2.1

Chapter 2

K —Moment Problem:
formulation and connection to Psd(K)

Formulation: from finite to infinite dimensional settings.

As suggested by the name the K —Moment Problem deals with moments of
measures. In this course we are going to consider always non-negative Radon
measures on Hausdorff topological spaces.

Recall that

Definition 2.1.1. A Radon measure p on a Hausdorff space (X, T) is a mea-
sure defined on the Borel o—algebra B; on (X, T) (i.e. the smallest c—algebra
on X containing 7) and such that
e 1 is locally finite, i.e. for all x € X there exists U open neighbourhood
of x in (X, 7) such that p(U) < 00)
e 1 is inner regular, i.e. for all B € By, u(B) = sup{u(K) : K C
Bcompact}.
We say that p is supported in a subset Y of X if for any B € B, we have
that BNY = implies pu(B) = 0.

Let us start by introducing the most classical version of the K —moment
problem.

Given a Radon measure ¢ on R and j € Ng, the j—th moment of p is
defined as

m :—/xju(dx).
R

If all moments of u exist and are finite, then we can associate to u the sequence
of real numbers (my)jeNoa which is said to be the moment sequence of . The
moment problem exactly addresses the inverse question:
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Problem 2.1.2 (The one-dimensional K —Moment Problem (KMP)).

Let N € NgU+o00. Given a closed subset K of R and a sequence m := (mj)évzo
of real numbers, does there exist a non-negative Radon measure p supported
in K and s.t. m; :my forall j=0,1,...,N, i.e.

mj:/ 2 p(dz),¥j=0,1,...,N?
K

If such a measure pu does exist we say that p is a K—representing measure
for m or that m is represented by p on K. If N = oo the KMP is said to be
full, while it is called truncated if N < co. In the following we are going to
focus on the full KMP.

Note that there is a bijective correspondence between the set RNo of all
sequences of real numbers and the set (R[X])* of all linear functionals on R[X],
namely

¢: RN - (RIX])"

m = (mj>j€N0 — L, : R[:C] A - R
p:=2_p;X? = Ln(p) =2 pymj,
j j

where Ly, is called Riesz’ functional. Indeed
e ¢ is injective, because if m = (m;j);en,,m = (m;)jeNo e RNo and
m # m’ then there exists j € No s.t. my; # m/, ie. L (27) # Ly (27),
and so ¢(m) = Ly, # Ly = ¢(m/).
e ¢ is surjective, because for any £ € (R[X])* the sequence m := (£(X7))en,
is such that ¢(m) = £. In fact, for any p := > p; X’ € R[X] we have
j

L (p) = ijf(Xj) =/ (ijXj> = {(p) and, hence, ¢p(m) = L,, = /.

In virtue of this correspondence, we can always reformulate the full KMP
in terms of linear functionals.

Problem 2.1.3 (The one-dimensional K —Moment Problem (KMP)).
Given a closed subset K of R and L : R[X] — R linear, does there exists a
non-negative Radon measure p supported in K s.t. L(p) = [ pdu, Vp € R[X]?

If such a measure exists we say that u is a K—representing measure for L
and that it is a solution to the K —moment problem for L.

This reformulation makes clearly how to generalize the statement of the
one-dimensional KMP to higher dimensions (see also [15, Section 5.2.2]). Let
n € N and R[X] := R[X1,..., X,].



2.1. Formulation: from finite to infinite dimensional settings.

Problem 2.1.4 (The n-dimensional K —Moment Problem (KMP)).
Given a closed subset K of R"™ and L : R[X] — R linear, does there ezists a
non-negative Radon measure p supported in K s.t. L(p) = [ pdp, Vp € R[X]?

We can clearly consider also infinite dimensional settings, e.g. by replac-
ing R[X1,...,X,] with R[X; : ¢ € Q], where  is an infinite index set or
replacing the polynomial algebra by any infinitely generated unital commuta-
tive R—algebra. Let us then give a formulation of the K —moment problem
general enough to encompass all the above mentioned instances.

Given a unital commutative R—algebra A, recall that we denote by X (A)
its character space of A (see Section 1.3.2). We endow the character space
X (A) with the weakest topology Tx(4) on X(A) s.t. all Gelfand transforms
are continuous, i.e. @ : X(A) = R, a(«) := a(a) is continuous for all a € A.
A basis for Tx(4) is given by

N = {ﬂail(Uai) tay, ..., ap € A, Uqy, ..., Uy, 0pen in Ryn € N}.
i=1

Remark 2.1.5. X(A) can be seen as a subset of R4 via the embedding:
7: X(A) — RA
a = m(@) = (a(a))gen = (@(a))gen -

If we equip R? with the product topology Tprods then Tx(a) coincides with the
topology T induced by ™ on X (A) from (R4, Tpr0a), i.e.

TX(A) = {7771(0) :0 € Tpmd} .

