
2. K�Moment Problem: formulation and connection to Psd(K)

Theorem 2.2.3 was most probably known since at least the sixties as it
can be derived from a theorem due to Choquet in [6]. However, we propose
a proof due to Marshall, see [29, Theorem 3.2.2] or [28, Theorem 3.1], and
based on the following famous result.

Theorem 2.2.5 (Riesz-Markov-Kakutani theorem). Let � be a locally com-
pact Hausdor↵ space. If L : C

c

(�) ! R is a positive linear functional, i.e.
L(f) � 0 for all f 2 C

c

(�) such that f � 0 on �, then there exists a unique
Borel regular measure µ on � such that L(f) =

R

fdµ for all f 2 C
c

(�).

Proof. (see e.g. [20, Theorem 16, p.77])

Recall that a Borel regular measure µ on the Hausdor↵ space (�, ⌧) is a
measure defined on the Borel ��algebra B

⌧

such that µ is both inner reg-
ular and outer regular, where µ outer regular means that for all B 2 B

⌧

,
µ(B) = inf{µ(O) : O ◆ Bopen}. Note that a finite Borel regular measure is
in particular a Radon measure.

Proof. of Theorem 2.2.3
Let Â := {â : a 2 A} and B(�) := {f 2 C(�) : 9a 2 A s.t.|f |  |â| on �}.
Since ˆ : A ! C(�) is an R�algebra homomorphism, we have that both Â and
B(�) are subalgebras of C(�) and Â ✓ B(�) ✓ C(�).

Claim 1: C
c

(�) is a subalgebra of B(�).
Proof of Claim 1.
Clearly, C

c

(�) equipped with the pointwise operations of addition and multi-
plication is an R�algebra. Moreover, if f 2 C

c

(�) then f is bounded above
on �, and so there exists k 2 N s.t. |f |  k on �. Since k 2 A, we have that
|f |  k̂ on �, i.e. f 2 B(�). Hence, C

c

(�) is a subalgebra of B(�). ⇤(Claim 1)

Define L : Â ! R as L(â) = L(a) for all a 2 A.

Claim 2: L is a well-defined linear functional on Â.

Proof of Claim 2.
It is enough to prove that

8a 2 A, â = 0 ) L(a) = 0. (2.2)

In fact, (2.2) implies that L(a) = L(b) for any a, b 2 A such that â = b̂, i.e.
L is well-defined. Also, using (2.2) together with the assumptions that ˆ is a
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2.2. Riesz-Haviland’s Theorem

R�algebra homomorphism and L is linear, we obtain that for any a, b 2 A
and � 2 R

L(â+ b̂)
(2.2)

= L([a+ b) = L(a+ b) = L(a) + L(b) = L(â) + L(b̂)

and

L(�â)
(2.2)

= L(c�a) = L(�a) = �L(a) = �L(â).

Let us then show that (2.2) holds. If â = 0 then â � 0 and �â = �̂a � 0.
These respectively imply that L(a) � 0 and L(�a) � 0, which together yield
L(a) = 0, i.e. L(â) = 0. ⇤(Claim 2)

Claim 3: L : Â ! R extends to a linear functional L : B(�) ! R s.t.

L(f) � 0 for all f 2 B(�) with f � 0 on �.

Proof of Claim 3.

Consider the collection P of all pairs
⇣

V, L
⌘

, where V is a R�subspace of

B(�) containing Â and L is an extension of L : Â ! R such that L(f) � 0 for
all f 2 V with f � 0 on �. Define the following partial order on P

⇣

V
1

, L
1

⌘

✓
⇣

V
2

, L
2

⌘

() V
1

✓ V
2

and L
2

�
V1= L

1

.

• P is non-empty since
⇣

Â, L
⌘

belongs to it. In fact, for any a 2 A s.t.

â � 0 on � we have L(â) = L(a) � 0, where the latter inequality holds
by assumption on L.

