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Introduction

The main purpose of this course is to explore the fascinating connection exist-
ing between positive polynomials and moment problems. The corner stone of
this intimate relation is the famous Riesz-Haviland Theorem (proved by Riesz
for the one-dimensional case in 1923 and by Haviland for higher dimensions in
1936), which establishes that the problem of characterizing the cone Psd(K)
of all non-negative polynomials on a prescribed subset K of Rd is the dual
facet of the so-called K-moment problem (KMP).

These two problems arose more or less contemporarily at the end of 19th
century. In fact, Hilbert’s theorem about sum of squares representations of
non-negative forms appeared in 1888 and the first formulation of the KMP
is due to Stieltjes in 1894, even if moments were already applied by Cheby-
sev, Krein and Markov in the 1880’s in studying limit values of integrals. As
the characterization of Psd(K) and the KMP are faces of the same coin, we
could start our journey by looking at any of these two problems but, since
this course builds up on the contents of the course “Real Algebraic Geometry
I” and “Topological Vector Spaces” held during last semester, we are going to
start with a quick overview about the main results concerning the fundamental
question of characterizing the Psd(K) cone (e.g. Positivstellensätze, satura-
tion of preorderings and quadratic modules, closure of even power modules,
etc.). Then we will rigorously formulate the KMP for K ⊆ Rn with n ∈ N, i.e.
the problem of establishing whether or not a given sequence of real numbers
is the moment sequence of a non-negative Radon measure on K. As Landau
brilliantly summarized in [40]: “The moment problem is a classical question
in analysis remarkable not only for its own elegance but also for the extraor-
dinary range of subjects theoretical and applied which has illuminated”. In
this course, we will only discover a small part of the beauty of the moment
problem. In particular, after proving the Riesz-Haviland Theorem, we will use
it to connect the KMP to the Psd(K) cone and we will study in detail how
the even-power representations/approximations of non-negative polynomials
on K influenced the theory of the KMP and at the same time how some of
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Introduction

them actually came exactly from the study of the KMP. We will focus only
the full finite dimensional KMP for basic closed semi-algebraic sets, i.e. on the
case when the starting sequence is infinite and K is a subset of Rn determined
by finitely many polynomial inequalities. Particular attention will be given to
the case when K is non-compact which is still open in many of its aspects.
Last but not least, we also would like to introduce a very general version of
the KMP, namely for linear functionals on any unital commutative real al-
gebra and present some recent results and open problems. Indeed, both the
theory of positive polynomials and the moment problem are far to be static
and, despite the huge progress of the last 130 years, we can still agree with the
statement of Diaconis of 1987 in [40]: “Much is known but still the theory is
not up to the demands of the applications” and being motivated to go forward
with further research on these topics!
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Chapter 1

Positive Polynomials and Sum of Squares

1.1 The ring of multivariate polynomials

Let n ∈ N. We denote the ring of polynomials in n variables and real coef-
ficients by R[X] := R[X1, . . . , Xn]. We denote by 0 ∈ R[X] the polynomial
with all coefficients equal to zero and by convention we set deg(0) = −∞. Let
us recall some fundamental properties of R[X].

Proposition 1.1.1. Let f, g ∈ R[X] s.t. f 6≡ 0 and g 6≡ 0. Then

(i) deg(fg) = deg(f) + deg(g),

(ii) deg(f + g) ≤ max
{

deg(f),deg(g)
}

,

(iii) deg(f + g) = max
{

deg(f),deg(g)
}

, if deg(f) 6= deg(g).

Note that R[X] is a real vector space of countable dimension, since a basis
is {Xα | α ∈ Nn0} where Xα := Xα1

1 . . . Xαn
n and α = (α1, . . . , αn). In fact,

R[X] can be written as a countable union of finite dimensional vector spaces,
i.e. R[X] :=

⋃∞
d=0 R[X]d where each R[X]d := {f ∈ R[X]|deg(f) ≤ d} has

dimension
(
d+n
n

)
. This structure naturally carries a topology on R[X], which

makes it into a Hausdorff topological vector space, namely the finite topology
τf defined by: U ⊆ R[X] is open w.r.t. τf iff ∀d ∈ N0, U ∩ R[X]d is open in
R[X]d endowed with the euclidean topology (see e.g. [21, Section 4.5] for more
details). As we showed in [21, Theorem 4.5.3], τf is the finest locally convex
topology on R[X] and so every linear functional on R[X] is τf -continuous (see
[21, Theorem 4.4.3]). This property will be particularly interesting in the
study of the n-dimensional moment problem.

Definition 1.1.2. A polynomial is said to be homogenous or form if it is the
zero polynomial or a linear combination of monomials with same finite degree.
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1. Positive Polynomials and Sum of Squares

For n ∈ N and d ∈ N0, we denote by Fn,d the set of all forms in n variables
of degree d, i.e. Fn,d =

{
f ∈ R[X1, . . . , Xn] | f is a form and deg(f) = d

}
which is also called set of n-ary d-ics forms.

The set Fn,m is a finite dimensional real vector space of dimension
(
d+n−1
n−1

)
.

Definition 1.1.3. Let p ∈ R[X1, . . . , Xn] with deg(p) = d. The homogeniza-
tion ph of p is defined as

ph(X0, X1 . . . , Xn) := Xd
0 p

(
X1

X0
, . . . ,

Xn

X0

)
.

Note that ph is a homogeneous polynomial of degree d and in n+1 variables
i.e. ph ∈ Fn+1,d.

1.2 When is a psd polynomial a sos?

In this section, we are going to consider the fundamental question of when a
non-negative polynomial on Rn can be written as sum of squares of polyno-
mials in R[X].

Definition 1.2.1. For p ∈ R[X] we say that

• p is positive semidefinite (psd) if p(x) ≥ 0 for all x ∈ Rn.

• p is a sum of squares (sos) if p =
∑s

i=1 h
2
i for some s ∈ N and hi ∈ R[X]

for i = 1, . . . , s.

We denote by Psd(Rn) the cone of all psd polynomials in R[X] and by
∑

R[X]2

the cone of all sos of polynomials in R[X].

Clearly, for any n ∈ N we always have that
∑

R[X]2 ⊆ Psd(Rn). Hence,
it is natural to ask for which n ∈ N the converse also holds, i.e. when we have
that Psd(Rn) =

∑
R[X]2.

While for n = 1, it is easy to show that Psd(R) =
∑

R[X]2 (see [37, Propo-
sition 1.2.1]), for n ≥ 2 it was known already to Hilbert in 1888 that not every
psd polynomial is a sos in R[X]. Indeed, Hilbert provided a complete charac-
terization of all psd polynomials which are sos. He actually restricted himself
only to forms because the property of psd-ness and sos-ness are preserved
under homogenization, i.e. for any p ∈ R[X]d we have that:

• p is psd iff ph is psd,

• p is sos iff ph is sos,

where ph denotes the homogenization of p (see Definition 1.1.3).

We denote by Pn,d the set of all forms in Fn,d which are psd, and by
∑

n,d

set of all forms in Fn,d which are sos. It is easy to show that if p ∈
∑

n,2d,

2



1.2. When is a psd polynomial a sos?

then every sos representation of p consists only of homogeneous polynomials
of degree d, i.e. p ∈ Fn,2d, p =

∑s
i=1 p

2
i ⇒ pi ∈ Fn,d.

In [12] Hilbert proved the following result (for a proof see e.g. [31, Lec-
tures 21,22,23], [5, Section 6.3]).

Theorem 1.2.2. Pn,d =
∑

n,d iff
(i) n = 2 [i.e. binary forms] or

(ii) d = 2 [i.e. quadratic forms] or
(iii) (n, d) = (3, 4) [i.e. ternary quartics].

The proof of Hilbert was not constructive but in 1927 Motzkin provided
the first concrete example of psd form which is not a sos. In addition to
Motzkin’s form several other examples have been considered. We provide
here a short list of the most known ones (for the proofs and references to the
original papers see e.g. [31, Lecture 23] and [37, Section 1.2]).
• Motzkin (1927): z6 + x4y2 + x2y4 − 3x2y2z2 ∈ P3,6 −

∑
3,6

• Robinson (1969): x6 + y6 + z6 − (x4y2 + x4z2 + y4x2 + y4z2 + z4x2

a +z4y2) + 3x2y2z2 ∈ P3,6 −
∑

3,6.

• Robinson (1969): w4 + x2y2 + y2z2 + x2z2 − 4xyzw ∈ P4,4 −
∑

4,4

• Choi and Lam (1977): 1 + x2y2 + y2z2 + z2x2 − 4xyz ∈ P3,6 −
∑

3,6.

Hilbert’s theorem and these examples which concretely show that in general∑
R[X]2 ( Psd(Rn) naturally led to relax the original question and investigate

when a psd polynomial can be represented (or approximated) by polynomials
whose non-negativity is “more evident”, e.g. elements of even power modules
of R[X]. Actually, the need of looking to these further cones in R[X] becomes
even more natural when we analyze the more general question of characterizing
the cone of all polynomials in R[X] which are non-negative on a prescribed
subset K of Rn.

Definition 1.2.3. Let K ⊆ Rn. A polynomial p ∈ R[X] is said to be positive
semidefinite on K if p(x) ≥ 0 for all x ∈ K. We denote by Psd(K) the cone
of all polynomials which are psd on K, i.e.

Psd(K) := {p ∈ R[X] : p(x) ≥ 0,∀x ∈ K}.

The following results on polynomials in one variable which are psd on
intervals were most probably already known in the early 19th century (see
[42] for some discussion on the history of such results) as easy consequences
of the fundamental theorem of algebra.
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1. Positive Polynomials and Sum of Squares

Proposition 1.2.4.

a) Psd(R+) = {σ1 +Xσ2 : σ1, σ2 ∈
∑

R[X]2}.
b) For a, b ∈ R with a < b, we have

Psd([a, b]) = {σ1 + (b− x)σ2 + (x− a)σ3 : σ1, σ2, σ3 ∈
∑

R[X]2}.

Proof. Set Q :=
∑

R[X]2 +X
∑

R[X]2. Clearly, Q ⊆ Psd(R+) and Q ·Q ⊆ Q.
We want to show that Psd(R+) ⊆ Q.

Let 0 6≡ p ∈ Psd(R+). By the fundamental theorem of algebra, p has the
following factorization into irreducibles:

p = a

r∏
j=1

(X − αj)nj
s∏

k=1

[
(X − uk)2 + v2

k

]`j , (1.1)

where r, s, n1, . . . , nr, `1, . . . , `s ∈ N, a, α1, . . . , αr, u1, . . . , us, v1, . . . , vs ∈ R
with αj 6= αi whenever j 6= i and λk := uk + ivk s.t. λk 6= λi and λk 6= λi
whenever k 6= i. Since Q is closed under multiplication, it is enough to show
that all factors in (1.1) belong to Q. Clearly, (X − uk)2 + v2

k ∈ Q and for nj
even also (X − αj)nj ∈ Q, so we just need to show that

a
r∏

j∈{1,...,r}
s.t. nj odd

(X − αj)nj ∈ Q.

As p(x) ≥ 0 for all x ∈ R+, we obtain that a > 0 by letting x → +∞ and
so a ∈ Q. Also, if αj is a real root of p with odd multiplicity nj then p must
change sign in a neighbourhood of αj and so αj ≤ 0, which gives in turn that
X − αj = (−αj) +X · 12 ∈ Q. Hence, p ∈ Q.

For a proof of b) see e.g. [50, Proposition 3.3].

Proposition 1.2.4 shows that for K = R+ or K = [a, b] the cone Psd(K)
actually coincides with a certain quadratic module. Let us define such an
object for any unital commutative ring.

Definition 1.2.5. Let A be a commutative ring with 1, d ∈ N and denote by∑
A2d the set of all finite sums

∑
a2d
i , ai ∈ A.

a) A 2d-power module M in A is a subset M ⊆ A such that M + M ⊆ M ,
a2dM ⊆M ∀ a ∈ A, 1 ∈M .

b) A 2d-power preordering T in A is a 2d-power module such that T · T ⊆ T .

