Theorem 2.2.3 was most probably known since at least the sixties as it can be derived from a theorem due to Choquet in [6]. However, we propose a proof due to Marshall, see [29, Theorem 3.2.2] or [28, Theorem 3.1], and based on the following famous result.

Theorem 2.2.5 (Riesz-Markov-Kakutani theorem). Let χ be a locally compact Hausdorff space. If $L: \mathcal{C}_{c}(\chi) \rightarrow \mathbb{R}$ is a positive linear functional, i.e. $L(f) \geq 0$ for all $f \in \mathcal{C}_{c}(\chi)$ such that $f \geq 0$ on χ, then there exists a unique Borel regular measure μ on χ such that $L(f)=\int f d \mu$ for all $f \in \mathcal{C}_{c}(\chi)$.

Proof. (see e.g. [20, Theorem 16, p.77])

Recall that a Borel regular measure μ on the Hausdorff space (χ, τ) is a measure defined on the Borel σ-algebra \mathcal{B}_{τ} such that μ is both inner regular and outer regular, where μ outer regular means that for all $B \in \mathcal{B}_{\tau}$, $\mu(B)=\inf \{\mu(O): O \supseteq B$ open $\}$. Note that a finite Borel regular measure is in particular a Radon measure.

Proof. of Theorem 2.2.3
Let $\hat{A}:=\{\hat{a}: a \in A\}$ and $\mathcal{B}(\chi):=\{f \in \mathcal{C}(\chi): \exists a \in A$ s.t. $|f| \leq|\hat{a}|$ on $\chi\}$. Since ${ }^{\wedge}: A \rightarrow \mathcal{C}(\chi)$ is an \mathbb{R}-algebra homomorphism, we have that both \hat{A} and $\mathcal{B}(\chi)$ are subalgebras of $\mathcal{C}(\chi)$ and $\hat{A} \subseteq \mathcal{B}(\chi) \subseteq \mathcal{C}(\chi)$.
Claim 1: $\mathcal{C}_{c}(\chi)$ is a subalgebra of $\mathcal{B}(\chi)$.
Proof of Claim 1.
Clearly, $\mathcal{C}_{c}(\chi)$ equipped with the pointwise operations of addition and multiplication is an \mathbb{R}-algebra. Moreover, if $f \in \mathcal{C}_{c}(\chi)$ then f is bounded above on χ, and so there exists $k \in \mathbb{N}$ s.t. $|f| \leq k$ on χ. Since $k \in A$, we have that $|f| \leq \hat{k}$ on χ, i.e. $f \in \mathcal{B}(\chi)$. Hence, $\mathcal{C}_{c}(\chi)$ is a subalgebra of $\mathcal{B}(\chi)$.
\square (Claim 1)
Define $\bar{L}: \hat{A} \rightarrow \mathbb{R}$ as $\bar{L}(\hat{a})=L(a)$ for all $a \in A$.
Claim 2: \bar{L} is a well-defined linear functional on \hat{A}.
Proof of Claim 2.
It is enough to prove that

$$
\begin{equation*}
\forall a \in A, \hat{a}=0 \Rightarrow L(a)=0 \tag{2.2}
\end{equation*}
$$

In fact, (2.2) implies that $\bar{L}(a)=\bar{L}(b)$ for any $a, b \in A$ such that $\hat{a}=\hat{b}$, i.e. \bar{L} is well-defined. Also, using (2.2) together with the assumptions that ${ }^{\wedge}$ is a
\mathbb{R}-algebra homomorphism and L is linear, we obtain that for any $a, b \in A$ and $\lambda \in \mathbb{R}$

$$
\bar{L}(\hat{a}+\hat{b}) \stackrel{(2.2)}{=} \bar{L}(\widehat{a+b})=L(a+b)=L(a)+L(b)=\bar{L}(\hat{a})+\bar{L}(\hat{b})
$$

and

$$
\bar{L}(\lambda \hat{a}) \stackrel{(2.2)}{=} \bar{L}(\widehat{\lambda a})=L(\lambda a)=\lambda L(a)=\lambda \bar{L}(\hat{a})
$$

Let us then show that (2.2) holds. If $\hat{a}=0$ then $\hat{a} \geq 0$ and $-\hat{a}=\hat{-a} \geq 0$. These respectively imply that $L(a) \geq 0$ and $L(-a) \geq 0$, which together yield $L(a)=0$, i.e. $\bar{L}(\hat{a})=0$.
\square (Claim 2)
Claim 3: $\bar{L}: \hat{A} \rightarrow \mathbb{R}$ extends to a linear functional $\overline{\bar{L}}: \mathcal{B}(\chi) \rightarrow \mathbb{R}$ s.t. $\overline{\bar{L}}(f) \geq 0$ for all $f \in \mathcal{B}(\chi)$ with $f \geq 0$ on χ.

