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which yields
q2(x)

j
� (f � f

j

)(x) for all x 2 �.

Now (2.6) implies that L
⇣

q

2

j

� (f � f
j

)
⌘

� 0 and L (f � f
j

) � 0. Hence,

L
⇣

q

2

j

⌘

� L (f � f
j

) � 0, i.e. 1

j

L
�

q2
�

� L (f � f
j

) � 0. Then passing to the

limit for j ! 1 we obtain that lim
j!1

L (f � f
j

) = 0 and so lim
j!1

L(f
j

) = L(f).

⇤(Subclaim 2)

⇤(Main Claim)

Since Â ✓ B(�), the Main Claim implies that for all a 2 A we have

L(â) =
R

âdµ. This together with the definition of L and Claim 3 gives that

L(a) = L(â) = L(â) =

Z

âdµ, 8a 2 A, (2.7)

which yields the conclusion as µ is a finite Borel regular measure and so Radon.
Indeed, using (2.7), we get that L(1) =

R

1̂dµ = µ(�) and so that µ is finite.

⇤(Proof of Theorem 2.2.3)

2.3 Solving the KMP through characterizations of Psd(K)

The Riesz-Haviland theorem 2.2.1 establishes a beautiful duality between
the K�moment problem and the problem of characterizing Psd(K). Hence,
thanks to this result we can obtain necessary and su�cient conditions to
solve the KMP using the characterizations of Psd(K) introduced in the pre-
vious chapter. For example, combining Riesz-Haviland’s theorem with Theo-
rem 1.3.9 about saturation of preorderings we obtain the following.

Corollary 2.3.1. Let L : R[X] ! R be linear and K a non-empty bc-
sas of R with natural description S

nat

= {g
1

, . . . , g
s

}. Then there exists
a K�representing measure for L if and only if L(h2ge1

1

. . . ges
s

) � 0 for all
h 2 R[X] and all e

1

, . . . , e
s

2 {0, 1}.

Proof.
By Theorem 2.2.1, the existence of a K�representing measure for L is equiv-
alent to the non-negativity of L on Psd(K). The latter is in turn equivalent
to the non-negativity of L on the preordering T

Snat associated to the natu-
ral description S

nat

of K, since Theorem 1.3.9 ensures that Psd(K) = T
Snat .

Hence, the conclusion directly follows from the linearity of L as

T
Snat =

8

<

:

X

e=(e1,...,es)2{0,1}s
�
e

ge1
1

. . . ges
s

: �
e

2
X

R[X]2, e 2 {0, 1}s
9

=

;

.
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2.3. Solving the KMP through characterizations of Psd(K)

Corollary 2.3.1 allows to derive the most classical results about the one-
dimensional KMP. Indeed, we have the following

• If K = R, then S
nat

= {;} and so Corollary 2.3.1 becomes
Theorem 2.3.2 (Hamburger 1921).
A linear functional L : R[X] ! R has a R�representing measure if and
only if L(h2) � 0 for all h 2 R[X].

• If K = [0,+1), then S
nat

= {X} and so Corollary 2.3.1 becomes
Theorem 2.3.3 (Stietjes 1885).
A linear functional L : R[X] ! R has a R+�representing measure if
and only if L(h2) � 0 and L(Xh2) � 0 for all h 2 R[X].

• If K = [0, 1], then S
nat

= {X, 1 � X}. Hence, using Corollary 2.3.1
together with the observation that X(1�X) = X(1�X)2+(1�X)X2,
we obtain
Theorem 2.3.4 (Hausdor↵ 1923).
A linear functional L : R[X] ! R has a [0, 1]�representing measure
if and only if L(h2) � 0, L(Xh2) � 0 and L((1 � X)h2) � 0 for all
h 2 R[X].