In the case d = 1, 2d-power modules (resp., 2d-power preorderings) are referred
to as quadratic modules (resp., quadratic preorderings)

4



1.2. When is a psd polynomial a sos?

Clearly,
∑
A2d is a 2d-power module in A and it is actually the unique

smallest one. As
∑
A2d is closed under multiplication, we have that

∑
A2d is

also the unique smallest 2d-power preordering of A.

Definition 1.2.6. Let A be a commutative ring with 1 and d ∈ N. For an
arbitrary family S := {gj}j∈J of elements in A (note that J is an arbitrary
index set possibly uncountable), the 2d-power module of A generated by S is
defined as

MS =
{
σ0 + σ1gj1 + . . .+ σsgjs : s ∈ N, j1, . . . , js ∈ J, σ0, . . . , σs ∈

∑
A2d
}

while the 2d-power preordering of A generated by S as

TS :=

 ∑
e=(e1,...,es)∈{0,1}s

σe g
e1
1 . . . gess : s ∈ N, j1, . . . , js ∈ J, σe ∈

∑
A2d,∀e ∈ {0, 1}s

 .

Note that for a fixed d ∈ N and S ⊆ A we have MS ⊆ TS ⊆ Psd(KS). We
say that a module (resp. a preordering) M ⊆ A is finitely generated if there
exist a finite subset S ⊆ A such that M = MS . For example: ΣA2 is finitely
generated with S = ∅.

Let us come back now to the ring of polynomials in n variables R[X]
and to the question of relating the cone Psd(K) to even power modules in
R[X]. In the light of the definitions above, we can restate Proposition 1.2.4
by saying that Psd(R+) coincide with the quadratic preordering generated
by {X}, and that for any a, b ∈ R with a < b the cone Psd([a, b]) is the
quadratic module generated by {b −X,X − a}. One can also easily see that
R+ = {x ∈ R : p(x) ≥ 0} and [a, b] = {x ∈ R : r(x) ≥ 0, q(x) ≥ 0} with
p := X, r := b−X, q := X − a.

This leads us to focus our attention on the special class of closed subsets
of Rn having this same structure.

Definition 1.2.7. Given S := {g1, . . . , gs} ⊂ R[X], we call the following
subset of Rn the basic closed semialgebraic set (bcsas) generated by S:

KS := {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . , s}.

Hence, we are naturally brought to ask whether for any bcsas KS of Rn
we have Psd(KS) = TS (resp. Psd(KS) = MS), where TS (resp. MS) is the
quadratic preordering (resp. module) associated to S.

We already know that this is not always true, because for S = ∅ we
have KS = Rn, TS = MS =

∑
R[X]2 and we have already seen that for

n ≥ 2 it does not always hold Psd(Rn) =
∑

R[X]2. However, the results in
Proposition 1.2.4 give already a motivation for investigating more deeply the
connection between Psd(KS), TS and MS for finite S ⊂ R[X].
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1. Positive Polynomials and Sum of Squares

1.3 Relation between Psd(KS) and TS (resp. MS)

Fixed a finite subset S := {g1, . . . , gs} ⊂ R[X1, . . . , Xn], we want to study the
relation between the (quadratic) preordering associated to S, i.e.

TS :=

 ∑
e=(e1,...,es)∈{0,1}s

σe g
e1
1 . . . gess : σe ∈

∑
R[X]2,∀e ∈ {0, 1}s

 ,

and Psd(KS) where

KS := {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . , s}.

The first result in this direction is the so-called Stengle Positivstellensatz,
whose proof is due to Stengle in 1974 even if most ideas were already contained
in an article of Krivine of 1964.

Theorem 1.3.1. Let S = {g1, . . . , gs} ⊂ R[X] and f ∈ R[X]. Then:
(1) f > 0 on KS ⇔ ∃ p, q ∈ TS s.t. pf = 1 + q (Striktpositivstellensatz)
(2) f ≥ 0 on KS ⇔ ∃ m ∈ N0, ∃ p, q ∈ TS s.t. pf = f2m + q (Nichtnega-

tivstellensatz)
(3) f = 0 on KS ⇔ ∃ m ∈ N0 s.t. −f2m ∈ TS (Real Nullstellensatz)
(4) KS = φ⇔ −1 ∈ TS.

Taking S = ∅ in (2) we obtain an alternative proof for Artin’s solution
(1927) to the Hilbert’s 17th problem posed in 1900 of establishing whether or
not a psd polynomial is always a sum of squares of rational functions.

Corollary 1.3.2. Let f ∈ R[X].
If f(x) ≥ 0 for all x ∈ Rn then f ∈

∑
R(X)2.

Proof. Suppose that f(x) ≥ 0 for all x ∈ Rn and f 6≡ 0. By taking S = ∅ in
(2), we get that ∃ m ∈ N0,∃ p, q ∈ TS =

∑
R[X]2 s.t. pf = f2m + q. Since

f 6≡ 0, also f2m + q 6≡ 0 and p 6≡ 0. Hence,

f =
f2m + q

p
=

(
1

p

)2

p(f2m + q) ∈
∑

R(X)2.

If f ≡ 0 then clearly the conclusion holds.

Theorem 1.3.1-(2) gives a representation of elements in Psd(KS) as quo-
tients of elements in TS . Therefore, it is natural to look for denominator free
Positivstellensätze. In particular, in the next subsection we are going to fo-
cus on saturation of preorderings, i.e. on the problem of establishing when
Psd(KS) = TS holds.
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1.3. Relation between Psd(KS) and TS (resp. MS)

1.3.1 Saturation of preorderings

Definition 1.3.3. Let S ⊂ R[X] be finite. The preordering TS in R[X] is
said to be saturated if Psd(KS) = TS.

In [31, Lecture 24, 25] the following result was proved in details:

Proposition 1.3.4. Suppose n ≥ 3. Let S be a finite subset of R[X] such
that KS ⊆ Rn and int(KS) 6= ∅. Then there exists f ∈ R[X] such that f ≥ 0
on Rn and f /∈ TS.

This already excludes saturation already for an entire class of preorderings
and can be actually obtained as a corollary of the following more general result
due to Scheiderer [47, Proposition 6.1].

Theorem 1.3.5. Let S be a finite subset of R[X] s.t. dim(KS) ≥ 3. Then
there exists f ∈ R[X] s.t. f ≥ 0 on Rn and f /∈ TS .

Recall that the dimension of a bcsas K ⊆ Rn is defined as the Krull
dimension of R[X]

I(K) where I(K) is the ideal of polynomials vanishing on K.
To derive Proposition 1.3.4 from Theorem 1.3.5, it is enough to prove that
int(KS) 6= ∅ implies dim(KS) = 3 (see [31, Lemma 2.7]).

For lower dimensional bcsas, there are examples in which saturation holds
and examples in which it fails. An example of one dimensional bcsas which
can be described both by a saturated preordering and by a non-saturated
preordering is R+.

Example 1.3.6. Let K = [0,+∞). For S1 := {X}, we have that K = KS1

and Proposition 1.2.4-a) ensures that Psd([0,+∞)) = TS1. Hence, TS1 is
saturated. However, by taking the representation K = KS2 with S2 := {X3},
we do not have anymore the saturation of the corresponding preordering. In
fact, X ∈ Psd(K) but X /∈ TS2.

Suppose that there exist σ1, σ2 ∈
∑

R[X]2 s.t. X = σ1 +X3σ2︸ ︷︷ ︸
=:q

. Then we

have four possibilities:

• if σ1 ≡ 0 ≡ σ2 then q(X) ≡ 0.

• if σ1 ≡ 0 and σ2 6≡ 0 then deg(q) is odd and ≥ 3.

• if σ1 6≡ 0 and σ2 ≡ 0 then deg(q) is even.

• if σ1 6≡ 0 and σ2 6≡ 0 then deg(q) = max{deg(σ1),deg(X3σ2)} which is
either even or odd ≥ 3.

Hence, X 6≡ q) which leads to the desired contradiction.

In the one variable case, it is possible to show that for any bcsas K of R[X]
there exists S ⊂ R[X] finite such that K = KS and TS is saturated. Such a S
is called the natural description of K.

7



1. Positive Polynomials and Sum of Squares

Definition 1.3.7. Let K be a non-empty bcsas of R, i.e. K is a finite union
of intervals and points. The natural description of K is defined as the finite
subset Snat of R[X] s.t.

(i) if a ∈ R is the smallest element of K, then X − a ∈ Snat
(ii) if a ∈ R is the greatest element of K, then a−X ∈ Snat

(iii) if a, b ∈ K, a < b and (a, b) ∩K = φ, then (X − a)(X − b) ∈ Snat
(iv) no other polynomial is in Snat.

Examples 1.3.8.

• If K = [0,+∞) then Snat = {X}, since 0 is the smallest element of
K, K has no greatest element and for all a, b ∈ K with a < b we have
(a, b) ∩K 6= ∅.
• If K = [0, 1] then Snat = {X, 1−X}, since 0 is the smallest element of
K, 1 is the greatest element of K and for all a, b ∈ K with a < b we
have (a, b) ∩K 6= ∅.
• If K = −1∪ [0, 1] then Snat = {X+ 1, 1−X,X(X+ 1)}, since −1 is the

smallest element of K, 1 is the greatest element of K and (−1, 0)∩K = ∅.

Theorem 1.3.9. Let K be a non-empty bcsas of R. Then the preordering
associated to the natural description Snat of K is saturated.

Proof. For notational convenience, set S equal to the natural description Snat
of K. We want to show that Psd(K) = TS .

If K = R then S = ∅ and TS =
∑

R[X]2, so the conclusion holds. There-
fore, we can assume that K ( R. Then Definition 1.3.7 provides the following
information:

• If K has a smallest element a, then X − a ∈ S and so

∀d ≤ a,X − d = (X − a) · 12 + (a− d) ∈ TS . (1.2)

• if K has a greatest element a, then a−X ∈ S and so

∀d ≥ a, d−X = (a−X) · 12 + (d− a) ∈ TS . (1.3)

• if a, b ∈ K, a < b and (a, b) ∩K = φ, then (X − a)(X − b) ∈ S and, by
Exercise 1 in Sheet 1 we have that

∀d, e ∈ R s.t. a ≤ d ≤ e ≤ b, (X − d)(X − e) ∈ TS . (1.4)

Suppose that f ∈ Psd(K) and proceed by induction on deg(f).
If deg(f) = 0 then f(x) = k for all x ∈ Rd with k ≥ 0. Hence, f ∈∑
R[X]2 ⊂ TS .

8



1.3. Relation between Psd(KS) and TS (resp. MS)

Suppose that deg(f) = m ≥ 1 and that for all g ∈ Psd(K) with deg(g) ≤
m − 1 we know that g ∈ TS . W.l.o.g. we can assume that there exists c ∈ R
s.t. f(c) < 0 (otherwise f ≥ 0 on R which gives f ∈

∑
R[X]2 ⊂ TS). Then

there are the following three possibilities: either K has a least element a and
c < a or K has a largest element a and c > a or there exist a, b ∈ K with
a < b, (a, b) ∩K = ∅ and a < c < b.

Case 1: if K has a least element a and c < a, then f has a root d in the
interval (c, a]. Therefore, f = (X−d)g for some g ∈ R[X] with deg(g) = m−1.
As f ≥ 0 on K and X − d ≥ 0 on K, we get that g ∈ Psd(K). Hence, by
inductive assumption we have that g ∈ TS . Also, X − d ∈ TS by (1.2) and so
f ∈ TS .

Case 2: If K has a largest element a and c > a, then f has a root d in the
interval [a, c). Therefore, f = (d−X)g for some g ∈ R[X] with deg(g) = m−1.
As f ≥ 0 on K and d − X ≥ 0 on K, we get that g ∈ Psd(K). Hence, by
inductive assumption we have that g ∈ TS . Also, d−X ∈ TS by (1.3) and so
f ∈ TS .

