in \widetilde{M}$, which gives in particular that α is a linear functional on \tilde{A} s.t. $\alpha\left(a^{2 d}\right) \geq 0$ for all $a \in \tilde{A}$ and so Lemma 1.3.48 ensures that α is $\tilde{\rho}$-continuous. Hence, $\alpha \circ \iota$ is $\rho-$ continuous and $\alpha(\iota(m)) \geq 0$ for all $m \in M$, i.e.

$$
\begin{equation*}
(\alpha \circ \iota) \in \mathcal{K}_{M} \cap \mathfrak{s p}(\rho), \forall \alpha \in \mathcal{K}_{\widetilde{M}} . \tag{1.5}
\end{equation*}
$$

Denote by $\tilde{b}:=\iota(b)$. Then (1.5) ensures that for all $\alpha \in \mathcal{K}_{\widetilde{M}}$ we have $\alpha(\tilde{b})=$ $(\alpha \circ \iota)(b) \geq 0$ as by assumption $b \in \operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\rho)\right)$. By Jacobi-Prestel Nichnegativstellensatz we have that for all $n \in \mathbb{N}, \tilde{b}+\frac{1}{n} \in \widetilde{M}$ and so by the completeness of \tilde{A} we get $\tilde{b} \in \widetilde{M}$. This yields $\iota(b) \in \overline{\iota(M)}^{\tilde{\rho}}=\iota\left(\bar{M}^{\rho}\right)$ where the latter equality holds since A and $\iota(A)$ are homeomorphic (see Remark 1.3.46). Hence, $b \in \bar{M}^{\rho}$.

Keeping in mind the identification between $X(\mathbb{R}[\underline{X}])$ and \mathbb{R}^{n} proved in Proposition 1.3.26 and applying Theorem 1.3.45 for $A=\mathbb{R}[\underline{X}]$, we obtain some of the closure results mentioned above.
Examples 1.3.49. Let $M:=\sum \mathbb{R}[\underline{X}]^{2}$ and so $K_{M}=\mathbb{R}^{n}$.
(a) If we consider the norm $\|\cdot\|_{1}$ defined by $\|f\|_{1}:=\sum_{\beta}\left|f_{\beta}\right|$ for all $f=$ $\sum_{\beta} f_{\beta} \underline{X}^{\beta} \in \mathbb{R}[\underline{X}]$, then $\left(\mathbb{R}[\underline{X}],\|\cdot\|_{1}\right)$ is a normed algebra. Hence, Theorem 1.3.45 gives $\overline{\sum \mathbb{R}[\underline{X}]^{2}}{ }^{\|\cdot\|_{1}}=\operatorname{Psd}\left(\mathbb{R}^{n} \cap \mathfrak{s p}\left(\|\cdot\|_{1}\right)\right)$. Let us now compute the Gelfand spectrum of $\left(\mathbb{R}[\underline{X}],\|\cdot\|_{1}\right)$.
If $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathfrak{s p}\left(\|\cdot\|_{1}\right)$, then by Lemma 1.3.44 we obtain that $|p(y)| \leq\|p\|_{1}$ for all $p \in \mathbb{R}[\underline{X}]$ and in particular for each $i=1, \ldots, n$ we have $\left|y_{i}\right| \leq\left\|X_{i}\right\|_{1}=1$. Hence, $y \in[-1,1]^{n}$. Conversely, for any $y=\left(y_{1}, \ldots, y_{n}\right) \in[-1,1]^{n}$ we have that $\left|y_{i}\right|=1$ for $i=1, \ldots, n$ and so for any $p=\sum_{\beta} p_{\beta} \underline{X}^{\beta} \in \mathbb{R}[\underline{X}]$ we get

$$
|p(y)| \leq \sum_{\beta}\left|p_{\beta}\right|\left|y_{1}\right|^{\beta_{1}} \cdot\left|y_{n}\right|^{\beta_{n}} \leq \sum_{\beta}\left|p_{\beta}\right|=\|p\|_{1} .
$$

Hence, by Lemma 1.3.44, $y \in \mathfrak{s p}\left(\|\cdot\|_{1}\right)$.
We have therefore showed that $\overline{\sum \mathbb{R}[\underline{X}]^{2}} \|^{\|\cdot\|_{1}}=\operatorname{Psd}\left([-1,1]^{n}\right)$, retrieving the result of [2] and [23].
(b) Let $1 \leq p<\infty$ and consider $\|\cdot\|_{p}$, where for any $f=\sum_{\beta} f_{\beta} \underline{X}^{\beta} \in \mathbb{R}[\underline{X}]$ we define $\|f\|_{p}:=\left(\sum_{\beta}\left|f_{\beta}\right|^{p}\right)^{\frac{1}{p}}$ for $1 \leq p<\infty$ and $\|f\|_{\infty}:=\max _{\beta}\left|f_{\beta}\right|$. As $\|f\|_{p} \leq\|f\|_{1}$ for all $f \in \mathbb{R}[\underline{X}]$, we have that $\overline{\sum \mathbb{R}[\underline{X}]^{2}}{ }^{\|\cdot\|_{1}} \subseteq \overline{\sum \mathbb{R}[\underline{X}]^{2}}\|\cdot\|_{p}$ and so by (a) we obtain $\operatorname{Psd}\left([-1,1]^{n}\right) \subseteq \overline{\sum \mathbb{R}[\underline{X}]^{2} \cdot \|_{p}}$. Furthermore, for any $y \in[-1,1]^{n}$ we have that the map $e_{y}: \mathbb{R}[\underline{X}] \rightarrow \mathbb{R}$, defined by $e_{y}(f):=f(y)$ for any $f \in \mathbb{R}[\underline{X}]$, is $\|\cdot\|_{p}$-continuous. Indeed, for any $y=\left(y_{1}, \ldots, y_{n}\right) \in[-1,1]^{n}$ and any $f=\sum_{\beta} f_{\beta} \underline{X}^{\beta} \in \mathbb{R}[\underline{X}]$ we have that

