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q2§_x) > (f - f;)(@) for all z € ¥.

Now (2.6) implies that L (% —(f - fj)) >0and L (f — /i) > 0. Hence,

L (qj—g> > f(f — fj) >0, ie. %f (q2) > f(f — fj) > 0. Then passing to the

limit for j — oo we obtain that lim f(f — fj) =0and so lim f(fj) = f(f)
J J—00

—00

which yields

LI(Subclaim 2)
[J(Main Claim)

_ Since A C B(x), the Main Claim implies that for all a € A we have
L(a) = [ adp. This together with the definition of L and Claim 3 gives that

L(a) = L(a) = L(a) = / adp,Va € A, (2.7)

which yields the conclusion as p is a finite Borel regular measure and so Radon.
Indeed, using (2.7), we get that L(1) = [ 1dp = p(x) and so that u is finite.

LJ(Proof of Theorem 2.2.3)

Solving the KMP through characterizations of Psd(K)

The Riesz-Haviland theorem 2.2.1 establishes a beautiful duality between
the K —moment problem and the problem of characterizing Psd(K’). Hence,
thanks to this result we can obtain necessary and sufficient conditions to
solve the KMP using the characterizations of Psd(K) introduced in the pre-
vious chapter. For example, combining Riesz-Haviland’s theorem with Theo-
rem 1.3.9 about saturation of preorderings we obtain the following.

Corollary 2.3.1. Let L : R[X] — R be linear and K a non-empty bc-
sas of R with natural description Spat = {g1,...,9s}. Then there exists
a K—representing measure for L if and only if L(h?g{*...g%) > 0 for all
h € R[X] and all ey, ..., es € {0,1}.

Proof.

By Theorem 2.2.1, the existence of a K —representing measure for L is equiv-
alent to the non-negativity of L on Psd(K'). The latter is in turn equivalent
to the non-negativity of L on the preordering Ty, , associated to the natu-
ral description Syq¢ of K, since Theorem 1.3.9 ensures that Psd(K) = T
Hence, the conclusion directly follows from the linearity of L as

nat"*

TS0 = S oegf gl ioe €Y RIXPee {01}
6:(617""88)6{0’1}5



2.3. Solving the KMP through characterizations of Psd(K)

Corollary 2.3.1 allows to derive the most classical results about the one-
dimensional KMP. Indeed, we have the following

o If K =R, then Syq = {0} and so Corollary 2.3.1 becomes
Theorem 2.3.2 (Hamburger 1921).
A linear functional L : R[X] — R has a R—representing measure if and
only if L(h?) > 0 for all h € R[X].

o If K =[0,+00), then Spet = {X} and so Corollary 2.3.1 becomes
Theorem 2.3.3 (Stietjes 1885).
A linear functional L : R[X] — R has a R —representing measure if
and only if L(h?) > 0 and L(Xh?) >0 for all h € R[X].

o If K = 0,1], then Spu = {X,1 — X}. Hence, using Corollary 2.3.1
together with the observation that X (1 —X) = X(1—-X)?+ (1 - X)X?,

we obtain

Theorem 2.3.4 (Hausdorff 1923).

A linear functional L : R[X] — R has a [0, 1]—representing measure
if and only if L(h?) > 0, L(Xh?) > 0 and L((1 — X)h?) > 0 for all
h € R[X].

These classical results were obtained without using Riesz-Haviland theorem,
but through methods involving the analysis of the so-called Hankel matriz or
moment matrix associated to the starting functional. In fact, we will see that
any condition of the form L(gh?) > 0 for all h € R[X] and some g € R[X] can
be translated into the positive semidefiniteness of a certain matrix obtained

from the putative moment sequence (L(X7));en,-
Let us introduce these concepts for any dimension n € N.