Case 3: If there exist a, b ∈ K with a < b, (a, b) ∩K = ∅ and a < c < b,
then f has a greatest root d in the interval [a, c) and a least root e in the
interval (c, b]. Therefore, f = (X − d)(X − e)g for some g ∈ R[X] with
deg(g) = m − 2. As f ≥ 0 on K and (X − d)(X − e) ≥ 0 on K, we get that
g ∈ Psd(K). Hence, by inductive assumption we have that g ∈ TS . Also,
(X − d)(X − e) ∈ TS by (1.4) and so f ∈ TS .

Corollary 1.3.10. Let K be a non-empty bcsas of R. If S ⊂ R[X] is finite
s.t. K = KS and S ⊇ Snat (up to a positive scalar multiple factor), then TS
is saturated.

Proof. By Theorem 1.3.9, we know that Psd(K) = TSnat . As S ⊇ Snat (up
to a positive scalar multiple factor), we also have that TSnat ⊆ TS . Hence,
Psd(K) = TS , i.e. TS is saturated.

Note that the converse of this result does not hold in general. In fact, if S
does not contain the natural description then TS might be or not be saturated
as showed by the following example. However, for non-compact bcsas of R
the converse holds (see Proposition 1.3.12).

Example 1.3.11. Let K = [0, 1]. Then Snat = {X, 1 − X} is the natural
description of K. Hence, by Theorem 1.3.9, TSnat is saturated. If we take now
S1 := {X3, 1 −X}, then K = KS1, S1 does not contain Snat and TS1 is not
saturated (see Sheet 1, Exercise 2 for a proof). However, also S2 = {X(1−X)}

9
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does not contain Snat and K = KS2, but TS2 is saturated. Indeed, we have
that X = X2 + X(1 − X) ∈ TS2 and 1 − X = (1 − X)2 + X(1 − X) ∈ TS2,
which imply TSnat ⊆ TS2 and so that Psd(K) = TS2.

Proposition 1.3.12. Let K ⊆ R be a non-compact bcsas of R[X] and S a
finite subset of R[X] s.t. K = KS. Then TS is saturated ⇔ S ⊇ Snat (up to
a positive scalar multiple factor).

Before proving this result, let us introduce the notion of width of a quadratic
polynomial in one variable and an elementary related property which will be
useful in the proof of Proposition 1.3.12.

Definition 1.3.13. Let f ∈ R[X] be such that deg(f) = 2. If r1, r2 are the
real roots of f and r1 ≤ r2, then width of f is denoted by w(f) and defined to
be r2 − r1. If f has no real roots, then w(f) := 0.

Lemma 1.3.14. Let f1, f2 ∈ R[X] with deg(f1) = 2 = deg(f2) and positive
leading coefficients. Then w(f1 + f2) ≤ max{w(f1), w(f2)}.

Proof. W.l.o.g. we can assume that w(f1) ≥ w(f2) and that w(f1) > 0 (oth-
erwise w(f1) = w(f2) = 0 and so f1 + f2 has either one root or no roots,
i.e. w(f1 + f2) = 0). Shifting and scaling we can always reduce to the case
f1 := X2 − X and f2 := c(X − a)(X − (a + b)) with a, b, c ∈ R such that
0 ≤ b ≤ 1 and c > 0. Thus, we get

f1 + f2 = (c+ 1)X2 − (2ac+ bc+ 1)X + ca(a+ b),

whose roots are
2ac+bc+1±

√
(2ac+bc+1)2−4ca(a+b)(c+1)

2(c+1) and so

w(f1 + f2) =

√
(2ac+ bc+ 1)2 − 4ca(a+ b)(c+ 1)

(c+ 1)
.

We want to show that w(f1 + f2) ≤ w(f1) = 1, which by expanding is equiva-
lent to show (1− b2)(c+ 1) + (2a+ b− 1)2 ≥ 0. The latter indeed holds since
c > 0 and 0 ≤ b ≤ 1.

Proof. of Proposition 1.3.12.
One direction always holds by Corollary 1.3.10, while for the converse the
non-compactness is essential.

Suppose that KS is not compact and Psd(KS) = TS . We can assume that
for any g ∈ S we have deg(g) ≥ 1. Since KS is not compact, it either contains

10
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an interval of the form [c,+∞) or it contains an interval of the form (−∞, c].
Replacing X by −X when necessary in the following proof, we can assume
that we are in the first case. This implies that every g ∈ S is non-negative on
[c,+∞) and so has positive leading coefficient.

Suppose that KS has a smallest element a and consider p := X − a. Then
p ∈ Psd(KS) and so by assumption we have p ∈ TS . This together with
the fact that deg(p) = 1 and that deg(g) ≥ 1, for all g ∈ S ensures that
p = σ1g1 + . . . + σtgt, where σ1, . . . , σt ∈ R+ and gi ∈ S with deg(gi) = 1 for
i = 1, . . . , t. As p(a) = 0 and gi(a) ≥ 0 for all i = 1, . . . , t (since a ∈ KS), we
can conclude that there exists at least one i ∈ {1, . . . , t} such that gi(a) = 0.
Hence, there exists r > 0 such that gi = r(X − a), i.e. r(X − a) ∈ S as
required.

Suppose now that a, b ∈ KS are such that a < b and (a, b) ∩KS = ∅ and
set p := (X − a)(X − b). Then p ∈ Psd(KS) and so by assumption p ∈ TS .
This together with the fact that deg(p) = 2 and that deg(g) ≥ 1,∀g ∈ S
ensures that p is a sum of terms of the form σf and ξgh with σ, ξ ∈ R+ and
f, g, h ∈ S with deg(f) ∈ {1, 2} and deg(g) = 1 = deg(h). Since any linear
g ∈ S is increasing and g(a) ≥ 0, g is positive on the interval (a, b). Thus,
p ≥ σ1g1 + · · ·+ σtgt on (a, b), where σ1, . . . , σt ∈ R+ \ {0} and g1, . . . , gt ∈ S
are quadratics which assume at least one negative value on (a, b). Now for
each i ∈ {1, . . . , t}, we have that gi opens upward, gi(a) ≥ 0 and gi(b) ≥ 0,
which imply that gi has its roots in [a, b] and consequently w(gi) ≤ b− a (see
Definition 1.3.13). Since w(p) = b− a and p ≥ σ1g1 + · · ·+ σtgt on (a, b), we
have that necessarily w(σ1g1 + · · ·+ σtgt) = b− a. Hence, by Lemma 1.3.14,
we get

b− a = w(σ1g1 + · · ·+ σtgt) ≤ max
i=1,...,t

w(σigi) = max
i=1,...,t

w(gi) ≤ b− a,

which implies that there exists i ∈ {1, . . . , t} such that w(gi) = b− a. Hence,
gi necessarily has the form r(X − a)(X − b) for some real r > 0, that is,
r(X − a)(X − b) ∈ S as required.

Applying the so-called Scheiderer’s Local Global Principle (see e.g. [37,
Section 9]), one can provide examples of two dimensional compact bcsas which
can be described by a saturated preordering.

Examples 1.3.15.
1. The preordering TS for S = {X, 1−X,Y, 1− Y } is saturated. Here KS

is the unit square in R2.
2. The preordering TS for S = {1−X2− Y 2} is saturated. Here KS is the

unit disk in R2.

11
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However, there are examples of two dimensional compact bcsas for which
saturation does not hold.

Example 1.3.16. Let S := {X3 − Y 3, 1 − X}. Then KS is compact in R2

and TS is not saturated. Indeed, the polynomial X ∈ R[X,Y ] is nonnegative
on KS but does not belong to TS.

Suppose that there exists σ1, σ2, σ3, σ4 ∈
∑

R[X,Y ]2 s.t.

X = σ1 + (X3 − Y 3)σ2 + (1−X)σ3 + (X3 − Y 3)(1−X)σ4︸ ︷︷ ︸
=:q

.

Evaluating at Y = 0, we have that X ≡ q(X, 0) = σ1(X, 0)+X3σ2(X, 0)+(1−
X)σ3(X, 0) +X3(1−X)σ4(X, 0), i.e. X belongs to the preordering generated
by {X3, 1−X} in R[X] which is false as showed in Sheet 1, Exercise 2.

For non-compact two dimensional bcsas, we have both saturated and non-
saturated associated preorderings.

Examples 1.3.17.
1. If S = ∅ ⊂ R[X,Y ] then TS =

∑
R[X,Y ]2 is not saturated as KS = R2.

2. If S = {X(1−X)} ⊂ R[X,Y ], then Psd([0, 1]× R︸ ︷︷ ︸
=KS

) = TS,

i.e. TS is saturated (see [38]).

Summarizing we have that a preordering TS in R[X] is always not saturated
if dim(KS) ≥ 3, but can be or cannot be saturated if dim(KS) ∈ {1, 2}
(depending on the geometry of KS and the chosen description S).

1.3.2 Representation Theorem and Positivstellensätze

We have seen that saturation of preorderings does not occur for a large class of
bcsas. Therefore, in the cases when saturation does not occur, it is still stand-
ing our question of how to characterise Psd(KS) in terms of TS without using
quotients of its elements. For compact bcsas, a denominator free Positivstel-
lensatz was provided by Schmüdgen in [48] as a corollary of a fundamental
result for the K−MP for K compact bcsas. This rather surprising result had
a great impact in this area and it can be considered a breakthrough in both
the theory of positive polynomials and the moment problem. Generalizations
of this result were proved by Putinar in [43] and Jacobi in [24] in the coming
ten years. Moreover, the Schmüdgen Positivstellensatz gave the impulse to a
lively research activity about the moment problem in the non-compact case.

In this section, we are not providing the original Schmüdgen proof but
we will derive his Positivstellensatz from a general version of the so-called

12
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Representation Theorem due to Marshall [35]. Actually, Schmüdgen’s Posi-
tivstellensatz can be obtained as a corollary of a less general and earlier version
of the Representation Theorem due to Krivine [29, 30]. This was first noticed
by Wörmann in [55], but there was no obvious way to derive Putinar’s Pos-
itivstellensatz from the Krivine Representation Theorem. Only in 2001 with
Jacobi’s generalized version of the Representation Theorem [24] it became
possible to give a completely algebraic proof of Putinar’s Positivstellensatz.
The further extension of the Representation Theorem we give here (see The-
orem 1.3.24) allows to derive all the above mentioned Positivstellensätze as
well as a nice refinement of Putinar’s result (see Theorem 1.3.33). In order
to state such a Representation Theorem we need to introduce the following
general setting.

Let A be a commutative ring with 1 and for simplicity let us assume that
Q ⊆ A. We denote by X(A) the character space of A, i.e. the set of all
unitary ring homomorphisms from A to R. For any a ∈ A, we define the
Gelfand transform â : X(A)→ R as â(α) := α(a), ∀α ∈ X(A).

For any subset M of A, we set

KM := {α ∈ X(A) : â(α) ≥ 0, ∀a ∈M}.

If M =
∑
A2d then KM = X(A). If M is the 2d−power module of A gener-

ated by {pj}j∈J then KM = {α ∈ X(A) : p̂j(α) ≥ 0, ∀ j ∈ J}.

If a ∈M , then clearly â ≥ 0 on KM . Does the converse hold, i.e. is it true
that if a ∈ A is such that â ≥ 0 on KM , then a ∈ M? The Representation
Theorem exactly provides an answer to this question. In order to rigorously
formulate this result, we need some further notions and properties.

Definition 1.3.18. A preprime of A is a subset T of A such that T +T ⊆ T ,
T · T ⊆ T and Q+ ⊆ T .

Definition 1.3.19. Let T be a preprime of A.
• A T−module of A is a subset M of A such that M+M ⊆M , T ·M ⊆M

and 1 ∈M .
• A T−module is said to be Archimedean if for each a ∈ A there exists
N ∈ N such that N ± a ∈M .

13
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Remark 1.3.20.

• A preprime T is itself a T−module.

• If a preprime T is Archimedian, then any T−module is also Archimedian
since T ⊆M .

Note that, for d ∈ N, any 2d−power preordering of A is a preprime and any
2d−power module of A is a

∑2d
A −module (see Definition 1.2.5). In particular,

any quadratic module of A is a
∑
A2−module and the following holds.

