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Theorem 2.2.3 was most probably known since at least the sixties as it
can be derived from a theorem due to Choquet in [6]. However, we propose
a proof due to Marshall, see [29, Theorem 3.2.2] or [28, Theorem 3.1], and
based on the following famous result.

Theorem 2.2.5 (Riesz-Markov-Kakutani theorem). Let x be a locally com-
pact Hausdorff space. If L : C.(x) — R is a positive linear functional, i.e.
L(f) > 0 for all f € C.(x) such that f > 0 on x, then there exists a unique
Borel regular measure pn on x such that L(f) = [ fdu for all f € Cc(x).

Proof. (see e.g. [20, Theorem 16, p.77]) O

Recall that a Borel regular measure p on the Hausdorff space (x,7) is a
measure defined on the Borel o—algebra B, such that p is both inner reg-
ular and outer regular, where u outer regular means that for all B € B,
pu(B) = inf{u(O) : O O Bopen}. Note that a finite Borel regular measure is
in particular a Radon measure.

Proof. of Theorem 2.2.3

Let A:={a:a e A} and B(x) := {f € C(x) : 3a € As.t.|f| < |a| on x}.
Since " : A — C(x) is an R—algebra homomorphism, we have that both A and
B(x) are subalgebras of C(x) and A C B(x) C C(x).

Claim 1: C.(x) is a subalgebra of B(x).

Proof of Claim 1.
Clearly, C.(x) equipped with the pointwise operations of addition and multi-
plication is an R—algebra. Moreover, if f € C.(x) then f is bounded above
on x, and so there exists k£ € N s.t. |f| <k on x. Since k € A, we have that
|f| < kon x, ie. fe B(x). Hence, Ce(y) is a subalgebra of B(x).

[J(Claim 1)
Define L : A — R as L(a) = L(a) for all a € A.
Claim 2: T is a well-defined linear functional on A.
Proof of Claim 2.
It is enough to prove that
Vae A, a=0= L(a)=0. (2.2)

In fact, (2.2) implies that L(a) = L(b) for any a,b € A such that & = b, i.e.
L is well-defined. Also, using (2.2) together with the assumptions that " is a
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R—algebra homomorphism and L is linear, we obtain that for any a,b € A
and A € R

Y T(a+b) = L(a +b) = L(a) + L(b) = L(a) + L(b)

and

Z(xa) % T(a) = L(ha) = AL(a) = AL(a).
Let us then show that (2.2) holds. If @ = 0 then ¢ > 0 and —a = —a > 0.
These respectively imply that L(a) > 0 and L(—a) > 0, which together yield
L(a) =0, ie. L(a) =0. O(Claim 2)
Claim 3: L : A — R extends to a linear functional L : B(x) — R s.t.
L(f) >0 for all f € B(x) with f >0 on x.

Proof of Claim 3. B
Consider the collection P of all pairs (V, f), where V is a R—subspace of

B(x) containing A and L is an extension of L : A — R such that f(f) > 0 for
all f €V with f> 0 on x. Define the following partial order on P

(Vl,f1> - (Vz,fz> = Vi CVpand Ly fvlzfl-

e P is non-empty since (fl,f) belongs to it. In fact, for any a € A s.t.
)

@ >0 on x we have L(a) = L(a) > 0, where the latter inequality holds
by assumption on L.

e Every chain in P has an upper bound. Indeed, for any {(V;,¢;),i € J}
chain in P, the pair (UZE 7 Vi, E) is an upper bound, where the functional

0 UieJ Vi — R is linear and such that ¢ [y;= ¢; for all i € J.

Then by Zorn’s lemma there exists be a maximal element (B ,f) in P.

We want to show that B = B(x).
Suppose that this is not the case and let g € B

) ffl,fQEBSt
fi<gand g < foony,then fi < fonx, and so L(f1

\B. 1
) < L(f2). Therefore,

U:={L(f1): freB,fi<gonx}and ©:={L(fs): fo € B,g < f»on x}

are such that u < 0 for all u € U and § € ©. Moreover, U and © are both
non-empty. [Indeed, as g € B(x), there exists a € A s.t. |g| < |a] on x

~9
1 ~
al < @+ € A (since (d + 1)2 > 0), which in turns gives that

35



2.

K—MOMENT PROBLEM: FORMULATION AND CONNECTION TO Psd(K)

36

~2 ~2
a‘+1 A a‘+1
f1 = = 5 € A and f2 =

completeness of R ensures that

€ A are such that fi<g< fg.] The

Je e Rst. sup(Ud) < e <inf(O). (2.3)

We can now linearly extend T from B to B + Rg C B(x) by setting f(g) =ce

and so f(f +dg) := L(f) +de for all d € R and f € B. Then the following
holds _
Vf+dg€eB+Rg, f+dg>0onyx= L(f+dg)>0, (2.4)

which yields (B —HRg,f) D) (B,f) and so contradicts the maximality of

(B,f), proving that B = B(x). To show that (2.4) holds, we need to dis-
tinguish three cases.