• Every chain in P has an upper bound. Indeed, for any {(V
i

, `
i

) , i 2 J}
chain in P, the pair

�

S

i2J Vi

, `
�

is an upper bound, where the functional
` :

S

i2J Vi

! R is linear and such that ` �
Vi= `

i

for all i 2 J .

Then by Zorn’s lemma there exists be a maximal element
⇣

B,L
⌘

in P.

We want to show that B = B(�).
Suppose that this is not the case and let g 2 B(�) \ B. If f

1

, f
2

2 B s.t.

f
1

 g and g  f
2

on �, then f
1

 f
2

on �, and so L(f
1

)  L(f
2

). Therefore,

U := {L(f
1

) : f
1

2 B, f
1

 g on �} and ⇥ := {L(f
2

) : f
2

2 B, g  f
2

on �}

are such that u  ✓ for all u 2 U and ✓ 2 ⇥. Moreover, U and ⇥ are both
non-empty.

⇥

Indeed, as g 2 B(�), there exists a 2 A s.t. |g|  |â| on �

and so |â|  â2 + 1

2
2 Â (since

�

â ± 1
�

2 � 0), which in turns gives that
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f
1

:= � â2 + 1

2
2 Â and f

2

:=
â2 + 1

2
2 Â are such that f

1

 g  f
2

.
⇤

The

completeness of R ensures that

9 e 2 R s.t. sup(U)  e  inf(⇥). (2.3)

We can now linearly extend L from B to B +Rg ✓ B(�) by setting L(g) := e

and so L(f + dg) := L̄(f) + de for all d 2 R and f 2 B. Then the following
holds

8 f + dg 2 B + Rg, f + dg � 0 on � ) L(f + dg) � 0, (2.4)

which yields
⇣

B + Rg, L
⌘

◆ (B,L) and so contradicts the maximality of

(B,L), proving that B = B(�). To show that (2.4) holds, we need to dis-
tinguish three cases.

Case 1: If d = 0 and f + dg 2 B + Rg is s.t. f + dg � 0 on �, then L(f) � 0

since
⇣

B,L
⌘

2 P.

Case 2: If d > 0 and f + dg 2 B + Rg is s.t. f + dg � 0 on �, then �f

d

 g

on �. Hence, L
⇣

�f

d

⌘

2 U and so by (2.3) we have L
⇣

�f

d

⌘

 e = L(g), i.e.

0  L(g)� L
⇣

�f

d

⌘

= L
⇣

g + f

d

⌘

= 1

d

L (f + gd). Then L (f + gd) � 0.

Case 3: If d < 0 and f + dg 2 B + Rg is s.t. f + dg � 0 on �, then �f

d

� g

on �. Hence, L
⇣

�f

d

⌘

2 ⇥ and so by (2.3) we have L
⇣

�f

d

⌘

� e = L(g), i.e.

0  L(g)� L
⇣

�f

d

⌘

= L
⇣

g + f

d

⌘

= �1

d

L (f + gd). Then L (f + gd) � 0.

⇤(Claim 3)

By Claim 1, we know that C
c

(�) ✓ B(�) and so L is in particular defined

on C
c

(�) and such that L(f) � 0 for all f 2 C
c

(�) with f � 0 on �. This
together with Remark 2.2.4 guarantees that we can apply Theorem 2.2.5 and,
hence, that

9 µ Borel regular measure on � s.t. L(f) =

Z

fdµ, 8f 2 C
c

(�). (2.5)

Main Claim: L(f) =
R

fdµ, 8f 2 B(�).

Proof of Main Claim.
Let f 2 B(�). W.l.o.g. we can assume that f � 0 on �, since f = f

+

� f�
where f

+

:= max{f, 0} and f� := �min{f, 0}. Set q := f + p̂ where p is the
one in (2.1). Then q 2 B(�).