Proposition 1.3.21. Let M be a quadratic module of A. Then

a) HM := {a ∈ A : ∃ N ∈ Ns.t. N ± a ∈M} is a subring of A.

b) M ∩HM is an Archimedean quadratic module of HM .

c) M is Archimedean if and only if HM = A.

d) ∀ a ∈ A, a2 ∈ HM ⇒ a ∈ HM .

e) ∀ a1, . . . , ak ∈ A,
k∑
i=1

a2
i ∈ HM ⇒ ai ∈ HM ∀ i = 1, . . . , k.

Proof. (see e.g. [31, Proposition 2.1, Lecture 28] and [37, Proposition 5.2.3])

Corollary 1.3.22. Let M be a quadratic module of R[X]. The following are
equivalent:

(1) M is Archimedean

(2) ∃ N ∈ N such that N −
n∑
i=1

X2
i ∈M .

(3) ∃ N ∈ N such that N ±Xi ∈M for i = 1, . . . , n.

Proof.
(1)⇒(2) This is clear from the definition of Archimedean quadratic module.
(2)⇒(3) Suppose that there exists k ∈ N such that k −

∑n
i=1X

2
i ∈ M .

Then
∑n

i=1X
2
i ∈ HM and so Proposition 1.3.21-e) ensures that for each

i ∈ {1, . . . , n} we have that Xi ∈ HM . Hence, there exists N ∈ N such
that N ±Xi ∈M , i.e. (3) holds.
(3)⇒(1) Suppose that there exists k ∈ N such that k±Xi ∈M for i = 1, . . . , n.
Then Xi ∈ HM for i = 1, . . . , n and since R+ ⊆M we also have that R ⊆ HM .
Hence, Proposition 1.3.21-a) guarantees that HM = R[X], which is equivalent
to the Archimedeanity of M by Proposition 1.3.21-c).

For the general version of the Representation Theorem, we need to strengthen
a bit our assumptions on T .
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Definition 1.3.23. A preprime T is said to be weakly torsion if for any a ∈ A
there exists a positive rational r and m ∈ N such that (r + a)m ∈ T .

Clearly, any Archimedean preprime is weakly torsion. Also, for d ∈ N, any
2d−power preordering of A is a weakly torsion preprime (just take m = 2d).

We are finally ready to state the general version of the Representation
Theorem we had announced (for a proof see [35], [24] and [37, Theorem 5.4.4]).
Other versions of the Representation Theorem can be found in [1], [27], [29, 30],
[11], [54].

Theorem 1.3.24. Let A be a commutative ring with 1 such that Q ⊆ A. If
T is a weakly torsion preprime of A and M an Archimedean T−module of A,
then for any a ∈ A we have:

â > 0 on KM ⇒ a ∈M.

Remark 1.3.25.
a) Taking M = T with T Archimedean preprime, we get Krivine’s version

of the Representation Theorem (see [29, 30] and also [31, Corollary 2.1,
Lecture 27]). From this version, we can already derive the Schmüdgen
Positivstellensatz as it was first noted by Wörmann in [55] (see Theo-
rem 1.3.31).

b) Taking d ∈ N and T =
∑
A2d, we get the Jacobi-Prestel Positivstellensatz

(see Theorem 1.3.28) from which one can straightforwardly derive Putinar’s
Positivstellensatz (see Theorem 1.3.29).

To understand the meaning of the Representation Theorem 1.3.24 for A =
R[X1, . . . , Xn], we need to understand what the Gelfand transform and the
characters are in this special case.

Proposition 1.3.26.
a) The identity id : R→ R is the unique ring homomorphism from R to R
b) X(R[X1, . . . , Xn]) is in a one-to-one correspondence with Rn.

Proof.
a) Suppose that α : R → R is a ring homomorphism such that α 6= id.

Then there exists a ∈ R such that α(a) 6= id(a), say α(a) < id(a). Thus,
there exists q ∈ Q such that α(a) < q < id(a) and so α(a − q) < 0 while
id(a − q) > 0, i.e. a − q /∈ α−1(R+) and a − q ∈ id−1(R+). Hence, we have
that α−1(R+) 6= id−1(R+). However, α maps squares to squares and so we
also have that α−1(R+) = R+ = id−1(R+), which yields a contradiction.

b) By a), for any α ∈ X(R[X1, . . . , Xn]) we have that α �R= id, which
easily implies that α is completely determined by (α(X1), . . . , α(Xn)) ∈ Rn.
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In fact, for any p :=
∑

β pβX
β ∈ R[X] with β = (β1, . . . , βn) ∈ Nn0 and

Xβ := Xβ1
1 · · ·X

βn
n , we have that

α(p) = α

∑
β

pβX
β

 =
∑
β

α(pβ)α(X1)β1 · · ·α(Xn)βn

=
∑
β

pβα(X1)β1 · · ·α(Xn)βn = p (α(X1), . . . , α(Xn)) .

Conversely, for any y ∈ Rn we can define the map αy : R[X1, . . . , Xn]→ R by
αy(p) := p(y) for any p ∈ R[X], which is clearly a ring homomorphism, i.e.
αy ∈ X(R[X1, . . . , Xn]). Hence, X(R[X1, . . . , Xn]) ∼= Rn.

Remark 1.3.27. Using the isomorphism between X(R[X1, . . . , Xn]) and Rn
we get that for any p ∈ R[X] the Gelfand transform p̂ is identified with the
polynomial p itself. Moreover, if M is a 2d−power module of R[X] then

KM = {α ∈ X(R[X1, . . . , Xn]) : q̂(α) ≥ 0, ∀q ∈M}
∼= {x ∈ Rn : q(x) ≥ 0,∀q ∈M} = KM .

In particular, if S ⊂ R[X1, . . . , Xn] and MS is the 2d−power module generated
by S then

KMS
∼= KMS

= {x ∈ Rn : q(x) ≥ 0,∀q ∈MS}
= {x ∈ Rn : q(x) ≥ 0,∀q ∈ S} = KS .

Applying the Representation theorem 1.3.24 for T =
∑

R[X]2d with d ∈ N
and using Remark 1.3.27 we easily get the following results.

Theorem 1.3.28 (Jacobi-Prestel’s Positivstellensatz). Let M be an Archimedean
2d−power module of R[X] with d ∈ N. Then for any f ∈ R[X]

f > 0 on KM ⇒ f ∈M.

In particular, taking d = 1 we easily get:

Theorem 1.3.29 (Putinar’s Positivstellensatz). Let S ⊂ R[X] be finite such
that the quadratic module MS generated by S is Archimedean. Then for any
f ∈ R[X]

f > 0 on KS ⇒ f ∈MS .
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To get Schmüdgen’s Positivstellensatz from Theorem 1.3.24, we need to
understand how the compactness of KS relates to the Archimedeanity of the
associated quadratic preordering TS . The following criterion was provided by
Wörmann in [55].

Theorem 1.3.30 (Wörmann Theorem). Let S ⊂ R[X] be finite. The corre-
sponding bcsas KS is compact if and only if the associated quadratic preorder-
ing TS is Archimedean.

Proof. (see e.g. [37, Theorem 6.1.1] or [31, Theorem 2.1, Lecture 28])

Theorem 1.3.31 (Schmüdgen’s Positivstellensatz). Let S ⊂ R[X] be finite
such that the associated bcsas KS is compact. Then for any f ∈ R[X]

f > 0 on KS ⇒ f ∈ TS .

Proof. By Wörmann Theorem, the quadratic preordering TS is Archimedean
and so a weakly torsion preprime. Hence, by taking T = M = TS in the
Representation Theorem 1.3.24 and using Remark 1.3.27, we obtain the con-
clusion.

Remark 1.3.32.

a) Schmüdgen’s Positivstellensatz fails in general if we drop the compactness
assumption on KS.

For example,

• for n = 1 and S = {X3}, we have that KS = [0,∞) is non-compact
and X + 1 > 0 on KS but X + 1 /∈ TS (otherwise there would exist
σ0, σ1 ∈

∑
R[X]2 such that X + 1 = σ0 + σ1X

3 but this impossible as
the right-hand side would have either even degree or odd degree ≥ 3
(see Example 1.3.6)).

• for n = 2 and S = ∅, we have that the strictly positive version of
the Motzkin polynomial 1−X2

1X
2
2 +X2

1X
4
2 +X4

1X
2
2 is indeed strictly

positive on KS = R2 but does not belong to TS =
∑

R[X1, X2]2.

b) Schmüdgen’s Positivstellensatz fails in general if the assumption of strict
positivity on KS is replaced by the nonnegativity on KS. For example,
for n = 1 and S = {(1 − X2)3} we have that KS = [−1, 1] is compact,
1−X2 ≥ 0 on KS but 1−X2 /∈ TS.

c) Schmüdgen’s Positivstellensatz fails in general when the preordering TS is
replaced by the quadratic module MS. The question of whether this was
true was first posed by Putinar in [43] and got a negative answer in [25,

17



1. Positive Polynomials and Sum of Squares

Example 4.6], where Jacobi and Prestel showed that for n ≥ 2 and S =
{g1, . . . , gn+1} with gi := Xi − 1

2 for i = 1, . . . , n and gn+1 := 1−
∏n
i=1Xi

we have that KS is compact but MS is not Archimedean (thus, there exists
N ∈ N such that N −

∑n
i=1X

2
i > 0 on KS but N −

∑n
i=1X

2
i /∈MS). This

counterexample provides a general negative answer to Putinar’s question,
but there are actually cases in which the compactness of KS implies the
Archimedeanity of MS. For instance, this holds in each of the following
cases
• |S| = 1 (as in this case TS = MS)
• |S| = 2 (proof in [25]).
• n = 1 (proof in Sheet 2, Exercise 2)
• S consists only of linear polynomials (see [37, Theorem 7.1.3]).

Note that if MS is Archimedean then KS is always compact. Indeed,
Archimedeanity of MS implies that there exists N ∈ N such that N −∑n

i=1X
2
i ∈MS and so N −

∑n
i=1X

2
i ≥ 0 on KS. Hence, KS is contained

in the closed ball of radius
√
N in Rn endowed with the euclidean topology,

i.e. KS is bounded. This together with the fact that KS is closed provides
that KS is compact.

Let us give now a further application of the Representaton Theorem 1.3.24,
which shows the power of this very general version and allows to refine the
representation provided by Putinar’s Positivstellensatz (see Theorem 1.3.29).

Theorem 1.3.33. Let S := {g1, . . . , gs} be a finite subset of R[X] such that
the associated quadratic module MS is Archimedean. Then, for any real N >
0, any f > 0 on KS can be represented as f = σ0 + σ1g1 + · · · + σsgs where
each σi is a sum of squares of polynomials which are strictly positive on the
closed ball BN := {x ∈ Rn : ‖x‖ ≤ N} (here ‖ · ‖ is the euclidean norm).

Proof. Let N be a strictly positive real number and f > 0 on KS . Define

T̃ ∗ := {
∑

f2
i : fi ∈ R[X], fi > 0 on BN}, T̃ := T̃ ∗ ∪ {0}

and
M̃∗ := T̃ ∗ + T̃ ∗g1 + · · ·+ T̃ ∗gs, M̃ := M̃∗ ∪ {0}.

As BN is compact, for any g ∈ R[X] there exists r ∈ Q positive such that
r+ g > 0 on BN and so (r+ g)2 ∈ T̃ ∗. Hence, T̃ is a weakly torsion preprime.
Claim: For any h ∈ R[X] there exists l ∈ N such that l + h ∈ M̃∗.
(see Sheet 2, Exercise 3 for a proof of the Claim).

