Theorem 2.2.3 was most probably known since at least the sixties as it can be derived from a theorem due to Choquet in [6]. However, we propose a proof due to Marshall, see [29, Theorem 3.2.2] or [28, Theorem 3.1], and based on the following famous result.

Theorem 2.2.5 (Riesz-Markov-Kakutani theorem). Let χ be a locally compact Hausdorff space. If $L : C_c(\chi) \to \mathbb{R}$ is a positive linear functional, i.e. $L(f) \geq 0$ for all $f \in C_c(\chi)$ such that $f \geq 0$ on χ , then there exists a unique Borel regular measure μ on χ such that $L(f) = \int f d\mu$ for all $f \in C_c(\chi)$.

Proof. (see e.g. [20, Theorem 16, p.77])

Recall that a Borel regular measure μ on the Hausdorff space (χ, τ) is a measure defined on the Borel σ -algebra \mathcal{B}_{τ} such that μ is both inner regular and outer regular, where μ outer regular means that for all $B \in \mathcal{B}_{\tau}$, $\mu(B) = \inf{\{\mu(O) : O \supseteq Bopen\}}$. Note that a finite Borel regular measure is in particular a Radon measure.

Proof. of Theorem 2.2.3

Let $\hat{A} := \{\hat{a} : a \in A\}$ and $\mathcal{B}(\chi) := \{f \in \mathcal{C}(\chi) : \exists a \in A \text{ s.t.} |f| \leq |\hat{a}| \text{ on } \chi\}$. Since $\hat{}: A \to \mathcal{C}(\chi)$ is an \mathbb{R} -algebra homomorphism, we have that both \hat{A} and $\mathcal{B}(\chi)$ are subalgebras of $\mathcal{C}(\chi)$ and $\hat{A} \subseteq \mathcal{B}(\chi) \subseteq \mathcal{C}(\chi)$.

Claim 1: $C_c(\chi)$ is a subalgebra of $\mathcal{B}(\chi)$.

Proof of Claim 1.

Clearly, $C_c(\chi)$ equipped with the pointwise operations of addition and multiplication is an \mathbb{R} -algebra. Moreover, if $f \in C_c(\chi)$ then f is bounded above on χ , and so there exists $k \in \mathbb{N}$ s.t. $|f| \leq k$ on χ . Since $k \in A$, we have that $|f| \leq \hat{k}$ on χ , i.e. $f \in \mathcal{B}(\chi)$. Hence, $C_c(\chi)$ is a subalgebra of $\mathcal{B}(\chi)$. \Box (Claim 1)

Define $\overline{L}: \hat{A} \to \mathbb{R}$ as $\overline{L}(\hat{a}) = L(a)$ for all $a \in A$.

Claim 2: \overline{L} is a well-defined linear functional on \hat{A} .

Proof of Claim 2.

It is enough to prove that

$$\forall a \in A, \ \hat{a} = 0 \Rightarrow L(a) = 0.$$
(2.2)

In fact, (2.2) implies that $\overline{L}(a) = \overline{L}(b)$ for any $a, b \in A$ such that $\hat{a} = \hat{b}$, i.e. \overline{L} is well-defined. Also, using (2.2) together with the assumptions that \hat{a} is a

 $\mathbb{R}-\text{algebra}$ homomorphism and L is linear, we obtain that for any $a,b\in A$ and $\lambda\in\mathbb{R}$

$$\overline{L}(\hat{a}+\hat{b}) \stackrel{(2.2)}{=} \overline{L}(\widehat{a+b}) = L(a+b) = L(a) + L(b) = \overline{L}(\hat{a}) + \overline{L}(\hat{b})$$

and

$$\overline{L}(\lambda \hat{a}) \stackrel{(2,2)}{=} \overline{L}(\widehat{\lambda a}) = L(\lambda a) = \lambda L(a) = \lambda \overline{L}(\hat{a}).$$

Let us then show that (2.2) holds. If $\hat{a} = 0$ then $\hat{a} \ge 0$ and $-\hat{a} = -\hat{a} \ge 0$. These respectively imply that $L(a) \ge 0$ and $L(-a) \ge 0$, which together yield L(a) = 0, i.e. $\overline{L}(\hat{a}) = 0$.