Proof of Claim 3.
Consider the collection \mathcal{P} of all pairs $(V, \overline{\bar{L}})$, where V is a \mathbb{R}-subspace of $\mathcal{B}(\chi)$ containing \hat{A} and $\overline{\bar{L}}$ is an extension of $\bar{L}: \hat{A} \rightarrow \mathbb{R}$ such that $\overline{\bar{L}}(f) \geq 0$ for all $f \in V$ with $f \geq 0$ on χ. Define the following partial order on \mathcal{P}

$$
\left(V_{1}, \overline{\bar{L}}_{1}\right) \subseteq\left(V_{2}, \overline{\bar{L}}_{2}\right) \Longleftrightarrow V_{1} \subseteq V_{2} \text { and } \overline{\bar{L}}_{2} \upharpoonright V_{1}=\overline{\bar{L}}_{1}
$$

- \mathcal{P} is non-empty since (\hat{A}, \bar{L}) belongs to it. In fact, for any $a \in A$ s.t. $\hat{a} \geq 0$ on χ we have $\bar{L}(\hat{a})=L(a) \geq 0$, where the latter inequality holds by assumption on L.
- Every chain in \mathcal{P} has an upper bound. Indeed, for any $\left\{\left(V_{i}, \ell_{i}\right), i \in J\right\}$ chain in \mathcal{P}, the pair $\left(\bigcup_{i \in J} V_{i}, \ell\right)$ is an upper bound, where the functional $\ell: \bigcup_{i \in J} V_{i} \rightarrow \mathbb{R}$ is linear and such that $\ell \Gamma_{V_{i}}=\ell_{i}$ for all $i \in J$.
Then by Zorn's lemma there exists be a maximal element $(B, \overline{\bar{L}})$ in \mathcal{P}. We want to show that $B=\mathcal{B}(\chi)$.

Suppose that this is not the case and let $g \in \mathcal{B}(\chi) \backslash B$. If $f_{1}, f_{2} \in B$ s.t. $f_{1} \leq g$ and $g \leq f_{2}$ on χ, then $f_{1} \leq f_{2}$ on χ, and so $\overline{\bar{L}}\left(f_{1}\right) \leq \overline{\bar{L}}\left(f_{2}\right)$. Therefore, $\mathcal{U}:=\left\{\overline{\bar{L}}\left(f_{1}\right): f_{1} \in B, f_{1} \leq g\right.$ on $\left.\chi\right\}$ and $\Theta:=\left\{\overline{\bar{L}}\left(f_{2}\right): f_{2} \in B, g \leq f_{2}\right.$ on $\left.\chi\right\}$
are such that $u \leq \theta$ for all $u \in \mathcal{U}$ and $\theta \in \Theta$. Moreover, \mathcal{U} and Θ are both non-empty. [Indeed, as $g \in \mathcal{B}(\chi)$, there exists $a \in A$ s.t. $|g| \leq|\hat{a}|$ on χ and so $|\hat{a}| \leq \frac{\hat{a}^{2}+1}{2} \in \hat{A}\left(\right.$ since $\left.(\hat{a} \pm 1)^{2} \geq 0\right)$, which in turns gives that
$f_{1}:=-\frac{\hat{a}^{2}+1}{2} \in \hat{A}$ and $f_{2}:=\frac{\hat{a}^{2}+1}{2} \in \hat{A}$ are such that $\left.f_{1} \leq g \leq f_{2}.\right]$ The completeness of \mathbb{R} ensures that

$$
\begin{equation*}
\exists e \in \mathbb{R} \text { s.t. } \sup (\mathcal{U}) \leq e \leq \inf (\Theta) . \tag{2.3}
\end{equation*}
$$

We can now linearly extend $\overline{\bar{L}}$ from B to $B+\mathbb{R} g \subseteq \mathcal{B}(\chi)$ by setting $\overline{\bar{L}}(g):=e$ and so $\overline{\bar{L}}(f+d g):=\bar{L}(f)+d e$ for all $d \in \mathbb{R}$ and $f \in B$. Then the following holds

$$
\begin{equation*}
\forall f+d g \in B+\mathbb{R} g, f+d g \geq 0 \text { on } \chi \Rightarrow \overline{\bar{L}}(f+d g) \geq 0 \tag{2.4}
\end{equation*}
$$