Since T̃ is a preprime, it easily follows from the definitions that M̃ + M̃ ⊆
M̃ and T̃ M̃ ⊆ M̃ . Moreover, applying the claim for h = 0, we have that there
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exists l ∈ N such that l ∈ M̃∗ and so 1 = l · 1
l ∈ QM̃∗ ⊆ M̃∗ ⊆ M̃ . Thus, M̃

is a T̃−module. By the Claim, M̃ is also Archimedean.
To apply Theorem 1.3.24, it remains to show that KS = KM̃ . Once this

is proved, the theorem ensures that f ∈ M̃ .
(⊆) As M̃ ⊆MS , we have that KS ⊆ {x ∈ Rn : g(x) ≥ 0,∀g ∈ M̃} = KM̃ .
(⊇) Suppose there exists x ∈ KM̃ such that x /∈ KS . Then there exists

i ∈ {1, . . . , s} such that gi(x) < 0. Take h :=
∑s

j=0 rjgj with g0 := 1, rj = 1
for all j 6= i, and ri > ls where l ∈ N such that gj(x) < −lgi(x) for all
j 6= i. Thus, h ∈ M̃ but h(x) =

∑
j 6=i gj(x) + rigi(x) < −lsgi(x) + rigi(x) =

(ri − ls)gi(x) < 0, which yields x /∈ KM̃ that is a contradiction.

1.3.3 Closure of even power modules

In this section, we are going to see how the Positivstellensätze considered in
the previous section can be used to better understand the relation between
Psd(KS) and TS (resp. MS). For this purpose, let us recall the following ap-
plication of Hahn-Banach Theorem which we have studied in [21, Section 5.2].

Corollary 1.3.34. Let (X, τ) be a locally convex t.v.s. over the real numbers.
If C is a nonempty closed cone of X and x and x0 ∈ X \C, then there exists a
linear τ−continuous functional L : X → R non identically zero s.t. L(C) ≥ 0
and L(x0) < 0.

Recall that a cone of X is a subset C ⊆ X such that C + C ⊆ C and
λC ⊆ C for all λ ∈ R+.

Proof. As C is closed in (X, τ) and x0 ∈ X \C, we have that X \C is an open
neighbourhood of x0. Then the local convexity of (X, τ) guarantees that there
exists an open convex neighbourhood V of x0 s.t. V ⊆ X \ C i.e. V ∩ C = ∅.
By the Geometric form of Hahn-Banach theorem, we have that there exists a
closed hyperplane H of X separating V and C, i.e. there exists L : X → R
linear τ−continuous and not identically zero s.t. L(C) ≥ 0 and L(V ) < 0
(see [21, Proposition 5.2.1-c)] for more details). In particular, L(C) ≥ 0 and
L(x0) < 0.

Given a convex cone C in any t.v.s. (X, τ) we define the first and the
second dual of C w.r.t. τ respectively as follows:

C∨τ := {` : X → R linear |` is τ − continuous and `(C) ≥ 0}

C∨∨τ := {x ∈ X |∀ ` ∈ C∨τ , `(x) ≥ 0}.
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Note that

• C ⊆ C∨∨τ , because if x ∈ C then for all ` ∈ C∨τ we have `(x) ≥ 0 by
definition of C∨τ .

• C∨∨τ is closed in (X, τ), because C∨∨τ =
⋂
`∈C∨τ `

−1([0,∞)) and each

` ∈ C∨τ is by definition τ−continuous.

Hence, C
τ ⊆ C∨∨τ always holds.

Corollary 1.3.35. Let (X, τ) be a locally convex t.v.s. over the real numbers.
If C is a nonempty convex cone in X, then C

τ
= C∨∨τ .

Proof. Suppose there exists x0 ∈ C∨∨τ \ Cτ . By Corollary 1.3.34, there exists
a τ−continuous functional L : X → R non identically zero s.t. L(C

τ
) ≥ 0

and L(x0) < 0. As L(C) ≥ 0 and L is τ−continuous, we have L ∈ C∨τ . This
together with the fact that L(x0) < 0 give x0 /∈ C∨∨τ , which is a contradiction.
Hence, C

τ
= C∨∨τ .

The previous results clearly apply to R[X] endowed with the finite topology
τf . Indeed, we have already observed in Section 1.1 that τf is actually the
finest locally convex topology on R[X] and so that (R[X], τf) is a locally
convex t.v.s.. Moreover, keeping in mind [21, Theorem 3.1.1], it is easy to prove
that (R[X], τf ) is actually a topological algebra, i.e. a t.v.s. with separately
continuous multiplication. Hence, we can prove the following properties.

Proposition 1.3.36. Let d ∈ N, M a 2d−power module of R[X] and ϕ the
finest locally convex topology on R[X]. Then

(a) M
ϕ

is a 2d−power module of R[X]

(b) If M is a preordering, then M
ϕ

is a preordering.

(c) M
ϕ

= M∨∨ϕ ⊆ Psd(KM )

Proof. (a) As M is a 2d−power module of R[X] and (R[X], ϕ) is a topological
algebra, we have that 1 ∈ M ⊆ M

ϕ
, M

ϕ
+ M

ϕ ⊆ M +M
ϕ ⊆ M

ϕ
and

p2dM
ϕ ⊆ p2dM

ϕ
⊆Mϕ

. Hence, M
ϕ

is a 2d−power module.
(b) IfM is a 2d−power preordering, then (a) ensures thatM

ϕ
is a 2d−power

module. Moreover, using that M ·M ⊆ M and (R[X], ϕ) is a topological al-
gebra, we get that M

ϕ ·Mϕ ⊆M ·Mϕ ⊆Mϕ
. Hence, M

ϕ
is a preordering.

(c) Since every 2d−power module is a cone, Corollary 1.3.35 guarantees
that M

ϕ
= M∨∨ϕ . For any x ∈ Rn, the map ex : R[X]→ R defined by ex(p) :=

p(x) is a R−algebra homomorphism. Hence, for all x ∈ Rn, ex is linear and
so ϕ−continuous. Also, for all x ∈ KM , we have that ex(g) = g(x) ≥ 0 for all
g ∈ M , i.e. ex ∈ M∨ϕ . Then for any f ∈ M∨∨ϕ we get that f(x) = ex(f) ≥ 0
for all x ∈ KM , i.e. f ∈ Psd(KS).
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Let us now come back to the Positivstellensätze introduced in the last
sections and derive from them the corresponding Nichtnegativstellensätze.

Corollary 1.3.37 (Jacobi-Prestel’s Nichtnegativstellensatz). Let M be an
Archimedean 2d−power module of R[X] with d ∈ N. Then for any f ∈ R[X]

f ≥ 0 on KM ⇒ ∀ε > 0, f + ε ∈M.

Proof. Let f ∈ R[X] be such that f ≥ 0 on KM . Then for any ε > 0, we have
that f + ε > 0 on KM and so Theorem 1.3.28 ensures that f + ε ∈M.

Corollary 1.3.38 (Putinar’s Nichtnegativstellensatz). Let S ⊂ R[X] be finite
such that the quadratic module MS generated by S is Archimedean. Then for
any f ∈ R[X]

f ≥ 0 on KS ⇒ ∀ε > 0, f + ε ∈MS .

Corollary 1.3.39 (Schmüdgen’s Nichtnegativstellensatz). Let S ⊂ R[X] be
finite such that the associated bcsas KS is compact. Then for any f ∈ R[X]

f ≥ 0 on KS ⇒ ∀ε > 0, f + ε ∈ TS .

Using Proposition 1.3.36 and the Nichtnegativstellensätze, we easily obtain
the following closure results.

Corollary 1.3.40. Let M be an Archimedean 2d−power module of R[X] with
d ∈ N. Then Psd(KM ) = M

ϕ
.

Proof. By Proposition 1.3.36-(c), Psd(KM ) ⊇ M
ϕ
. For proving the converse

inclusion, let us consider f ∈ Psd(KM ) and ε > 0. The Jacobi-Prestel’s
Nichtnegativstellensatz 1.3.37 guarantees that f + ε ∈ M and so, for any
` ∈M∨ϕ , we have that `(f + ε) ≥ 0, i.e. `(f) ≥ −ε`(1). Then `(f) ≥ 0 and so

f ∈M∨∨ϕ
Cor1.3.35

= M
ϕ
.

Corollary 1.3.41. Let S ⊂ R[X] be finite such that the quadratic module MS

generated by S is Archimedean. Then Psd(KS) = (MS)
ϕ

Corollary 1.3.42. Let S ⊂ R[X] be finite such that the associated bcsas KS

is compact. Then Psd(KS) = (TS)
ϕ

These results make us understanding that even when we do not have satu-
ration of the preordering we still have cases when Psd(KS) can be character-
ized in terms of TS or MS , namely as closures of these cones w.r.t. the finest
locally convex topology ϕ. Note that typically TS is not closed.
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In fact, if S is a finite subset of R[X] such that KS is compact and
dim(KS) ≥ 3, then Corollary 1.3.42 ensures that Psd(KS) = (TS)

ϕ
but by

Theorem 1.3.5 we also know that Psd(KS) 6= TS so TS 6= (TS)
ϕ
, i.e.TS is not

closed in (R[X], ϕ). In the case when KS is not compact (and so MS is not
Archimedean), we cannot apply the previous closure results, so is it natural to
ask if we can get similar results by considering closures w.r.t. other topologies
rather than ϕ.

Closures of even power modules of R[X1, . . . , Xn] have been studied already
since the seventies. Indeed, the cone

∑
R[X1, . . . , Xn]2 is closed in (R[X], ϕ)

(see Sheet 3, Exercise 2), so taking its closure w.r.t. ϕ does not help to char-
acterize Psd(Rn) for n ≥ 2 (as Psd(Rn) 6=

∑
R[X]2 =

∑
R[X]2

ϕ
). However,

every polynomial in Psd(Rn) can be approximated by elements in
∑

R[X]2

w.r.t. the topology induced by the norm ‖ · ‖1, where ‖f‖1 :=
∑

α |fα| for
any f =

∑
α fαX

α ∈ R[X]. In fact, in [2, Theorem 9.1] the authors show

that Psd([−1, 1]n) =
∑

R[X]2
‖·‖1

, i.e.
∑

R[X]2 is dense in Psd([−1, 1]n)
w.r.t. ‖ · ‖1 on R[X] (see also [34]). This result is actually established in
[2] as a corollary of a general result valid for any commutative semigroup.
In [3] and [4] the results in [2] were extended further, to include commuta-
tive semigroups with involution and topologies induced by absolute values. In
[15] a new proof of these results is given by using the Representation Theo-
rem 1.3.24 and they are at the same time extended from sums of squares to
sums of 2d−powers. In particular, the authors prove that for any d ∈ N we get

Psd([−1, 1]n) =
∑

R[X]2d
‖·‖1

. The closure of
∑

R[X]2d w.r.t. to ‖ · ‖p with
1 ≤ p ≤ ∞ has been studied in [13], where it is showed that for any d ∈ N
we have Psd([−1, 1]n) =

∑
R[X]2d

‖·‖p
. In this same work also the closure of∑

R[X]2d w.r.t. weighted versions of ‖ · ‖p has been considered. In particular,
Lasserre in [33] identified a weighted version ‖ · ‖w of the norm ‖ · ‖1 such that

for any S ⊆ R[X] finite Psd(KS) = MS
‖·‖w

.

The question of establishing when the closure of an even power module
M in R[X] coincides with Psd(K) for some subset K of Rn can be clearly
considered also for even power modules in any unital commutative topological
R−algebra. Such a general setting was studied in [14] and [16]. We would
like to present here the main result [16] as it is a powerful application of the
Representation Theorem 1.3.24 and allows to deduce several of the closure
results mentioned above.
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Let A be a unital commutative R−algebra and denote by X(A) the char-
acter space of A (see Section 1.3.2 for the definition). For any M ⊆ A, recall
that KM := {α ∈ X(A) : â(α) ≥ 0,∀a ∈M}, where â is the Gelfand transform
of a (see Section 1.3.2 for the definition).

Definition 1.3.43. A function ρ : A→ R is called a seminorm if

1. ρ is subadditive: ∀x, y ∈ A, ρ(x+ y) ≤ ρ(x) + ρ(y).

2. ρ is positively homogeneous: ∀x ∈ A, ∀λ ∈ R, ρ(λx) = |λ|ρ(x).