Claim 3: $\overline{L} : \hat{A} \to \mathbb{R}$ extends to a linear functional $\overline{\overline{L}} : \mathcal{B}(\chi) \to \mathbb{R}$ s.t. $\overline{\overline{L}}(f) \ge 0$ for all $f \in \mathcal{B}(\chi)$ with $f \ge 0$ on χ .

Proof of Claim 3.

Consider the collection \mathcal{P} of all pairs $\left(V,\overline{\overline{L}}\right)$, where V is a \mathbb{R} -subspace of $\mathcal{B}(\chi)$ containing \hat{A} and $\overline{\overline{L}}$ is an extension of $\overline{L}: \hat{A} \to \mathbb{R}$ such that $\overline{\overline{L}}(f) \geq 0$ for all $f \in V$ with $f \geq 0$ on χ . Define the following partial order on \mathcal{P}

$$\left(V_1, \overline{\overline{L}}_1\right) \subseteq \left(V_2, \overline{\overline{L}}_2\right) \iff V_1 \subseteq V_2 \text{ and } \overline{\overline{L}}_2 \upharpoonright_{V_1} = \overline{\overline{L}}_1.$$

- \mathcal{P} is non-empty since (\hat{A}, \overline{L}) belongs to it. In fact, for any $a \in A$ s.t. $\hat{a} \geq 0$ on χ we have $\overline{L}(\hat{a}) = L(a) \geq 0$, where the latter inequality holds by assumption on L.
- Every chain in \mathcal{P} has an upper bound. Indeed, for any $\{(V_i, \ell_i), i \in J\}$ chain in \mathcal{P} , the pair $(\bigcup_{i \in J} V_i, \ell)$ is an upper bound, where the functional $\ell : \bigcup_{i \in J} V_i \to \mathbb{R}$ is linear and such that $\ell \upharpoonright_{V_i} = \ell_i$ for all $i \in J$.

Then by Zorn's lemma there exists be a maximal element (B, \overline{L}) in \mathcal{P} . We want to show that $B = \mathcal{B}(\chi)$.

Suppose that this is not the case and let $g \in \mathcal{B}(\chi) \setminus B$. If $f_1, f_2 \in B$ s.t. $f_1 \leq g$ and $g \leq f_2$ on χ , then $f_1 \leq f_2$ on χ , and so $\overline{\overline{L}}(f_1) \leq \overline{\overline{L}}(f_2)$. Therefore, $\mathcal{U} := \{\overline{\overline{L}}(f_1) : f_1 \in B, f_1 \leq g \text{ on } \chi\}$ and $\Theta := \{\overline{\overline{L}}(f_2) : f_2 \in B, g \leq f_2 \text{ on } \chi\}$

are such that $u \leq \theta$ for all $u \in \mathcal{U}$ and $\theta \in \Theta$. Moreover, \mathcal{U} and Θ are both non-empty. [Indeed, as $g \in \mathcal{B}(\chi)$, there exists $a \in A$ s.t. $|g| \leq |\hat{a}|$ on χ and so $|\hat{a}| \leq \frac{\hat{a}^2 + 1}{2} \in \hat{A}$ (since $(\hat{a} \pm 1)^2 \geq 0$), which in turns gives that $f_1 := -\frac{\hat{a}^2 + 1}{2} \in \hat{A}$ and $f_2 := \frac{\hat{a}^2 + 1}{2} \in \hat{A}$ are such that $f_1 \leq g \leq f_2$.] The completeness of \mathbb{R} ensures that

$$\exists e \in \mathbb{R} \text{ s.t. } \sup(\mathcal{U}) \le e \le \inf(\Theta).$$
(2.3)

We can now linearly extend $\overline{\overline{L}}$ from B to $B + \mathbb{R}g \subseteq \mathcal{B}(\chi)$ by setting $\overline{\overline{L}}(g) := e$ and so $\overline{\overline{L}}(f + dg) := \overline{L}(f) + de$ for all $d \in \mathbb{R}$ and $f \in B$. Then the following holds

$$\forall f + dg \in B + \mathbb{R}g, \ f + dg \ge 0 \text{ on } \chi \Rightarrow \overline{\overline{L}}(f + dg) \ge 0, \tag{2.4}$$

which yields $\left(B + \mathbb{R}g, \overline{\overline{L}}\right) \supseteq (B, \overline{\overline{L}})$ and so contradicts the maximality of $(B, \overline{\overline{L}})$, proving that $B = \mathcal{B}(\chi)$. To show that (2.4) holds, we need to distinguish three cases.

