
Chapter 2

K�Moment Problem:
formulation and connection to Psd(K)

2.1 Formulation: from finite to infinite dimensional settings.

As suggested by the name the K�Moment Problem deals with moments of
measures. In this course we are going to consider always non-negative Radon

measures on Hausdor↵ topological spaces.
Recall that

Definition 2.1.1. A Radon measure µ on a Hausdor↵ space (X, ⌧) is a mea-

sure defined on the Borel ��algebra B
⌧

on (X, ⌧) (i.e. the smallest ��algebra

on X containing ⌧) and such that

• µ is locally finite, i.e. for all x 2 X there exists U open neighbourhood

of x in (X, ⌧) such that µ(U) < 1)

• µ is inner regular, i.e. for all B 2 B
⌧

, µ(B) = sup{µ(K) : K ✓
Bcompact}.

We say that µ is supported in a subset Y of X if for any B 2 B
⌧

we have

that B \ Y = ; implies µ(B) = 0.

Let us start by introducing the most classical version of the K�moment
problem.

Given a Radon measure µ on R and j 2 N
0

, the j�th moment of µ is
defined as

mµ

j

:=

Z

R
xjµ(dx).

If all moments of µ exist and are finite, then we can associate to µ the sequence
of real numbers (mµ

j

)
j2N0 , which is said to be the moment sequence of µ. The

moment problem exactly addresses the inverse question:
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2. K�Moment Problem: formulation and connection to Psd(K)

Problem 2.1.2 (The one-dimensional K�Moment Problem (KMP)).
Let N 2 N

0

[+1. Given a closed subset K of R and a sequence m := (m
j

)N
j=0

of real numbers, does there exist a non-negative Radon measure µ supported

in K and s.t. m
j

= mµ

j

for all j = 0, 1, . . . , N , i.e.

m
j

=

Z

K

xjµ(dx), 8 j = 0, 1, . . . , N?

If such a measure µ does exist we say that µ is a K�representing measure

for m or that m is represented by µ on K. If N = 1 the KMP is said to be
full, while it is called truncated if N < 1. In the following we are going to
focus on the full KMP.

Note that there is a bijective correspondence between the set RN0 of all
sequences of real numbers and the set (R[X])⇤ of all linear functionals on R[X],
namely

� : RN0 ! (R[X])⇤

m := (m
j

)
j2N0 7! L

m

: R[x] ! R
p :=

P

j

p
j

Xj 7! L
m

(p) :=
P

j

p
j

m
j

,

where L
m

is called Riesz’ functional. Indeed
• � is injective, because if m := (m

j

)
j2N0 ,m

0 := (m0
j

)
j2N0 2 RN0 and

m 6= m0 then there exists j 2 N
0

s.t. m
j

6= m0
j

, i.e. L
m

(xj) 6= L
m

0(xj),
and so �(m) = L

m

6= L
m

0 = �(m0).
• � is surjective, because for any ` 2 (R[X])⇤ the sequencem := (`(Xj))

j2N0

is such that �(m) = `. In fact, for any p :=
P

j

p
j

Xj 2 R[X] we have

L
m

(p) =
P

j

p
j

`(Xj) = `

 

P

j

p
j

Xj

!

= `(p) and, hence, �(m) = L
m

= `.

In virtue of this correspondence, we can always reformulate the full KMP
in terms of linear functionals.

Problem 2.1.3 (The one-dimensional K�Moment Problem (KMP)).
Given a closed subset K of R and L : R[X] ! R linear, does there exists a

non-negative Radon measure µ supported in K s.t. L(p) =
R

pdµ, 8p 2 R[X]?

If such a measure exists we say that µ is a K�representing measure for L
and that it is a solution to the K�moment problem for L.

This reformulation makes clearly how to generalize the statement of the
one-dimensional KMP to higher dimensions (see also [15, Section 5.2.2]). Let
n 2 N and R[X] := R[X

1

, . . . , X
n

].
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2.1. Formulation: from finite to infinite dimensional settings.