A seminorm on a A is said to be submultiplicative if

∀x, y ∈ A, ρ(xy) ≤ ρ(x)ρ(y).

If ρ is a submultiplicative seminorm on A, then (A, ρ) is called a semi-
normed algebra. (In particular, A with a submultiplicative norm is said to
be a normed algebra). Note that any seminormed algebra is a topological
algebra with jointly continuous multiplication (c.f. [22, Proposition 1.2.14]).
We denote by sp(ρ) the set of all ρ−continuous R−algebra homomorphisms
from A to R and we refer to sp(ρ) as the Gelfand spectrum of (A, ρ), i.e.

sp(ρ) := {α ∈ X(A) : α is ρ− continuous}.

Lemma 1.3.44.
For any seminormed R−algebra (A, ρ) we have:

sp(ρ) = {α ∈ X(A) : |α(a)| ≤ ρ(a) for all a ∈ A}.

Proof. The inclusion {α ∈ X(A) : |α(a)| ≤ ρ(a) for all a ∈ A} ⊆ sp(ρ) follows
straightforward from the definition of Gelfand spectrum of (A, ρ). Let us prove
by contradiction the converse inclusion.

Suppose that α ∈ X(A) is ρ−continuous but that there exists x ∈ A
s.t. |α(x)| > ρ(x). Take δ ∈ R+ s.t. |α(x)| > δ > ρ(x) and set y := x

δ .
Then we have ρ(y) < 1 and |α(y)| > 1, which imply that ρ(yn) → 0 and
|α(yn)| → ∞ as n→∞, contradicting the ρ−continuity of α.

We are ready now to state the main result of [16].

Theorem 1.3.45. Let (A, ρ) be a unital commutative seminormed R−algebra
and d ∈ N. If M is a 2d−power module of A, then M

ρ
= Psd(KM ∩ sp(ρ)).

In order to prove this result, let us recall some fundamental properties of
unital commutative seminormed R-algebras.
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Remark 1.3.46. Any seminormed algebra (A, ρ) can be topologically embed-
ded into a Banach algebra (Ã, ρ̃), i.e. there exists ι : (A, ρ) → (Ã, ρ̃) contin-
uous embedding (see [22, Corollary 3.3.21]). Hence, A and ι(A) are homeo-
morphic. Recall that a Banach algebra is a normed algebra whose underlying
space is a complete normed space.

Lemma 1.3.47. For any unital commutative Banach R−algebra (B, σ), any
b ∈ B and r ∈ R such that r > σ(b), and any k ∈ N, there exists p ∈ B such
that pk = r + b.

Proof. The standard power series expansion

(r + x)
1
k = r

1
k

(
1 +

x

r

) 1
k

= r
1
k

∞∑
j=0

1
k

(
1
k − 1

)
· · ·
(

1
k − j

)
j!

(x
r

)j
converges absolutely for |x| < r. This together with the fact that (B, σ) is a
Banach algebra implies that, for any b ∈ B and any r ∈ R such that r > σ(b),
we have

p := r
1
k

∞∑
j=0

1
k

(
1
k − 1

)
· · ·
(

1
k − j

)
j!

(
b

r

)j
∈ B

and pk = (r + b).

Lemma 1.3.48. Let (B, σ) be a unital Banach R-algebra and L : B → R a
linear functional. If there exists d ∈ N such that L(b2d) ≥ 0 for all b ∈ B,
then L is σ−continuous.

Proof. By Lemma 1.3.47, for all n ∈ N and all a ∈ B we have that 1
n +σ(a)±

a = 1 + σ(±a) + (±a) ∈ B2d. Applying L, we obtain |L(a)| ≤ ( 1
n + σ(a))L(1)

for all n ∈ N and all a ∈ B, so |L(a)| ≤ σ(a)L(1) for all a ∈ B. Hence, L is
σ−continuous.

We are finally ready to show Theorem 1.3.45.

Proof. of Theorem 1.3.45
Since

Psd(KM ∩ sp(ρ)) =
⋂

α∈KM∩sp(ρ)

α−1([0,+∞))

and any α ∈ KM ∩ sp(ρ) is ρ−continuous, we have that Psd(KM ∩ sp(ρ)) is
closed in (A, ρ). Hence, M

ρ ⊆ Psd(KM ∩ sp(ρ))
ρ

= Psd(KM ∩ sp(ρ)). For
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the reverse inclusion, let us consider b ∈ Psd(KM ∩ sp(ρ)) and denote by M̃

the closure of the image of M in the Banach algebra (Ã, ρ̃), i.e. M̃ := ι(M)
ρ̃

(see Remark 1.3.46). Then M̃ is a 2d−power module of Ã as addition and
multiplication on Ã are both ρ̃-continuous and M is a 2d−power module of A.
By Lemma 1.3.47, for any n ∈ N and all a ∈ Ã we have 1

n+ρ̃(a)±a ∈ Ã2d ⊆ M̃ .

Hence, ρ̃(a) ± a ∈ M̃ which implies that M̃ is Archimedean. Now, for any

α ∈ K
M̃

we have that α(a) ≥ 0 for all a ∈ M̃ , which gives in particular that α

is a linear functional on Ã s.t. α(a2d) ≥ 0 for all a ∈ Ã and so Lemma 1.3.48
ensures that α is ρ̃−continuous. Hence, α◦ ι is ρ−continuous and α(ι(m)) ≥ 0
for all m ∈M , i.e.

(α ◦ ι) ∈ KM ∩ sp(ρ), ∀α ∈ K
M̃
. (1.5)

Denote by b̃ := ι(b). Then (1.5) ensures that for all α ∈ K
M̃

we have α(b̃) =
(α ◦ ι)(b) ≥ 0 as by assumption b ∈ Psd(KM ∩ sp(ρ)). By Jacobi-Prestel

Nichnegativstellensatz we have that for all n ∈ N, b̃ + 1
n ∈ M̃ and so by the

completeness of Ã we get b̃ ∈ M̃ . This yields ι(b) ∈ ι(M)
ρ̃

= ι(M
ρ
) where the

latter equality holds since A and ι(A) are homeomorphic (see Remark 1.3.46).
Hence, b ∈Mρ

.

Keeping in mind the identification between X(R[X]) and Rn proved in
Proposition 1.3.26 and applying Theorem 1.3.45 for A = R[X], we obtain
some of the closure results mentioned above.

Examples 1.3.49. Let M :=
∑

R[X]2 and so KM = Rn.
(a) If we consider the norm ‖ · ‖1 defined by ‖f‖1 :=

∑
β |fβ| for all f =∑

β fβX
β ∈ R[X], then (R[X], ‖ · ‖1) is a normed algebra. Hence, Theo-

rem 1.3.45 gives
∑

R[X]2
‖·‖1

= Psd(Rn ∩ sp(‖ · ‖1)). Let us now compute
the Gelfand spectrum of (R[X], ‖ · ‖1).
If y = (y1, . . . , yn) ∈ sp(‖ · ‖1), then by Lemma 2.3.8 we obtain that
|p(y)| ≤ ‖p‖1 for all p ∈ R[X] and in particular for each i = 1, . . . , n
we have |yi| ≤ ‖Xi‖1 = 1. Hence, y ∈ [−1, 1]n. Conversely, for any
y = (y1, . . . , yn) ∈ [−1, 1]n we have that |yi| = 1 for i = 1, . . . , n and so
for any p =

∑
β pβX

β ∈ R[X] we get

|p(y)| ≤
∑
β

|pβ||y1|β1 · |yn|βn ≤
∑
β

|pβ| = ‖p‖1.

Hence, by Lemma 2.3.8, y ∈ sp(‖ · ‖1).

We have therefore showed that
∑

R[X]2
‖·‖1

= Psd([−1, 1]n), retrieving
the result of [2] and [34].
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(b) Let 1 ≤ p <∞ and consider ‖·‖p, where for any f =
∑

β fβX
β ∈ R[X] we

define ‖f‖p :=
(∑

β |fβ|p
) 1
p

for 1 ≤ p < ∞ and ‖f‖∞ := maxβ |fβ|. As

‖f‖p ≤ ‖f‖1 for all f ∈ R[X], we have that
∑

R[X]2
‖·‖1 ⊆

∑
R[X]2

‖·‖p

and so by (a) we obtain Psd([−1, 1]n) ⊆
∑

R[X]2
‖·‖p

. Furthermore, for
any y ∈ [−1, 1]n we have that the map ey : R[X] → R, defined by
ey(f) := f(y) for any f ∈ R[X], is ‖ · ‖p−continuous. Indeed, for any
y = (y1, . . . , yn) ∈ [−1, 1]n and any f =

∑
β fβX

β ∈ R[X] we have that

|ey(f)| = |f(y)| ≤
∑
β

|fβ||y1|β1 · · · |yn|βn
Hölder ineq.
≤ Cq‖f‖p,

where 1 ≤ q ≤ ∞ is such that 1
p + 1

q = 1 and

Cq :=


(∑

β

|y1|qβ1 · · · |yn|qβn
) 1

q

if q <∞

maxβ |y1|β1 · · · |yn|βn if q =∞

which is finite as y = (y1, . . . , yn) ∈ [−1, 1]n.

Hence, Psd([−1, 1]n) =
⋂

y∈[−1,1]n
e−1
y ([0,+∞)) is closed in (R[X], ‖·‖p),

which yields
∑

R[X]2
‖·‖p ⊆ Psd([−1, 1]n)

‖·‖p
= Psd([−1, 1]n). We have

therefore showed that Psd([−1, 1]n) =
∑

R[X]2
‖·‖p

, for all 1 ≤ p ≤ ∞,
retrieving the result of [13].

Theorem 1.3.45 easily extends to locally multiplicatively convex algebras.

Definition 1.3.50. A unital commutative R−algebra A endowed with a locally
convex topology induced by a family of submultiplicative seminorms on A is
called locally multiplicatively convex (lmc).

If (A, τ) is an lmc algebra, then it is a topological algebra with jointly
continuous multiplication (c.f. [22, Proposition 2.1.9]). Moreover, we denote
by sp(τ) the set of all τ−continuous R−algebra homomorphisms from A to R
and we refer to sp(τ) as the Gelfand spectrum of (A, τ).

Using that any locally convex topology can be always generated by a family
of directed seminorms (see [21, Proposition 4.2.14]) we get the following result.

Proposition 1.3.51. Let (A, τ) be an lmc algebra with τ generated by a di-
rected family F of submultiplicative seminorms. Then sp(τ) =

⋃
ρ∈F sp(ρ).
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Proof. Applying [21, Proposition 4.6.1] and the definition of Gelfand spec-
trum, we easily obtain

sp(τ) = {α ∈ X(A) : α is τ−continuous}
=

⋃
ρ∈F
{α ∈ X(A) : α is ρ−continuous} =

⋃
ρ∈F

sp(ρ).

It is then clear how to extend Theorem 1.3.45 to any lmc algebra.

Theorem 1.3.52. Let (A, τ) be an lmc algebra and d ∈ N. If M is a 2d−power
module of A, then M

τ
= Psd(KM ∩ sp(τ)).

Proof. Let F be a directed family of submultiplicative seminorms generating τ .
Then by Proposition 1.3.51, we get

M
τ

=
⋂
ρ∈F

M
ρ

=
⋂
ρ∈F

Psd (KM ∩ sp(ρ))

= Psd

KM ∩ ⋃
ρ∈F

sp(ρ)

 = Psd (KM ∩ sp(τ)) .
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Chapter 2

K−Moment Problem:
formulation and connection to Psd(K)

2.1 Formulation: from finite to infinite dimensional settings.

As suggested by the name the K−Moment Problem deals with moments of
measures. In this course we are going to consider always non-negative Radon
measures on Hausdorff topological spaces.

Recall that

Definition 2.1.1. A Radon measure µ on a Hausdorff space (X, τ) is a mea-
sure defined on the Borel σ−algebra Bτ on (X, τ) (i.e. the smallest σ−algebra
on X containing τ) and such that
• µ is locally finite, i.e. for all x ∈ X there exists U open neighbourhood

of x in (X, τ) such that µ(U) <∞)
• µ is inner regular, i.e. for all B ∈ Bτ , µ(B) = sup{µ(K) : K ⊆
Bcompact}.