<u>Case 1</u>: If d = 0 and $f + dg \in B + \mathbb{R}g$ is s.t. $f + dg \ge 0$ on χ , then $\overline{\overline{L}}(f) \ge 0$ since $\left(B, \overline{\overline{L}}\right) \in \mathcal{P}$.

 $\underline{\text{Case 2}}: \text{ If } d > 0 \text{ and } f + dg \in B + \mathbb{R}g \text{ is s.t. } f + dg \ge 0 \text{ on } \chi, \text{ then } -\frac{f}{d} \le g \text{ on } \chi. \text{ Hence, } \overline{\overline{L}}\left(-\frac{f}{d}\right) \in \mathcal{U} \text{ and so by (2.3) we have } \overline{\overline{L}}\left(-\frac{f}{d}\right) \le e = \overline{\overline{L}}(g), \text{ i.e.} \\ 0 \le \overline{\overline{L}}(g) - \overline{\overline{L}}\left(-\frac{f}{d}\right) = \overline{\overline{L}}\left(g + \frac{f}{d}\right) = \frac{1}{d}\overline{\overline{L}}\left(f + gd\right). \text{ Then } \overline{\overline{L}}\left(f + gd\right) \ge 0. \\ \underline{\text{Case 3}}: \text{ If } d < 0 \text{ and } f + dg \in B + \mathbb{R}g \text{ is s.t. } f + dg \ge 0 \text{ on } \chi, \text{ then } -\frac{f}{d} \ge g \\ \text{ on } \chi. \text{ Hence, } \overline{\overline{L}}\left(-\frac{f}{d}\right) \in \Theta \text{ and so by (2.3) we have } \overline{\overline{L}}\left(-\frac{f}{d}\right) \ge e = \overline{\overline{L}}(g), \text{ i.e.} \\ 0 \le \overline{\overline{L}}(g) - \overline{\overline{L}}\left(-\frac{f}{d}\right) = \overline{\overline{L}}\left(g + \frac{f}{d}\right) = -\frac{1}{d}\overline{\overline{L}}\left(f + gd\right). \text{ Then } \overline{\overline{L}}\left(f + gd\right) \ge 0. \\ \Box(\text{Claim 3})$

By Claim 1, we know that $C_c(\chi) \subseteq \mathcal{B}(\chi)$ and so $\overline{\overline{L}}$ is in particular defined on $C_c(\chi)$ and such that $\overline{\overline{L}}(f) \geq 0$ for all $f \in C_c(\chi)$ with $f \geq 0$ on χ . This together with Remark 2.2.4 guarantees that we can apply Theorem 2.2.5 and, hence, that

$$\exists \mu \text{ Borel regular measure on } \chi \text{ s.t. } \overline{\overline{L}}(f) = \int f d\mu, \quad \forall f \in \mathcal{C}_c(\chi).$$
(2.5)

Main Claim: $\overline{\overline{L}}(f) = \int f d\mu, \forall f \in \mathcal{B}(\chi).$

Proof of Main Claim.

Let $f \in \mathcal{B}(\chi)$. W.l.o.g. we can assume that $f \ge 0$ on χ , since $f = f_+ - f_$ where $f_+ := \max\{f, 0\}$ and $f_- := -\min\{f, 0\}$. Set $q := f + \hat{p}$ where p is the one in (2.1). Then $q \in \mathcal{B}(\chi)$.

For each $j \in \mathbb{N}$, define $\chi'_j := \{x \in \chi \mid q(x) \le j\}$. Then

- $\forall j \in \mathbb{N}, \chi'_i$ is compact. Indeed, for all $x \in \chi$ we have that $q(x) \geq \hat{p}(x)$ and so that $\chi'_i \subseteq \chi_j$, which yields that χ'_i is closed subset of a compact set and so itself compact.
- $\chi'_{j} \subseteq \chi'_{j+1}$ and $\chi = \bigcup \chi'_{j}$

Subclaim 1: For each $j \in \overset{j}{\mathbb{N}}$, there exists $f_j \in \mathcal{C}_c(\chi)$ such that $0 \leq f_j \leq f$, $f_j = f$ on χ'_j and $f_j = 0$ on $\chi \setminus \chi'_{j+1}$.

Proof of Subclaim 1.