Definition 2.3.5. A sequence m := (ma)aeny of real numbers is called
positive semidefinite (psd) if

Z caCgMarg >0, YV F CN{, cq, cg €R.
OC,BGF

Definition 2.3.6. Given a polynomial g := ZWENH g, X7 € R[Xy,..., X,] and

a sequence m := (Mq)aeny of real numbers, we define g(E)m := ((g(E)m)a)aeNn,
0

where

(9(E)m)q = Z Gy Moty -

veENG

Examples 2.3.7.
1. For m := (mj)jen, = (mo,m1,ma,...), g:= X and h := X3 —1 we get:
g(E)m = (mjq1)jen, = (m1,ma, m3,...) and
h(E)m = (mj+3 — 1)j€N0 = (m3 - 1,’171,4 - 1,m5 - 1, e )
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2. For m = ( al,ocz))(al a2)eN2 and g := 5 — X? — X2, we have that
(g(E) )(oq ag) — 5m(0c1 az) T M(a142,a2) = M(ag,a+2)-
For instance, (g(E)m),1) = 5m0,1) — M(2,1) — M(0,3)-
Lemma 2.3.8.

Given L : R[Xy,...,X,] — R linear and g := ZweNg g, X7 € R[Xq,..., Xy,
we have that L(gh®) > 0,Yh € R[X1,...,X,] if and only if g(E)m is psd,
where m := (L(X%)) yenn -

Proof.

For any o € Njj, we have

LX) =L 3 g, X7+ | = 3 g LX) = 3 gymyia = (9(B)m),
YEN? yeNg v€ENg

Let h = ZBGNQ hgX? € R[X]. Then h? = ZB,WGNS hzh, X% and so

L(gh®) = L|g > hgh X
B,veNg

= Y hghyL(gX")
B,7eNg

= Y hghy (9(B)ym)s,., -

B,yeNy

Hence, L(gh?) > 0 for all h € R[X] iff 25, ~eNg hﬁh (9(E)m)g,., = 0 for all
hg, hy € R, which is equivalent the psd-ness of g(E) O

Definition 2.3.9. Let L : R[X]| — R be linear and g € R[X]. We define the
associated symmetric bilinear form as

(,)g: RXIxR[X] — R
(p,q) = (p,q)g:= L(pgg)

The moment matrix associated to L and localized at g is defined to be the infi-

nite real symmetric matriz M9 := (<Ka’zﬁ>g)a,ﬁel\]g = (L(XC“FB g))

For g =1, M" is just said the moment matriz associated to L.

a,BeND”



2.3. Solving the KMP through characterizations of Psd(K)

Examples 2.3.10.
a) Letn =1, L:R[X] = R linear and set m := (m;);en, with mj := L(X7).
Then the associated moment matriz s

mo mi mz ... L(1) LX) L(X?)
i | ™™ _ L(X) L(X?)

If g := X then the corresponding localized moment matriz is given by

mp mg ms ... L(X) L(X2) L(X3)
o |mems ] LEX% LX)

b) Let n =2, L: R[X] = R linear and set m := (ma)qenz with
M(ay,a0) := L(XT" X5?). Then the associated moment matriv is

Mmoo M10 Mol M20 M1l

mio MM20 Mi11 MM30

mo1r Mi1 M20

L(1) L(X1)  L(Xy) L(X}) L(X1X5)
L(X1) L(X}) L(XiX2) L(X}) -

(
| LX) L(X1Xy)  L(XD)

and if g = X1Xo then the corresponding localized moment matriz is

mir Mm21 Mi2 M31 M2
ma21 M31 M22 M4

M9 =
mi2 M22 M31
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Recall that

Definition 2.3.11. A real symmetric N x N matriz A is positive semidefinite
(psd) if gtAg >0Vye RN . An infinite real symmetric matriz A is psd if
y'Ayy > 0V y € RY and V N € N, where Ay is the upper left corner
submatriz of order N of A.

Proposition 2.3.12. Let L : R[X] — R be linear and g € R[X]. Then the
following are equivalent:

1) L(og) >0V o € Y. RX]?

2) L(h%*g) >0V h € R[X].

3) (, )g is psd.

4) MY is psd.

5) g(E)m is psd where m := (L(X®))aeny -

Proof.
1) & 2) since for any o € Y R[X]?, there exist h; € R[X] such that o = Y, h?
and so L(cg) = >, L(hig).