For each j 2 N, define �
0
j

:= {x 2 � | q(x)  j}. Then
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2.2. Riesz-Haviland’s Theorem

• 8 j 2 N,�0
j

is compact. Indeed, for all x 2 � we have that q(x) � p̂(x)

and so that �
0
j

✓ �
j

, which yields that �
0
j

is closed subset of a compact
set and so itself compact.

• �
0
j

✓ �
0
j+1

and � =
[

j

�
0
j

.

Subclaim 1: For each j 2 N, there exists f
j

2 C
c

(�) such that 0  f
j

 f ,
f
j

= f on �
0
j

and f
j

= 0 on � \ �0
j+1

.

Proof of Subclaim 1.
For each j 2 N, let us set Y 0

j

= {x 2 �0
j+1

| j + 1

2

 q(x)  j + 1}. Then
Y 0
j

and �0
j

are disjoint closed subsets of �0
j+1

. Applying Urysohn’s lemma, we
get that there exists g

j

: �0
j+1

! [0, 1] continuous such that g
j

= 0 on Y 0
j

and
g
j

= 1 on �0
j

. We can extend g
j

to the whole � by setting g
j

= 0 on � \ �0
j+1

.
Then f

j

:= f · g
j

is such that
• 0  f

j

 f on �, since 0  g
j

 1 on �.
• f

j

= f · g
j

= f on �0
j

, since g
j

= 1 on �0
j

.
• f

j

= f · g
j

= 0 on � \ �0
j+1

, since g
j

= 0 on � \ �0
j+1

.
In particular, supp(f

j

) ✓ �0
j+1

is compact, as closed subset of a compact set,
and so f

j

2 C
c

(�).
⇤(Subclaim 1)

Then (f
j

)
j2N is a non-decreasing sequence of non-negative functions in

C
c

(�) which pointwise converges to f in �. Indeed, for all j 2 N and
all x 2 �, we easily get from Subclaim 1 that 0  f

j

(x)  f
j+1

(x) and
lim

j!1 f
j

(x) = f(x). Hence, we can apply the Monotone Convergence The-
orem, which ensures that

Z

fdµ = lim
j!1

Z

f
j

dµ
(2.5)

= lim
j!1

L(f
j

).

Hence, the proof of the Main Claim is complete once we show that

Subclaim 2: L(f) = lim
j!1

L(f
j

).

Proof of Subclaim 2.
Let j 2 N. First of all, let us show that

q2

j
� f � f

j

� 0 on �. (2.6)

From Subclaim 1 we know that f = f
j

on �0
j

, so clearly
q2

j
� f � f

j

= 0 on

�0
j

. Moreover, for any x 2 � \ �0
j

, we have q(x) > j and so

q2(x) > jq(x) = j
�

f(x) + p̂(x)
�

� jf(x) �
�

f(x)� f
j

(x)
�

,
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2. K�Moment Problem: formulation and connection to Psd(K)

which yields
q2(x)

j
� (f � f

j

)(x) for all x 2 �.

Now (2.6) implies that L
⇣

q

2

j

� (f � f
j

)
⌘

� 0 and L (f � f
j

) � 0. Hence,

L
⇣

q

2

j

⌘

� L (f � f
j

) � 0, i.e. 1

j

L
�

q2
�

� L (f � f
j

) � 0. Then passing to the

limit for j ! 1 we obtain that lim
j!1

L (f � f
j

) = 0 and so lim
j!1

L(f
j

) = L(f).

⇤(Subclaim 2)

⇤(Main Claim)

Since Â ✓ B(�), the Main Claim implies that for all a 2 A we have

L(â) =
R

âdµ. This together with the definition of L and Claim 3 gives that

L(a) = L(â) = L(â) =

Z

âdµ, 8a 2 A, (2.7)

which yields the conclusion as µ is a finite Borel regular measure and so Radon.
Indeed, using (2.7), we get that L(1) =

R

1̂dµ = µ(�) and so that µ is finite.
⇤(Proof of Theorem 2.2.3)
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