These classical results were obtained without using Riesz-Haviland theorem,
but through methods involving the analysis of the so-called Hankel matrix or
moment matrix associated to the starting functional. In fact, we will see that
any condition of the form L(gh2) � 0 for all h 2 R[X] and some g 2 R[X] can
be translated into the positive semidefiniteness of a certain matrix obtained
from the putative moment sequence (L(Xj))

j2N0 .
Let us introduce these concepts for any dimension n 2 N.

Definition 2.3.5. A sequence m := (m
↵

)
↵2Nn

0
of real numbers is called

positive semidefinite (psd) if

X

↵,�2F
c
↵

c
�

m
↵+�

� 0, 8 F ⇢ Nn

0

, c
↵

, c
�

2 R.

Definition 2.3.6. Given a polynomial g :=
P

�2Nn
0
g
�

X� 2 R[X
1

, . . . , X
n

] and

a sequence m := (m
↵

)
↵2Nn

0
of real numbers, we define g(E)m :=

�

(g(E)m)
↵

�

↵2Nn
0
,

where
(g(E)m)

↵

:=
X

�2Nn
0

g
�

m
↵+�

.

Examples 2.3.7.

1. For m := (m
j

)
j2N0 = (m

0

,m
1

,m
2

, . . .), g := X and h := X3 � 1 we get:
g(E)m = (m

j+1

)
j2N0 = (m

1

,m
2

,m
3

, . . .) and
h(E)m = (m

j+3

� 1)
j2N0 = (m

3

� 1,m
4

� 1,m
5

� 1, . . .).
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2. K�Moment Problem: formulation and connection to Psd(K)

2. For m :=
�

m
(↵1,↵2)

�

(↵1,↵2)2N2
0
and g := 5 � X2

1

� X2

2

, we have that

(g(E)m)
(↵1,↵2)

= 5m
(↵1,↵2)

�m
(↵1+2,↵2)

�m
(↵1,↵2+2)

.
For instance, (g(E)m)

(0,1)

= 5m
(0,1)

�m
(2,1)

�m
(0,3)

.

Lemma 2.3.8.

Given L : R[X
1

, . . . , X
n

] ! R linear and g :=
P

�2Nn
0
g
�

X� 2 R[X
1

, . . . , X
n

],

we have that L(gh2) � 0, 8h 2 R[X
1

, . . . , X
n

] if and only if g(E)m is psd,
where m := (L(X↵))

↵2Nn
0
.

Proof.
For any ↵ 2 Nn

0

, we have

L(gX↵) = L

0

@

X

�2Nn
0

g
�

X�+↵

1

A =
X

�2Nn
0

g
�

L(X�+↵) =
X

�2Nn
0

g
�

m
�+↵

= (g(E)m)
↵

.

Let h =
P

�2Nn
0
h
�

X� 2 R[X]. Then h2 =
P

�,�2Nn
0
h
�

h
�

X�+� and so

L(gh2) = L

0

@g
X

�,�2Nn
0

h
�

h
�

X�+�

1

A

=
X

�,�2Nn
0

h
�

h
�

L(gX�+�)

=
X

�,�2Nn
0

h
�

h
�

(g(E)m)
�+�

.

Hence, L(gh2) � 0 for all h 2 R[X] i↵
P

�,�2Nn
0
h
�

h
�

(g(E)m)
�+�

� 0 for all

h
�

, h
�

2 R, which is equivalent the psd-ness of g(E)m.

Definition 2.3.9. Let L : R[X] �! R be linear and g 2 R[X]. We define the
associated symmetric bilinear form as

h , i
g

: R[X]⇥ R[X] ! R
( p , q ) 7! hp, qi

g

:= L(pqg)

The moment matrix associated to L and localized at g is defined to be the infi-
nite real symmetric matrix Mg :=

�

hX↵, X�i
g

�

↵,�2Nn
0
=

�

L(X↵+� g)
�

↵,�2Nn
0
.