2) < 3) as L(h%g) = (h, h),

3) & 4) Indeed, for any h =) h, X" € R[X] with F C Nj finite, we have

YEF

(hhyy = LY hgh X5g) = > hghy L(gX5+)

ByeF ByeF
= > hahyM9(B,7) =y My,
ByeF

where y := (hy)er.
4) < 5)

g(E)m is psd iff ZB,wGNS hghy (9(E)m) g, = 0 for all hg, hy € R, which is
equivalent to the psd-ness of M7 since (g(E)m)g,., = M?(B,7).

5) < 1) by Lemma 2.3.8. O

We can then express the Hambuger, Stieltjes and Hausdorff solutions to
the KMP in terms of moment matrices.



2.3. Solving the KMP through characterizations of Psd(K)

Theorem 2.3.13.

Given m := (mj);en,, the following are equivalent:

a) m is a Hamburger’s moment sequence, i.e. has a R—representing measure
b) m is psd

c) M is psd

d) Ly,(h%) >0 for all h € R[X].

Theorem 2.3.14.

Given m := (m;j);en,, the following are equivalent:

a) m is a Stieltjes’s moment sequence, i.e. has a RT —representing measure
b) m and g(E)m are both psd

c) M' and M9 are both psd

d) Ln(h?) >0 and L,(gh?) >0 for all h € R[X].

where g .= X.

Theorem 2.3.15.

Given m := (m;j);en,, the following are equivalent:

a) m is a Hausdorff’s moment sequence, i.e. has a [0, 1]—representing measure
b) m, g1(E)m and g2(E)m are all psd

c) M, M9 and M9 are all psd

d) L(h?) >0, L(g1h?) > 0 and L(g2h?) > 0 for all h € R[X].

where g1 := X and go ' =1—X.

Let us now relate to the KMP the Nichtnegativstellenséitze and the closure
results introduced in the previous chapter.

Proposition 2.3.16.

Let T be a locally convex topology on R[X]. Given a conver cone C of R[X]
and a closed subset K of R", the following are equivalent

a) Psd(K) C CYV

b) ¥V LeC), 3 u K—representing measure for L,

where:

CY :={{:R[X] = R linear|l is T — continuous and ¢(C) > 0} and
CYV={p e RX]|VLe CY, {(p) = 0}.

Proof.

a) = b) Let L € C), i.e. L is 7 — continuous and non-negative on C.
Then L (C") C [0,+0c) and so, by Corollary 1.3.35, L(CYV) C [0, +00).
This implies by a) that L(Psd(K)) C [0,+o00) which is equivalenty by Riesz-
Haviland Theorem 2.2.1 to the existence of a K —representing measure for L.

b) = a) By b), we have that V L € CY, L(Psd(K)) C [0,+00), i.e.
L € (Psd(K))Y. Then CY C (Psd(K))Y and so

CYV 2 (Psd(K))YY 2 Psd(K).
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By combining the previous result with Corollary 1.3.42 (respectively 1.3.41
and 1.3.40) and recalling that every linear functional is continuous w.r.t. the
finest locally convex topology, we obtain the following results for the KMP.

Corollary 2.3.17. Let L : R[X] — R linear and S := {g1,...,9s} C R[X]
such that the associated besas Kg is compact. Then there exists a Kg—repre-
senting measure for L if and only if L(h?g{* ---g%) > 0 for all h € R[X],
e1,...,es €{0,1}.

Corollary 2.3.18. Let L : R[X] — R linear and S := {g1,...,9s} C R[X]
such that the quadratic module Mg generated by S is Archimedean. Then

there erists a Kg—representing measure for L if and only if L(h%g;) > 0 for
allh e RIX] and i€ {1,...,s}

Corollary 2.3.19. Let L : R[X] — R linear and M be an Archimedean
2d—power module of R[X]| with d € N. Then 3 a Ky —representing measure
for L if and only if L(M) C [0, +00).
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