Problem 2.1.4 (The n-dimensional K�Moment Problem (KMP)).
Given a closed subset K of Rn

and L : R[X] ! R linear, does there exists a

non-negative Radon measure µ supported in K s.t. L(p) =
R

pdµ, 8p 2 R[X]?

We can clearly consider also infinite dimensional settings, e.g. by replac-
ing R[X

1

, . . . , X
n

] with R[X
i

: i 2 ⌦], where ⌦ is an infinite index set or
replacing the polynomial algebra by any infinitely generated unital commuta-
tive R�algebra. Let us then give a formulation of the K�moment problem
general enough to encompass all the above mentioned instances.

Given a unital commutative R�algebra A, recall that we denote by X(A)
its character space of A (see Section 1.3.2). We endow the character space
X(A) with the weakest topology ⌧

X(A)

on X(A) s.t. all Gelfand transforms
are continuous, i.e. â : X(A) ! R, â(↵) := ↵(a) is continuous for all a 2 A.
A basis for ⌧

X(A)

is given by

N :=

(

n

\

i=1

â
i

�1(U
ai) : a1, . . . , an 2 A,U

a1 , . . . , Uanopen in R, n 2 N
)

.

Remark 2.1.5. X(A) can be seen as a subset of RA

via the embedding:

⇡ : X(A) ! RA

↵ 7! ⇡(↵) := (↵(a))
a2A = (â(↵))

a2A .

If we equip RA

with the product topology ⌧
prod

, then ⌧
X(A)

coincides with the

topology ⌧
⇡

induced by ⇡ on X(A) from (RA, ⌧
prod

), i.e.

⌧
X(A)

⌘
�

⇡�1(O) : O 2 ⌧
prod

 

.

Hence, ⇡ is a topological embedding and the space

�

X(A), ⌧
X(A)

�

is Hausdor↵.

Proof. Let a 2 A. Then ⇡ is ⌧
⇡

�continuous and the projection p
a

: RA ! R,
p
a

((x
b

)
b2A) := x

a

is ⌧
prod

�continuous. Hence, â = p
a

� ⇡ is ⌧
⇡

�continuous
and so ⌧

X(A)

✓ ⌧
⇡

.
Conversely, let O 2 ⌧

prod

. Then there exist n 2 N, b
1

, . . . , b
n

2 A

and U
b1 , . . . , Ubn open in R such that

n

Q

i=1

U
bi ⇥

Q

a2A\{b1,...,bn}
R ✓ O. Hence,

⇡�1(O) ◆ ⇡�1

⇣

T

n

i=1

p�1

bi
(U

bi)
⌘

=
T

n

i=1

⇡�1

⇣

p�1

bi
(U

bi)
⌘

=
T

n

i=1

b̂
i

�1

(U
bi) 2 N

and so ⌧
⇡

✓ ⌧
X(A)

We are now ready to introduce the general formulation of KMP announced
above.
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2. K�Moment Problem: formulation and connection to Psd(K)

Problem 2.1.6 (The KMP for unital commutative R�algebras).
Let A be a unital commutative R�algebra. Given a closed subset K ✓ X(A)
and L : A ! R linear, does there exist a non-negative Radon measure µ on

X(A) supported on K and such that L(a) =
R

X(A)

â(↵)µ(d↵), 8a 2 A?

Note that for A = R[X] = R[X
1

, . . . , X
n

] Problem 2.1.6 reduces to Prob-
lem 2.1.4 by means of the correspondence X(R[X]) ⇠= Rn introduced in Propo-
sition 1.3.26.

2.2 Riesz-Haviland’s Theorem

Let A be a unital commutative R�algebra. Given a subset K of X(A), we
denote by

Psd(K) := {a 2 A : â � 0 on K}.