For g = 1, M1 is just said the moment matrix associated to L.
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2.3. Solving the KMP through characterizations of Psd(K)

Examples 2.3.10.

a) Let n = 1, L : R[X] ! R linear and set m := (m
j

)
j2N0 with m

j

:= L(Xj).
Then the associated moment matrix is

M1 =

0

B

B

B

B

B

@

m
0

m
1

m
2

. . .

m
1

m
2

. . . . . .

m
2

. . .
. . .

. . .
...

. . .
. . .

. . .

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

L(1) L(X) L(X2) . . .

L(X) L(X2)
. . . . . .

L(X2)
. . .

. . .
. . .

...
. . .

. . .
. . .

1

C

C

C

C

C

A

.

If g := X then the corresponding localized moment matrix is given by

Mg =

0

B

B

B

B

B

@

m
1

m
2

m
3

. . .

m
2

m
3

. . .
. . .

m
3

. . .
. . .

. . .
...

. . .
. . .

. . .

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

L(X) L(X2) L(X3) . . .

L(X2) L(X3)
. . .

. . .

L(X3)
. . .

. . .
. . .

...
. . .

. . .
. . .

1

C

C

C

C

C

A

.

b) Let n = 2, L : R[X] ! R linear and set m := (m
↵

)
↵2N2

0
with

m
(↵1,↵2)

:= L(X↵1
1

X↵2
2

). Then the associated moment matrix is

M1 =

0

B

B

B

B

B

@

m
00

m
10

m
01

m
20

m
11

. . .

m
10

m
20

m
11

m
30

. . .
. . .

m
01

m
11

m
20

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

L(1) L(X
1

) L(X
2

) L(X2

1

) L(X
1

X
2

) . . .

L(X
1

) L(X2

1

) L(X
1

X
2

) L(X3

1

)
. . .

. . .

L(X
2

) L(X
1

X
2

) L(X3

1

)
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

1

C

C

C

C

C

A

and if g = X
1

X
2

then the corresponding localized moment matrix is

Mg =

0

B

B

B

B

B

@

m
11

m
21

m
12

m
31

m
22

. . .

m
21

m
31

m
22

m
41

. . .
. . .

m
12

m
22

m
31

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .

1

C

C

C

C

C

A

.
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2. K�Moment Problem: formulation and connection to Psd(K)

Recall that

Definition 2.3.11. A real symmetric N⇥N matrix A is positive semidefinite
(psd) if ytAy � 0 8 y 2 RN . An infinite real symmetric matrix A is psd if

ytA
N

y � 0 8 y 2 RN and 8 N 2 N, where A
N

is the upper left corner
submatrix of order N of A.

Proposition 2.3.12. Let L : R[X] �! R be linear and g 2 R[X]. Then the
following are equivalent:
1) L(�g) � 0 8 � 2

P

R[X]2.
2) L(h2g) � 0 8 h 2 R[X].
3) h , i

g

is psd.
4) Mg is psd.
5) g(E)m is psd where m := (L(X↵))

↵2Nn
0
.

Proof.
1) , 2) since for any � 2

P

R[X]2, there exist h
i

2 R[X] such that � =
P

i

h2
i

and so L(�g) =
P

i

L(h2
i

g).

2) , 3) as L(h2g) = hh, hi
g

3) , 4) Indeed, for any h =
P

�2F h
�

X� 2 R[X] with F ⇢ Nn

0

finite, we have

hh, hi
g

= L(
X

�,�2F
h
�

h
�

X�+�g) =
X

�,�2F
h
�

h
�

L(gX�+�)

=
X

�,�2F
h
�

h
�

Mg(�, �) = ytMg

|F |y,

where y := (h
�

)
�2F .

4) , 5)
g(E)m is psd i↵

P

�,�2Nn
0
h
�

h
�

(g(E)m)
�+�

� 0 for all h
�

, h
�

2 R, which is

equivalent to the psd-ness of Mg since (g(E)m)
�+�

= Mg(�, �).

5) , 1) by Lemma 2.3.8.