which yields $(B+\mathbb{R} g, \overline{\bar{L}}) \supseteq(B, \overline{\bar{L}})$ and so contradicts the maximality of $(B, \overline{\bar{L}})$, proving that $B=\mathcal{B}(\chi)$. To show that (2.4) holds, we need to distinguish three cases.
Case 1: If $d=0$ and $f+d g \in B+\mathbb{R} g$ is s.t. $f+d g \geq 0$ on χ, then $\overline{\bar{L}}(f) \geq 0$ since $(B, \bar{L}) \in \mathcal{P}$.
Case 2: If $d>0$ and $f+d g \in B+\mathbb{R} g$ is s.t. $f+d g \geq 0$ on χ, then $-\frac{f}{d} \leq g$ on χ. Hence, $\overline{\bar{L}}\left(-\frac{f}{d}\right) \in \mathcal{U}$ and so by (2.3) we have $\overline{\bar{L}}\left(-\frac{f}{d}\right) \leq e=\overline{\bar{L}}(g)$, i.e. $0 \leq \overline{\bar{L}}(g)-\overline{\bar{L}}\left(-\frac{f}{d}\right)=\overline{\bar{L}}\left(g+\frac{f}{d}\right)=\frac{1}{d} \overline{\bar{L}}(f+g d)$. Then $\overline{\bar{L}}(f+g d) \geq 0$.
Case 3: If $d<0$ and $f+d g \in B+\mathbb{R} g$ is s.t. $f+d g \geq 0$ on χ, then $-\frac{f}{d} \geq g$ on χ. Hence, $\overline{\bar{L}}\left(-\frac{f}{d}\right) \in \Theta$ and so by (2.3) we have $\overline{\bar{L}}\left(-\frac{f}{d}\right) \geq e=\overline{\bar{L}}(g)$, i.e. $0 \leq \overline{\bar{L}}(g)-\overline{\bar{L}}\left(-\frac{f}{d}\right)=\overline{\bar{L}}\left(g+\frac{f}{d}\right)=-\frac{1}{d} \overline{\bar{L}}(f+g d)$. Then $\overline{\bar{L}}(f+g d) \geq 0$.
\square (Claim 3)
By Claim 1, we know that $\mathcal{C}_{c}(\chi) \subseteq \mathcal{B}(\chi)$ and so $\overline{\bar{L}}$ is in particular defined on $\mathcal{C}_{c}(\chi)$ and such that $\overline{\bar{L}}(f) \geq 0$ for all $f \in \mathcal{C}_{c}(\chi)$ with $f \geq 0$ on χ. This together with Remark 2.2.4 guarantees that we can apply Theorem 2.2.5 and, hence, that
$\exists \mu$ Borel regular measure on χ s.t. $\overline{\bar{L}}(f)=\int f d \mu, \quad \forall f \in \mathcal{C}_{c}(\chi)$.
Main Claim: $\overline{\bar{L}}(f)=\int f d \mu, \forall f \in \mathcal{B}(\chi)$.
Proof of Main Claim.
Let $f \in \mathcal{B}(\chi)$. W.l.o.g. we can assume that $f \geq 0$ on χ, since $f=f_{+}-f_{-}$ where $f_{+}:=\max \{f, 0\}$ and $f_{-}:=-\min \{f, 0\}$. Set $q:=f+\hat{p}$ where p is the one in (2.1). Then $q \in \mathcal{B}(\chi)$;

For each $j \in \mathbb{N}$, define $\chi_{j}^{\prime}:=\{x \in \chi \mid q(x) \leq j\}$. Then

- $\forall j \in \mathbb{N}, \chi_{j}^{\prime}$ is compact. Indeed, for all $x \in \chi$ we have that $q(x) \geq \hat{p}(x)$ and so that $\chi_{j}^{\prime} \subseteq \chi_{j}$, which yields that χ_{j}^{\prime} is closed subset of a compact set and so itself compact.
- $\chi_{j}^{\prime} \subseteq \chi_{j+1}^{\prime}$ and $\chi=\bigcup_{j} \chi_{j}^{\prime}$.

Subclaim 1: For each $j \in \mathbb{N}$, there exists $f_{j} \in \mathcal{C}_{c}(\chi)$ such that $0 \leq f_{j} \leq f$, $f_{j}=f$ on χ_{j}^{\prime} and $f_{j}=0$ on $\chi \backslash \chi_{j+1}^{\prime}$.
Proof of Subclaim 1.
For each $j \in \mathbb{N}$, let us set $Y_{j}^{\prime}=\left\{x \in \chi_{j+1}^{\prime} \left\lvert\, j+\frac{1}{2} \leq q(x) \leq j+1\right.\right\}$. Then Y_{j}^{\prime} and χ_{j}^{\prime} are disjoint closed subsets of χ_{j+1}^{\prime}. Applying Urysohn's lemma, we get that there exists $g_{j}: \chi_{j+1}^{\prime} \rightarrow[0,1]$ continuous such that $g_{j}=0$ on Y_{j}^{\prime} and $g_{j}=1$ on χ_{j}^{\prime}. We can extend g_{j} to the whole χ by setting $g_{j}=0$ on $\chi \backslash \chi_{j+1}^{\prime}$. Then $f_{j}:=f \cdot g_{j}$ is such that