Case 1: Ifdanndf—i—dgeB—i—Rgiss.t.f—l—ngOonx,thenf(f)ZO
since (B f) eP.

Case 2: If d > 0 and f 4+ dg € B+ Rg is s.t. f+dg>00nx,then 5 g
on y. Hence, L<_E) € U and so by (2.3) we haveL<—§> <e=L(g),ie.

0<L(g) - L(—%)zL(g—i—i):lL(f—i—gd). Then L (f + gd) > 0.
Case 3: If d < 0 and f +dg € B+ Rg is s.t. f+dg>00nx,then—§>g
on . Hence, L( )G@and so by (2.3) we haveL(—g> >e = L(g), ie.
0<TL(g) — L(_g) L(g+f):—aL(f+gd).ThenL(f+gd)20.
L(Claim 3)

By Claim 1, we know that C.(x) € B(x) and so T is in particular defined

on C.(x) and such that L(f) > 0 for all f € C.(x) with f > 0 on . This
together with Remark 2.2.4 guarantees that we can apply Theorem 2.2.5 and,
hence, that

3 u Borel regular measure on y s.t. f(f) = /fd,u,, VfelCx). (2.5)

Main Claim: L(f) = [ fdu,Vf € B(x).

Proof of Main Claim.
Let f € B(x). W.lo.g. we can assume that f > 0 on ¥, since f = f; — f_
where fi := max{f,0} and f_ := —min{f,0}. Set ¢ := f + p where p is the
one in (2.1). Then ¢ € B(x).

For each j € N, define X;' ={z € x| q(z) <j}. Then
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e VjeN, X;‘ is compact. Indeed, for all x € x we have that ¢(z) > p(z)

and so that X;' C xj, which yields that X;' is closed subset of a compact
set and so itself compact.

* Xj S x4 and x = Jx;

Subclaim 1: For each j € %\L there exists f; € Cc(x) such that 0 < f; < f,
fi=Fon xjand f;=0on x\ xj-
Proof of Subclaim 1.
For each j € N, let us set Y] = {z € x| j+3% <q(x) <j+1}. Then
Y] and x; are disjoint closed subsets of x’;, ;. Applying Urysohn’s lemma, we
get that there exists g; : X, — [0,1] continuous such that g; = 0 on Y and
g; =1 on X}- We can extend g; to the whole x by setting g; = 0 on x \ X;‘+1'
Then f; := f - g; is such that

e 0< fj < fony,since 0 <g; <1ony.

e fj=f-g;=fonXxj, since gj =1on xj.

e fj=f-g;=00nx\Xj,since gj =0on x \ xj,;-
In particular, supp(f;) C X} 41 is compact, as closed subset of a compact set,
and so f; € Ce(x).

LJ(Subclaim 1)

Then (f;)jen is a non-decreasing sequence of non-negative functions in
C¢(x) which pointwise converges to f in x. Indeed, for all j € N and
all z € x, we easily get from Subclaim 1 that 0 < fj(z) < fj41(x) and
lim; o fj(z) = f(x). Hence, we can apply the Monotone Convergence The-
orem, which ensures that

[ in =t [ gy = 1 T,
J—00 J—00
Hence, the proof of the Main Claim is complete once we show that
Subclaim 2: L(f) = lim L(f;).
Jj—00

Proof of Subclaim 2.
Let j € N. First of all, let us show that

.2Zf—fj200nx- (2.6)

[}

<

2
From Subclaim 1 we know that f = f; on X;, so clearly q— >f—fi=0on
J

X;- Moreover, for any = € x \ Xj, we have ¢(z) > j and so
¢*(x) > ja(x) = j(f () + p(x)) > jf(x) > (f(z) = f3(2)),

37



2. K—MOMENT PROBLEM: FORMULATION AND CONNECTION TO Psd(K)

q2§_x) > (f - f;)(@) for all z € ¥.

Now (2.6) implies that L <q7 —(f - fj)) >0and L (f — /i) > 0. Hence,

L (qj—g> > f(f — fj) >0, ie. %f (q2) > f(f — fj) > 0. Then passing to the

limit for j — oo we obtain that lim f(f — fj) =0and so lim f(fj) = f(f)
J J—00

—00
LI(Subclaim 2)
[J(Main Claim)

which yields

_ Since A C B(x), the Main Claim implies that for all a € A we have
L(a) = [ adp. This together with the definition of L and Claim 3 gives that

L(a) = L(a) = L(a) = / ady,Va € A, (2.7)

which yields the conclusion as p is a finite Borel regular measure and so Radon.

Indeed, using (2.7), we get that L(1) = [ 1du = u(x) and so that y is finite.
L(Proof of Theorem 2.2.3)
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