We say that µ is supported in a subset Y of X if for any B ∈ Bτ we have
that B ∩ Y = ∅ implies µ(B) = 0.

Let us start by introducing the most classical version of the K−moment
problem.

Given a Radon measure µ on R and j ∈ N0, the j−th moment of µ is
defined as

mµ
j :=

∫
R
xjµ(dx).

If all moments of µ exist and are finite, then we can associate to µ the sequence
of real numbers (mµ

j )j∈N0 , which is said to be the moment sequence of µ. The
moment problem exactly addresses the inverse question:
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Problem 2.1.2 (The one-dimensional K−Moment Problem (KMP)).
Let N ∈ N0∪+∞. Given a closed subset K of R and a sequence m := (mj)

N
j=0

of real numbers, does there exist a non-negative Radon measure µ supported
in K and s.t. mj = mµ

j for all j = 0, 1, . . . , N , i.e.

mj =

∫
K
xjµ(dx), ∀ j = 0, 1, . . . , N?

If such a measure µ does exist we say that µ is a K−representing measure
for m or that m is represented by µ on K. If N = ∞ the KMP is said to be
full, while it is called truncated if N < ∞. In the following we are going to
focus on the full KMP.

Note that there is a bijective correspondence between the set RN0 of all
sequences of real numbers and the set (R[X])∗ of all linear functionals on R[X],
namely

φ : RN0 → (R[X])∗

m := (mj)j∈N0 7→ Lm : R[x] → R
p :=

∑
j
pjX

j 7→ Lm(p) :=
∑
j
pjmj ,

where Lm is called Riesz’ functional. Indeed
• φ is injective, because if m := (mj)j∈N0 ,m

′ := (m′j)j∈N0 ∈ RN0 and

m 6= m′ then there exists j ∈ N0 s.t. mj 6= m′j , i.e. Lm(xj) 6= Lm′(x
j),

and so φ(m) = Lm 6= Lm′ = φ(m′).
• φ is surjective, because for any ` ∈ (R[X])∗ the sequencem := (`(Xj))j∈N0

is such that φ(m) = `. In fact, for any p :=
∑
j
pjX

j ∈ R[X] we have

Lm(p) =
∑
j
pj`(X

j) = `

(∑
j
pjX

j

)
= `(p) and, hence, φ(m) = Lm = `.

In virtue of this correspondence, we can always reformulate the full KMP
in terms of linear functionals.

Problem 2.1.3 (The one-dimensional K−Moment Problem (KMP)).
Given a closed subset K of R and L : R[X] → R linear, does there exists a
non-negative Radon measure µ supported in K s.t. L(p) =

∫
pdµ, ∀p ∈ R[X]?

If such a measure exists we say that µ is a K−representing measure for L
and that it is a solution to the K−moment problem for L.

This reformulation makes clearly how to generalize the statement of the
one-dimensional KMP to higher dimensions (see also [21, Section 5.2.2]). Let
n ∈ N and R[X] := R[X1, . . . , Xn].
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2.1. Formulation: from finite to infinite dimensional settings.

Problem 2.1.4 (The n-dimensional K−Moment Problem (KMP)).
Given a closed subset K of Rn and L : R[X] → R linear, does there exists a
non-negative Radon measure µ supported in K s.t. L(p) =

∫
pdµ, ∀p ∈ R[X]?

We can clearly consider also infinite dimensional settings, e.g. by replac-
ing R[X1, . . . , Xn] with R[Xi : i ∈ Ω], where Ω is an infinite index set or
replacing the polynomial algebra by any infinitely generated unital commuta-
tive R−algebra. Let us then give a formulation of the K−moment problem
general enough to encompass all the above mentioned instances.

Given a unital commutative R−algebra A, recall that we denote by X(A)
its character space of A (see Section 1.3.2). We endow the character space
X(A) with the weakest topology τX(A) on X(A) s.t. all Gelfand transforms
are continuous, i.e. â : X(A) → R, â(α) := α(a) is continuous for all a ∈ A.
A basis for τX(A) is given by

N :=

{
n⋂
i=1

âi
−1(Uai) : a1, . . . , an ∈ A,Ua1 , . . . , Uanopen in R, n ∈ N

}
.

Remark 2.1.5. X(A) can be seen as a subset of RA via the embedding:

π : X(A) → RA
α 7→ π(α) := (α(a))a∈A = (â(α))a∈A .

If we equip RA with the product topology τprod, then τX(A) coincides with the

topology τπ induced by π on X(A) from (RA, τprod), i.e.

τX(A) ≡
{
π−1(O) : O ∈ τprod

}
.

Hence, π is a topological embedding and the space
(
X(A), τX(A)

)
is Hausdorff.

Proof. Let a ∈ A. Then π is τπ−continuous and the projection pa : RA → R,
pa((xb)b∈A) := xa is τprod−continuous. Hence, â = pa ◦ π is τπ−continuous
and so τX(A) ⊆ τπ.

Conversely, let O ∈ τprod. Then there exist n ∈ N, b1, . . . , bn ∈ A

and Ub1 , . . . , Ubn open in R such that
n∏
i=1

Ubi ×
∏

a∈A\{b1,...,bn}
R ⊆ O. Hence,

π−1(O) ⊇ π−1
(⋂n

i=1 p
−1
bi

(Ubi)
)

=
⋂n
i=1 π

−1
(
p−1
bi

(Ubi)
)

=
⋂n
i=1 b̂i

−1
(Ubi) ∈ N

and so τπ ⊆ τX(A)

We are now ready to introduce the general formulation of KMP announced
above.
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2. K−Moment Problem: formulation and connection to Psd(K)

Problem 2.1.6 (The KMP for unital commutative R−algebras).
Let A be a unital commutative R−algebra. Given a closed subset K ⊆ X(A)
and L : A → R linear, does there exist a non-negative Radon measure µ on
X(A) supported on K and such that L(a) =

∫
X(A) â(α)µ(dα), ∀a ∈ A?

Note that for A = R[X] = R[X1, . . . , Xn] Problem 2.1.6 reduces to Prob-
lem 2.1.4 by means of the correspondence X(R[X]) ∼= Rn introduced in Propo-
sition 1.3.26.

2.2 Riesz-Haviland’s Theorem

Let A be a unital commutative R−algebra. Given a subset K of X(A), we
denote by

Psd(K) := {a ∈ A : â ≥ 0 on K}.

A necessary condition for the existence of a solution to Problem 2.1.6 is clearly
that L is nonnegative on Psd(K). In fact, if there exists a K−representing
measure µ for L then for all a ∈ Psd(K) we have

L(a) =

∫
X(A)

â(α)µ(dα) ≥ 0

since µ is nonnegative and supported on K and â is nonnegative on K.

It is then natural to ask if the non-negativity of L on Psd(K) is also
sufficient. For A = R[X1, . . . , Xn] a positive answer is provided by the so-
called Riesz-Haviland theorem (see [46, 20]).

Theorem 2.2.1 (Classical Riesz-Haviland Theorem). Let K ⊆ Rn closed and
L : R[X1, . . . , Xn]→ R linear. Then L has a K−representing measure if and
only if L(Psd(K)) ⊆ [0,+∞).

An analogous result also holds in the general setting.

Theorem 2.2.2 (Generalized Riesz-Haviland Theorem). Let K ⊆ X(A)
closed and L : A → R linear. Suppose there exists p ∈ A such that p̂ ≥ 0
on K and for all n ∈ N the set {α ∈ K : p̂(α) ≤ n} is compact. Then L has a
K−representing measure if and only if L(Psd(K)) ⊆ [0,+∞).

This theorem reduces the solvability of the K−moment problem to the
problem of characterizing Psd(K) establishing the beautiful duality between
these two problems.
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2.2. Riesz-Haviland’s Theorem

We will prove both Theorems 2.2.1 and 2.2.2 as corollaries of the follow-
ing more general result for which we need some notation. Given a topologi-
cal space (X, τ), we denote by C(X) the space of all continuous real valued
functions defined and by Cc(X) the subspace of all functions in C(X) having
compact support supp(f) := {x ∈ X : f(x) 6= 0}τ .

Theorem 2.2.3. Let A be a unital commutative R−algebra, χ a Hausdorff
space and ˆ : A→ C(χ) a R−algebra homomorphism. Suppose that

∃ p ∈ A s.t. p̂ ≥ 0 on χ and ∀j ∈ N, χj := {α ∈ χ : p̂(α) ≤ j} is compact.
(2.1)

If L : A → R is linear and s.t. L(a) ≥ 0 for all a ∈ A with â ≥ 0 on χ, then
there exists a Radon measure µ on χ such that L(a) =

∫
âdµ, for all a ∈ A.

Remark 2.2.4. (2.1) implies that χ is locally compact, i.e. for any x ∈ χ
there exists a compact neighbourhood of x.

Proof.
Let x ∈ χ and j ∈ N such that p̂(x) < j. Then U :=

{
y ∈ χ | p̂(y) < j} ⊆ χj ,

x ∈ U , and U is open (since U = p̂−1
(
(−∞, j)

)
and p̂ ∈ C(χ)). Hence, U is an

open neighbourhood of x and so U is a closed neighbourhood of x contained
in χj , which is compact. Then, U is a compact neighbourhood of x.

Proof. of Theorem 2.2.1
Let χ := K be a closed subset of Rn, A := R[X] := R[X1, . . . , Xn], ˆ :
R[X1, . . . , Xn] → C(K) defined by f̂ := f �K , and p :=

∑n
i=1X

2
i i.e. p =

‖X‖2, where ‖ · ‖ is the euclidean norm on Rn. Then p̂ ≥ 0 on K and for any
j ∈ N the χj = {x ∈ K : ‖x‖2 ≤ j} is compact. Hence, (2.1) holds and the
conclusion follows by Theorem 2.2.3.

Proof. of Theorem 2.2.2
Let χ := K be a closed subset of X(A) endowed with the subset topology
induced by τX(A) which makes K into a Hausdorff space. Define the map

ˆ : A → C(K)
a 7→ â �K ,

where â is the Gelfand transform of a. This is well-defined as the Gelfand
transform of a restricted to K is a continuous R−algebra homomorphism.
Then the conclusion follows by Theorem 2.2.3.
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2. K−Moment Problem: formulation and connection to Psd(K)

Theorem 2.2.3 was most probably known since at least the sixties as it
can be derived from a theorem due to Choquet in [7]. However, we propose
a proof due to Marshall, see [37, Theorem 3.2.2] or [36, Theorem 3.1], and
based on the following famous result.

Theorem 2.2.5 (Riesz-Markov-Kakutani theorem). Let χ be a locally com-
pact Hausdorff space. If L : Cc(χ) → R is a positive linear functional, i.e.
L(f) ≥ 0 for all f ∈ Cc(χ) such that f ≥ 0 on χ, then there exists a unique
non-negative Borel regular measure µ on χ such that L(f) =

∫
fdµ for all

f ∈ Cc(χ).

Proof. (see e.g. [28, Theorem 16, p.77])

Recall that a Borel regular measure µ on the Hausdorff space (χ, τ) is a
measure defined on the Borel σ−algebra Bτ such that µ is both inner reg-
ular and outer regular, where µ outer regular means that for all B ∈ Bτ ,
µ(B) = inf{µ(O) : O ⊇ Bopen}. Note that a finite Borel regular measure is
in particular a Radon measure.

Proof. of Theorem 2.2.3

Let Â := {â : a ∈ A} and B(χ) := {f ∈ C(χ) : ∃a ∈ A s.t.|f | ≤ |â| on χ}.
Since ˆ : A→ C(χ) is an R−algebra homomorphism, we have that both Â and
B(χ) are subalgebras of C(χ) and Â ⊆ B(χ) ⊆ C(χ).

Claim 1: Cc(χ) is a subalgebra of B(χ).