A necessary condition for the existence of a solution to Problem 2.1.6 is clearly
that L is nonnegative on Psd(K). In fact, if there exists a K�representing
measure µ for L then for all a 2 Psd(K) we have

L(a) =

Z

X(A)

â(↵)µ(d↵) � 0

since µ is nonnegative and supported on K and â is nonnegative on K.
It is then natural to ask if the non-negativity of L on Psd(K) is also

su�cient. For A = R[X
1

, . . . , X
n

] a positive answer is provided by the so-
called Riesz-Haviland theorem (see [34, 14]).

Theorem 2.2.1 (Classical Riesz-Haviland Theorem). Let K ✓ Rn

closed and

L : R[X
1

, . . . , X
n

] ! R linear. Then L has a K�representing measure if and

only if L(Psd(K)) ✓ [0,+1).

An analogous result also holds in the general setting.

Theorem 2.2.2 (Generalized Riesz-Haviland Theorem). Let K ✓ X(A)
closed and L : A ! R linear. Suppose there exists p 2 A such that p̂ � 0
on K and for all n 2 N the set {↵ 2 K : p̂(↵)  n} is compact. Then L has a

K�representing measure if and only if L(Psd(K)) ✓ [0,+1).

This theorem reduces the solvability of the K�moment problem to the
problem of characterizing Psd(K) establishing the beautiful duality between
these two problems.
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2.2. Riesz-Haviland’s Theorem

We will prove both Theorems 2.2.1 and 2.2.2 as corollaries of the follow-
ing more general result for which we need some notation. Given a topologi-
cal space (X, ⌧), we denote by C(X) the space of all continuous real valued
functions defined and by C

c

(X) the subspace of all functions in C(X) having
compact support supp(f) := {x 2 X : f(x) 6= 0}⌧ .

Theorem 2.2.3. Let A be a unital commutative R�algebra, � a Hausdor↵
space and ˆ : A ! C(�) a R�algebra homomorphism. Suppose that

9 p 2 A s.t. p̂ � 0 on � and 8j 2 N, �
j

:= {↵ 2 � : p̂(↵)  j} is compact.
(2.1)

If L : A ! R is linear and s.t. L(a) � 0 for all a 2 A with â � 0 on �, then
there exists a Radon measure µ on � such that L(a) =

R

âdµ, for all a 2 A.

Remark 2.2.4. (2.1) implies that � is locally compact, i.e. for any x 2 �
there exists a compact neighbourhood of x.

Proof.

Let x 2 � and j 2 N such that p̂(x) < j. Then U :=
�

y 2 � | p̂(y) < j} ✓ �
j

,
x 2 U , and U is open (since U = p̂�1

�

(�1, j)
�

and p̂ 2 C(�)). Hence, U is an
open neighbourhood of x and so U is a closed neighbourhood of x contained
in �

j

, which is compact. Then, U is a compact neighbourhood of x.

Proof. of Theorem 2.2.1

Let � := K be a closed subset of Rn, A := R[X] := R[X
1

, . . . , X
n

], ˆ :
R[X

1

, . . . , X
n

] ! C(K) defined by f̂ := f �
K

, and p :=
P

n

i=1

X2

i

i.e. p =
kXk2, where k · k is the euclidean norm on Rn. Then p̂ � 0 on K and for any
j 2 N the �

j

= {x 2 K : kxk2  j} is compact. Hence, (2.1) holds and the
conclusion follows by Theorem 2.2.3.

Proof. of Theorem 2.2.2

Let � := K be a closed subset of X(A) endowed with the subset topology
induced by ⌧

X(A)

which makes K into a Hausdor↵ space. Define the map

ˆ : A ! C(K)
a 7! â �

K

,

where â is the Gelfand transform of a. This is well-defined as the Gelfand
transform of a restricted to K is a continuous R�algebra homomorphism.
Then the conclusion follows by Theorem 2.2.3.
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