We can then express the Hambuger, Stieltjes and Hausdor↵ solutions to
the KMP in terms of moment matrices.
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2.3. Solving the KMP through characterizations of Psd(K)

Theorem 2.3.13.

Given m := (m
j

)
j2N0, the following are equivalent:

a) m is a Hamburger’s moment sequence, i.e. has a R�representing measure
b) m is psd
c) M1 is psd
d) L

m

(h2) � 0 for all h 2 R[X].

Theorem 2.3.14.

Given m := (m
j

)
j2N0, the following are equivalent:

a) m is a Stieltjes’s moment sequence, i.e. has a R+�representing measure
b) m and g(E)m are both psd
c) M1 and Mg are both psd
d) L

m

(h2) � 0 and L
m

(gh2) � 0 for all h 2 R[X].
where g := X.

Theorem 2.3.15.

Given m := (m
j

)
j2N0, the following are equivalent:

a) m is a Hausdor↵ ’s moment sequence, i.e. has a [0, 1]�representing measure
b) m, g

1

(E)m and g
2

(E)m are all psd
c) M1, Mg1 and Mg2 are all psd
d) L(h2) � 0, L(g

1

h2) � 0 and L(g
2

h2) � 0 for all h 2 R[X].
where g

1

:= X and g
2

:= 1�X.

Let us now relate to the KMP the Nichtnegativstellensätze and the closure
results introduced in the previous chapter.

Proposition 2.3.16.

Let ⌧ be a locally convex topology on R[X]. Given a convex cone C of R[X]
and a closed subset K of Rn, the following are equivalent
a) Psd(K) ✓ C__

⌧

b) 8 L 2 C_
⌧

, 9 µ K�representing measure for L,
where:
C_
⌧

:= {` : R[X] ! R linear |` is ⌧ � continuous and `(C) � 0} and
C__
⌧

:= {p 2 R[X] |8 ` 2 C_
⌧

, `(p) � 0}.

Proof.
a) ) b) Let L 2 C_

⌧

, i.e. L is ⌧ � continuous and non-negative on C.
Then L

�

C
⌧

�

✓ [0,+1) and so, by Corollary 1.3.35, L (C__
⌧

) ✓ [0,+1).
This implies by a) that L(Psd(K)) ✓ [0,+1) which is equivalenty by Riesz-
Haviland Theorem 2.2.1 to the existence of a K�representing measure for L.

b) ) a) By b), we have that 8 L 2 C_
⌧

, L(Psd(K)) ✓ [0,+1), i.e.
L 2 (Psd(K))_

⌧

. Then C_
⌧

✓ (Psd(K))_
⌧

and so

C__
⌧

◆ (Psd(K))__
⌧

◆ Psd(K).
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2. K�Moment Problem: formulation and connection to Psd(K)

By combining the previous result with Corollary 1.3.42 (respectively 1.3.41
and 1.3.40) and recalling that every linear functional is continuous w.r.t. the
finest locally convex topology, we obtain the following results for the KMP.

Corollary 2.3.17. Let L : R[X] ! R linear and S := {g
1

, . . . , g
s

} ⇢ R[X]
such that the associated bcsas K

S

is compact. Then there exists a K
S

�repre-
senting measure for L if and only if L(h2ge1

1

· · · ges
s

) � 0 for all h 2 R[X],
e
1

, . . . , e
s

2 {0, 1}.

Corollary 2.3.18. Let L : R[X] ! R linear and S := {g
1

, . . . , g
s

} ⇢ R[X]
such that the quadratic module M

S

generated by S is Archimedean. Then
there exists a K

S

�representing measure for L if and only if L(h2g
i

) � 0 for
all h 2 R[X] and i 2 {1, . . . , s}

Corollary 2.3.19. Let L : R[X] ! R linear and M be an Archimedean
2d�power module of R[X] with d 2 N. Then 9 a K

M

�representing measure
for L if and only if L(M) ✓ [0,+1).
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