$$
\left|e_{y}(f)\right|=|f(y)| \leq \sum_{\beta}\left|f_{\beta}\right|\left|y_{1}\right|^{\beta_{1}} \cdots\left|y_{n}\right|^{\beta_{n}} \stackrel{\text { Hölder ineq. }}{\leq} C_{q}\|f\|_{p},
$$

where $1 \leq q \leq \infty$ is such that $\frac{1}{p}+\frac{1}{q}=1$ and

$$
C_{q}:= \begin{cases}\left(\sum_{\beta}\left|y_{1}\right|^{q \beta_{1}} \cdots\left|y_{n}\right|^{q \beta_{n}}\right)^{\frac{1}{q}} & \text { if } q<\infty \\ \max _{\beta}\left|y_{1}\right|^{\beta_{1}} \cdots\left|y_{n}\right|^{\beta_{n}} & \text { if } q=\infty\end{cases}
$$

which is finite as $y=\left(y_{1}, \ldots, y_{n}\right) \in[-1,1]^{n}$.
Hence, $\operatorname{Psd}\left([-1,1]^{n}\right)=\bigcap_{y \in[-1,1]^{n}} e_{y}^{-1}([0,+\infty))$ is closed in $\left(\mathbb{R}[\underline{X}],\|\cdot\|_{p}\right)$, which yields $\overline{\sum \mathbb{R}[\underline{X}]^{2}}\|\cdot\|_{p} \subseteq \overline{\operatorname{Psd}\left([-1,1]^{n}\right)} \|^{\|\cdot\|_{p}}=\operatorname{Psd}\left([-1,1]^{n}\right)$. We have therefore showed that $\operatorname{Psd}\left([-1,1]^{n}\right)=\overline{\sum \mathbb{R}[\underline{X}]^{2} \cdot \|_{p}}$, for all $1 \leq p \leq \infty$, retrieving the result of [9].
Theorem 1.3.45 easily extends to locally multiplicatively convex algebras.
Definition 1.3.50. A unital commutative \mathbb{R} - algebra A endowed with a locally convex topology induced by a family of submultiplicative seminorms on A is called locally multiplicatively convex (lmc).

If (A, τ) is an lmc algebra, then it is a topological algebra with jointly continuous multiplication (c.f. [14, Proposition 2.1.9]). Moreover, we denote by $\mathfrak{s p}(\tau)$ the set of all τ-continuous \mathbb{R}-algebra homomorphisms from A to \mathbb{R} and we refer to $\mathfrak{s p}(\tau)$ as the Gelfand spectrum of (A, τ).

Using that any locally convex topology can be always generated by a family of directed seminorms (see [13, Proposition 4.2.14]) we get the following result.

Proposition 1.3.51. Let (A, τ) be an lmc algebra with τ generated by a directed family \mathcal{F} of submultiplicative seminorms. Then $\mathfrak{s p}(\tau)=\bigcup_{\rho \in \mathcal{F}} \mathfrak{s p}(\rho)$.

Proof. Applying [13, Proposition 4.6.1] and the definition of Gelfand spectrum, we easily obtain

$$
\begin{aligned}
\mathfrak{s p}(\tau) & =\{\alpha \in X(A): \alpha \text { is } \tau \text {-continuous }\} \\
& =\bigcup_{\rho \in \mathcal{F}}\{\alpha \in X(A): \alpha \text { is } \rho-\text { continuous }\}=\bigcup_{\rho \in \mathcal{F}} \mathfrak{s p}(\rho) .
\end{aligned}
$$

It is then clear how to extend Theorem 1.3.45 to any lmc algebra.
Theorem 1.3.52. Let (A, τ) be an lmc algebra and $d \in \mathbb{N}$. If M is a $2 d$-power module of A, then $\bar{M}^{\tau}=\operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\tau)\right)$.

Proof. Let \mathcal{F} be a directed family of submultiplicative seminorms generating τ. Then by Proposition 1.3.51, we get

$$
\begin{aligned}
\bar{M}^{\tau} & =\bigcap_{\rho \in \mathcal{F}} \bar{M}^{\rho}=\bigcap_{\rho \in \mathcal{F}} \operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\rho)\right) \\
& =\operatorname{Psd}\left(\mathcal{K}_{M} \cap \bigcup_{\rho \in \mathcal{F}} \mathfrak{s p}(\rho)\right)=\operatorname{Psd}\left(\mathcal{K}_{M} \cap \mathfrak{s p}(\tau)\right) .
\end{aligned}
$$