Hence, w is a topological embedding and the space (X(A), TX(A)) 1s Hausdorff.

Proof. Let a € A. Then = is 7 —continuous and the projection p, : R4 — R,
Pa((Tb)bea) == x4 1S Tprog—continuous. Hence, & = p, o 7 is 7r—continuous
and so Tx(4) C Tr-

Conversely, let O € Tpoq. Then there exist n € N, by,...,b, € A

n
and Up,, ..., U, open in R such that [[ Up, x I1 R C O. Hence,
i=1 a€A\{b1 ) bn}
1

w1 0) 2wt (M py (Un)) = My m ™ (9 (U0)) = MLy b (Us) €N
0

and so 7 C Tx(4)

We are now ready to introduce the general formulation of KMP announced
above.
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Problem 2.1.6 (The KM P for unital commutative R—algebras).
Let A be a unital commutative R—algebra. Given a closed subset K C X (A)

and L : A — R linear, does there erist a non-negative Radon measure p on
X (A) supported on K and such that L(a) = fX(A) ala)p(da),Va € A?

Note that for A = R[X] = R[X},...,X,,] Problem 2.1.6 reduces to Prob-
lem 2.1.4 by means of the correspondence X (R[X]) = R" introduced in Propo-
sition 1.3.26.

Riesz-Haviland’s Theorem

Let A be a unital commutative R—algebra. Given a subset K of X (A), we
denote by
Psd(K):={a€A:a>0on K}.

A necessary condition for the existence of a solution to Problem 2.1.6 is clearly
that L is nonnegative on Psd(K). In fact, if there exists a K —representing
measure 4 for L then for all a € Psd(K) we have

L(a) = /X(A) a(a)p(da) >0

since p is nonnegative and supported on K and a is nonnegative on K.

It is then natural to ask if the non-negativity of L on Psd(K) is also
sufficient. For A = R[Xj,...,X,] a positive answer is provided by the so-
called Riesz-Haviland theorem (see [34, 11]).

Theorem 2.2.1 (Classical Riesz-Haviland Theorem). Let K C R™ closed and
L :R[Xy,...,X,] = R linear. Then L has a K—representing measure if and
only if L(Psd(K)) C [0, 400).

An analogous result also holds in the general setting.

Theorem 2.2.2 (Generalized Riesz-Haviland Theorem). Let K C X(A)
closed and L : A — R linear. Suppose there exists p € A such that p > 0
on K and for alln € N the set {a € K : p(a)) < n} is compact. Then L has a
K —representing measure if and only if L(Psd(K)) C [0, +00).

This theorem reduces the solvability of the K —moment problem to the
problem of characterizing Psd(K) establishing the beautiful duality between
these two problems.



2.2. Riesz-Haviland’s Theorem

We will prove both Theorems 2.2.1 and 2.2.2 as corollaries of the follow-
ing more general result for which we need some notation. Given a topologi-
cal space (X, ), we denote by C(X) the space of all continuous real valued
functions defined and by C.(X) the subspace of all functions in C(X) having

compact support supp(f) :={z € X : f(x) # O}T.

Theorem 2.2.3. Let A be a unital commutative R—algebra, x a Hausdorff
space and " : A — C(x) a R—algebra homomorphism. Suppose that

dpeAst. p>0onx andVjeN, x;:={a e x:pla) <j} is compact.
(2.1)
If L : A — R is linear and s.t. L(a) > 0 for all a € A with & > 0 on x, then
there exists a Radon measure j on x such that L(a) = f&d,u, foralla € A.

Remark 2.2.4. (2.1) implies that x is locally compact, i.e. for any x € x
there exists a compact neighbourhood of x.

Proof.

Let « € x and j € N such that p(z) < j. Then U := {y € x | p(y) < j} € x;,
x € U, and U is open (since U = ﬁfl((—oo,j)) and p € C(x)). Hence, U is an
open neighbourhood of x and so U is a closed neighbourhood of x contained
in x;, which is compact. Then, U is a compact neighbourhood of x. O

Proof. of Theorem 2.2.1
Let x := K be a closed subset of R", A := R[X] := R[Xy,...,X;], " :
R[Xy,...,X,] — C(K) defined by f := f [k, and p := > | X2 ie. p =

| X||?, where || - || is the euclidean norm on R™. Then p > 0 on K and for any
j € Nthe x; = {z € K : ||z]|?> < j} is compact. Hence, (2.1) holds and the
conclusion follows by Theorem 2.2.3. O

Proof. of Theorem 2.2.2
Let x := K be a closed subset of X(A) endowed with the subset topology
induced by 7x(4) which makes K into a Hausdorff space. Define the map

A - C(K)

a —  alg,

where a is the Gelfand transform of a. This is well-defined as the Gelfand
transform of a restricted to K is a continuous R—algebra homomorphism.
Then the conclusion follows by Theorem 2.2.3. O
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