- $0 \leq f_{j} \leq f$ on χ, since $0 \leq g_{j} \leq 1$ on χ.
- $f_{j}=f \cdot g_{j}=f$ on χ_{j}^{\prime}, since $g_{j}=1$ on χ_{j}^{\prime}.
- $f_{j}=f \cdot g_{j}=0$ on $\chi \backslash \chi_{j+1}^{\prime}$, since $g_{j}=0$ on $\chi \backslash \chi_{j+1}^{\prime}$.

In particular, $\operatorname{supp}\left(f_{j}\right) \subseteq \chi_{j+1}^{\prime}$ is compact, as closed subset of a compact set, and so $f_{j} \in \mathcal{C}_{c}(\chi)$.
(Subclaim 1)
Then $\left(f_{j}\right)_{j \in \mathbb{N}}$ is a non-decreasing sequence of non-negative functions in $C_{c}(\chi)$ which pointwise converges to f in χ. Indeed, for all $j \in \mathbb{N}$ and all $x \in \chi$, we easily get from Subclaim 1 that $0 \leq f_{j}(x) \leq f_{j+1}(x)$ and $\lim _{j \rightarrow \infty} f_{j}(x)=f(x)$. Hence, we can apply the Monotone Convergence Theorem, which ensures that

$$
\int f d \mu=\lim _{j \rightarrow \infty} \int f_{j} d \mu \stackrel{(2.5)}{=} \lim _{j \rightarrow \infty} \overline{\bar{L}}\left(f_{j}\right)
$$

Hence, the proof of the Main Claim is complete once we show that
Subclaim 2: $\overline{\bar{L}}(f)=\lim _{j \rightarrow \infty} \overline{\bar{L}}\left(f_{j}\right)$.

Proof of Subclaim 2.

Let $j \in \mathbb{N}$. First of all, let us show that

$$
\begin{equation*}
\frac{q^{2}}{j} \geq f-f_{j} \geq 0 \text { on } \chi \tag{2.6}
\end{equation*}
$$

From Subclaim 1 we know that $f=f_{j}$ on χ_{j}^{\prime}, so clearly $\frac{q^{2}}{j} \geq f-f_{j}=0$ on χ_{j}^{\prime}. Moreover, for any $x \in \chi \backslash \chi_{j}^{\prime}$, we have $q(x)>j$ and so

$$
q^{2}(x)>j q(x)=j(f(x)+\hat{p}(x)) \geq j f(x) \geq\left(f(x)-f_{j}(x)\right),
$$

which yields $\frac{q^{2}(x)}{j} \geq\left(f-f_{j}\right)(x)$ for all $x \in \chi$.
Now (2.6) implies that $\overline{\bar{L}}\left(\frac{q^{2}}{j}-\left(f-f_{j}\right)\right) \geq 0$ and $\overline{\bar{L}}\left(f-f_{j}\right) \geq 0$. Hence, $\overline{\bar{L}}\left(\frac{q^{2}}{j}\right) \geq \overline{\bar{L}}\left(f-f_{j}\right) \geq 0$, i.e. $\frac{1}{\bar{j}}\left(q^{2}\right) \geq \overline{\bar{L}}\left(f-f_{j}\right) \geq 0$. Then passing to the limit for $j \rightarrow \infty$ we obtain that $\lim _{j \rightarrow \infty} \overline{\bar{L}}\left(f-f_{j}\right)=0$ and so $\lim _{j \rightarrow \infty} \overline{\bar{L}}\left(f_{j}\right)=\overline{\bar{L}}(f)$. \square (Subclaim 2) \square (Main Claim)

Since $\hat{A} \subseteq \mathcal{B}(\chi)$, the Main Claim implies that for all $a \in A$ we have $\overline{\bar{L}}(\hat{a})=\int \hat{a} d \mu$. This together with the definition of \bar{L} and Claim 3 gives that

$$
\begin{equation*}
L(a)=\bar{L}(\hat{a})=\overline{\bar{L}}(\hat{a})=\int \hat{a} d \mu, \forall a \in A, \tag{2.7}
\end{equation*}
$$

which yields the conclusion as μ is a finite Borel regular measure and so Radon. Indeed, using (2.7), we get that $L(1)=\int \hat{1} d \mu=\mu(\chi)$ and so that μ is finite.