For each $j \in \mathbb{N}$, let us set $Y'_j = \{x \in \chi'_{j+1} \mid j + \frac{1}{2} \le q(x) \le j+1\}$. Then Y'_j and χ'_j are disjoint closed subsets of χ'_{j+1} . Applying Urysohn's lemma, we get that there exists $g_j: \chi'_{j+1} \to [0,1]$ continuous such that $g_j = 0$ on Y'_j and $g_j = 1$ on χ'_j . We can extend g_j to the whole χ by setting $g_j = 0$ on $\chi \setminus \chi'_{j+1}$. Then $f_j := f \cdot g_j$ is such that

- $0 \le f_j \le f$ on χ , since $0 \le g_j \le 1$ on χ .

• $f_j = f \cdot g_j = f$ on χ'_j , since $g_j = 1$ on χ'_j . • $f_j = f \cdot g_j = 0$ on $\chi \setminus \chi'_{j+1}$, since $g_j = 0$ on $\chi \setminus \chi'_{j+1}$. In particular, $\operatorname{supp}(f_j) \subseteq \chi'_{j+1}$ is compact, as closed subset of a compact set, and so $f_i \in \mathcal{C}_c(\chi)$.

 \Box (Subclaim 1)

Then $(f_j)_{j\in\mathbb{N}}$ is a non-decreasing sequence of non-negative functions in $C_c(\chi)$ which pointwise converges to f in χ . Indeed, for all $j \in \mathbb{N}$ and all $x \in \chi$, we easily get from Subclaim 1 that $0 \leq f_i(x) \leq f_{i+1}(x)$ and $\lim_{i\to\infty} f_i(x) = f(x)$. Hence, we can apply the Monotone Convergence Theorem, which ensures that

$$\int f d\mu = \lim_{j \to \infty} \int f_j d\mu \stackrel{(2.5)}{=} \lim_{j \to \infty} \overline{\overline{L}}(f_j).$$

Hence, the proof of the Main Claim is complete once we show that <u>Subclaim 2</u>: $\overline{\overline{L}}(f) = \lim_{j \to \infty} \overline{\overline{L}}(f_j).$

Proof of Subclaim 2.

Let $j \in \mathbb{N}$. First of all, let us show that

$$\frac{q^2}{j} \ge f - f_j \ge 0 \text{ on } \chi.$$
(2.6)

From Subclaim 1 we know that $f = f_j$ on χ'_j , so clearly $\frac{q^2}{j} \ge f - f_j = 0$ on χ'_j . Moreover, for any $x \in \chi \setminus \chi'_j$, we have q(x) > j and so

$$q^{2}(x) > jq(x) = j(f(x) + \hat{p}(x)) \ge jf(x) \ge (f(x) - f_{j}(x)),$$

which yields $\frac{q^2(x)}{j} \ge (f - f_j)(x)$ for all $x \in \chi$. Now (2.6) implies that $\overline{\overline{L}}\left(\frac{q^2}{j} - (f - f_j)\right) \ge 0$ and $\overline{\overline{L}}(f - f_j) \ge 0$. Hence, $\overline{\overline{L}}\left(\frac{q^2}{j}\right) \ge \overline{\overline{L}}(f - f_j) \ge 0$, i.e. $\frac{1}{j}\overline{\overline{L}}(q^2) \ge \overline{\overline{L}}(f - f_j) \ge 0$. Then passing to the limit for $j \to \infty$ we obtain that $\lim_{j\to\infty} \overline{\overline{L}}(f - f_j) = 0$ and so $\lim_{j\to\infty} \overline{\overline{L}}(f_j) = \overline{\overline{L}}(f)$. \Box (Subclaim 2) \Box (Main Claim)

Since $\hat{A} \subseteq \mathcal{B}(\chi)$, the Main Claim implies that for all $a \in A$ we have $\overline{\overline{L}}(\hat{a}) = \int \hat{a}d\mu$. This together with the definition of \overline{L} and Claim 3 gives that

$$L(a) = \overline{L}(\hat{a}) = \overline{\overline{L}}(\hat{a}) = \int \hat{a}d\mu, \forall a \in A,$$
(2.7)

which yields the conclusion as μ is a finite Borel regular measure and so Radon. Indeed, using (2.7), we get that $L(1) = \int \hat{1} d\mu = \mu(\chi)$ and so that μ is finite. \Box (Proof of Theorem 2.2.3)