Proof of Claim 1.
Clearly, Cc(χ) equipped with the pointwise operations of addition and multi-
plication is an R−algebra. Moreover, if f ∈ Cc(χ) then f is bounded above
on χ, and so there exists k ∈ N s.t. |f | ≤ k on χ. Since k ∈ A, we have that
|f | ≤ k̂ on χ, i.e. f ∈ B(χ). Hence, Cc(χ) is a subalgebra of B(χ). �(Claim 1)

Define L : Â→ R as L(â) = L(a) for all a ∈ A.

Claim 2: L is a well-defined linear functional on Â.

Proof of Claim 2.
It is enough to prove that

∀a ∈ A, â = 0⇒ L(a) = 0. (2.2)

In fact, (2.2) implies that L(a) = L(b) for any a, b ∈ A such that â = b̂, i.e.
L is well-defined. Also, using (2.2) together with the assumptions that ˆ is a
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2.2. Riesz-Haviland’s Theorem

R−algebra homomorphism and L is linear, we obtain that for any a, b ∈ A
and λ ∈ R

L(â+ b̂)
(2.2)
= L(â+ b) = L(a+ b) = L(a) + L(b) = L(â) + L(b̂)

and

L(λâ)
(2.2)
= L(λ̂a) = L(λa) = λL(a) = λL(â).

Let us then show that (2.2) holds. If â = 0 then â ≥ 0 and −â = −̂a ≥ 0.
These respectively imply that L(a) ≥ 0 and L(−a) ≥ 0, which together yield
L(a) = 0, i.e. L(â) = 0. �(Claim 2)

Claim 3: L : Â → R extends to a linear functional L : B(χ) → R s.t.

L(f) ≥ 0 for all f ∈ B(χ) with f ≥ 0 on χ.

Proof of Claim 3.

Consider the collection P of all pairs
(
V,L

)
, where V is a R−subspace of

B(χ) containing Â and L is an extension of L : Â→ R such that L(f) ≥ 0 for
all f ∈ V with f ≥ 0 on χ. Define the following partial order on P(

V1, L1

)
⊆
(
V2, L2

)
⇐⇒ V1 ⊆ V2 and L2 �V1= L1.

• P is non-empty since
(
Â, L

)
belongs to it. In fact, for any a ∈ A s.t.

â ≥ 0 on χ we have L(â) = L(a) ≥ 0, where the latter inequality holds
by assumption on L.

• Every chain in P has an upper bound. Indeed, for any {(Vi, `i) , i ∈ J}
chain in P, the pair

(⋃
i∈J Vi, `

)
is an upper bound, where the functional

` :
⋃
i∈J Vi → R is linear and such that ` �Vi= `i for all i ∈ J .

Then by Zorn’s lemma there exists be a maximal element
(
B,L

)
in P.

We want to show that B = B(χ).

Suppose that this is not the case and let g ∈ B(χ) \ B. If f1, f2 ∈ B s.t.

f1 ≤ g and g ≤ f2 on χ, then f1 ≤ f2 on χ, and so L(f1) ≤ L(f2). Therefore,

U := {L(f1) : f1 ∈ B, f1 ≤ g on χ} and Θ := {L(f2) : f2 ∈ B, g ≤ f2 on χ}

are such that u ≤ θ for all u ∈ U and θ ∈ Θ. Moreover, U and Θ are both
non-empty.

[
Indeed, as g ∈ B(χ), there exists a ∈ A s.t. |g| ≤ |â| on χ

and so |â| ≤ â2 + 1

2
∈ Â (since

(
â ± 1

)2 ≥ 0), which in turns gives that
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2. K−Moment Problem: formulation and connection to Psd(K)

f1 := − â
2 + 1

2
∈ Â and f2 :=

â2 + 1

2
∈ Â are such that f1 ≤ g ≤ f2.

]
The

completeness of R ensures that

∃ e ∈ R s.t. sup(U) ≤ e ≤ inf(Θ). (2.3)

We can now linearly extend L from B to B +Rg ⊆ B(χ) by setting L(g) := e

and so L(f + dg) := L̄(f) + de for all d ∈ R and f ∈ B. Then the following
holds

∀ f + dg ∈ B + Rg, f + dg ≥ 0 on χ⇒ L(f + dg) ≥ 0, (2.4)

which yields
(
B + Rg, L

)
⊇ (B,L) and so contradicts the maximality of

(B,L), proving that B = B(χ). To show that (2.4) holds, we need to dis-
tinguish three cases.

Case 1: If d = 0 and f + dg ∈ B + Rg is s.t. f + dg ≥ 0 on χ, then L(f) ≥ 0

since
(
B,L

)
∈ P.

Case 2: If d > 0 and f + dg ∈ B + Rg is s.t. f + dg ≥ 0 on χ, then −f
d ≤ g

on χ. Hence, L
(
−f
d

)
∈ U and so by (2.3) we have L

(
−f
d

)
≤ e = L(g), i.e.

0 ≤ L(g)− L
(
−f
d

)
= L

(
g + f

d

)
= 1

dL (f + gd). Then L (f + gd) ≥ 0.

Case 3: If d < 0 and f + dg ∈ B + Rg is s.t. f + dg ≥ 0 on χ, then −f
d ≥ g

on χ. Hence, L
(
−f
d

)
∈ Θ and so by (2.3) we have L

(
−f
d

)
≥ e = L(g), i.e.

0 ≤ L(g)− L
(
−f
d

)
= L

(
g + f

d

)
= −1

dL (f + gd). Then L (f + gd) ≥ 0.

�(Claim 3)

By Claim 1, we know that Cc(χ) ⊆ B(χ) and so L is in particular defined

on Cc(χ) and such that L(f) ≥ 0 for all f ∈ Cc(χ) with f ≥ 0 on χ. This
together with Remark 2.2.4 guarantees that we can apply Theorem 2.2.5 and,
hence, that

∃ µ Borel regular measure on χ s.t. L(f) =

∫
fdµ, ∀f ∈ Cc(χ). (2.5)

Main Claim: L(f) =
∫
fdµ,∀f ∈ B(χ).

Proof of Main Claim.
Let f ∈ B(χ). W.l.o.g. we can assume that f ≥ 0 on χ, since f = f+ − f−
where f+ := max{f, 0} and f− := −min{f, 0}. Set q := f + p̂ where p is the
one in (2.1). Then q ∈ B(χ).

For each j ∈ N, define χ
′
j := {x ∈ χ | q(x) ≤ j}. Then
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2.2. Riesz-Haviland’s Theorem

• ∀ j ∈ N, χ′j is compact. Indeed, for all x ∈ χ we have that q(x) ≥ p̂(x)

and so that χ
′
j ⊆ χj , which yields that χ

′
j is closed subset of a compact

set and so itself compact.

• χ′j ⊆ χ
′
j+1 and χ =

⋃
j

χ
′
j .

Subclaim 1: For each j ∈ N, there exists fj ∈ Cc(χ) such that 0 ≤ fj ≤ f ,
fj = f on χ

′
j and fj = 0 on χ \ χ′j+1.

Proof of Subclaim 1.
For each j ∈ N, let us set Y ′j = {x ∈ χ′j+1 | j + 1

2 ≤ q(x) ≤ j + 1}. Then
Y ′j and χ′j are disjoint closed subsets of χ′j+1. Applying Urysohn’s lemma, we
get that there exists gj : χ′j+1 → [0, 1] continuous such that gj = 0 on Y ′j and
gj = 1 on χ′j . We can extend gj to the whole χ by setting gj = 0 on χ \ χ′j+1.
Then fj := f · gj is such that
• 0 ≤ fj ≤ f on χ, since 0 ≤ gj ≤ 1 on χ.
• fj = f · gj = f on χ′j , since gj = 1 on χ′j .
• fj = f · gj = 0 on χ \ χ′j+1, since gj = 0 on χ \ χ′j+1.

In particular, supp(fj) ⊆ χ′j+1 is compact, as closed subset of a compact set,
and so fj ∈ Cc(χ).

�(Subclaim 1)

Then (fj)j∈N is a non-decreasing sequence of non-negative functions in
Cc(χ) which pointwise converges to f in χ. Indeed, for all j ∈ N and
all x ∈ χ, we easily get from Subclaim 1 that 0 ≤ fj(x) ≤ fj+1(x) and
limj→∞ fj(x) = f(x). Hence, we can apply the Monotone Convergence The-
orem, which ensures that∫

fdµ = lim
j→∞

∫
fjdµ

(2.5)
= lim

j→∞
L(fj).

Hence, the proof of the Main Claim is complete once we show that

Subclaim 2: L(f) = lim
j→∞

L(fj).

Proof of Subclaim 2.
Let j ∈ N. First of all, let us show that

q2

j
≥ f − fj ≥ 0 on χ. (2.6)

From Subclaim 1 we know that f = fj on χ′j , so clearly
q2

j
≥ f − fj = 0 on

χ′j . Moreover, for any x ∈ χ \ χ′j , we have q(x) > j and so

q2(x) > jq(x) = j
(
f(x) + p̂(x)

)
≥ jf(x) ≥

(
f(x)− fj(x)

)
,
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2. K−Moment Problem: formulation and connection to Psd(K)

which yields
q2(x)

j
≥ (f − fj)(x) for all x ∈ χ.

Now (2.6) implies that L
(
q2

j − (f − fj)
)
≥ 0 and L (f − fj) ≥ 0. Hence,

L
(
q2

j

)
≥ L (f − fj) ≥ 0, i.e. 1

jL
(
q2
)
≥ L (f − fj) ≥ 0. Then passing to the

limit for j →∞ we obtain that lim
j→∞

L (f − fj) = 0 and so lim
j→∞

L(fj) = L(f).

�(Subclaim 2)

�(Main Claim)

Since Â ⊆ B(χ), the Main Claim implies that for all a ∈ A we have

L(â) =
∫
âdµ. This together with the definition of L and Claim 3 gives that

L(a) = L(â) = L(â) =

∫
âdµ,∀a ∈ A, (2.7)

which yields the conclusion as µ is a finite Borel regular measure and so Radon.
Indeed, using (2.7), we get that L(1) =

∫
1̂dµ = µ(χ) and so that µ is finite.

�(Proof of Theorem 2.2.3)

2.3 Solving the KMP through characterizations of Psd(K)

The Riesz-Haviland theorem 2.2.1 establishes a beautiful duality between
the K−moment problem and the problem of characterizing Psd(K). Hence,
thanks to this result we can obtain necessary and sufficient conditions to
solve the KMP using the characterizations of Psd(K) introduced in the pre-
vious chapter. For example, combining Riesz-Haviland’s theorem with Theo-
rem 1.3.9 about saturation of preorderings we obtain the following.

Corollary 2.3.1. Let L : R[X] → R be linear and K a non-empty bc-
sas of R with natural description Snat = {g1, . . . , gs}. Then there exists
a K−representing measure for L if and only if L(h2ge11 . . . gess ) ≥ 0 for all
h ∈ R[X] and all e1, . . . , es ∈ {0, 1}.

Proof.
By Theorem 2.2.1, the existence of a K−representing measure for L is equiv-
alent to the non-negativity of L on Psd(K). The latter is in turn equivalent
to the non-negativity of L on the preordering TSnat associated to the natu-
ral description Snat of K, since Theorem 1.3.9 ensures that Psd(K) = TSnat .
Hence, the conclusion directly follows from the linearity of L as

TSnat =

 ∑
e=(e1,...,es)∈{0,1}s

σe g
e1
1 . . . gess : σe ∈

∑
R[X]2, e ∈ {0, 1}s

 .
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2.3. Solving the KMP through characterizations of Psd(K)

Corollary 2.3.1 allows to derive the most classical results about the one-
dimensional KMP. Indeed, we have the following

• If K = R, then Snat = {∅} and so Corollary 2.3.1 becomes

Theorem 2.3.2 (Hamburger [18]).
A linear functional L : R[X]→ R has a R−representing measure if and
only if L(h2) ≥ 0 for all h ∈ R[X].

• If K = [0,+∞), then Snat = {X} and so Corollary 2.3.1 becomes

Theorem 2.3.3 (Stieltjes [52]).
A linear functional L : R[X] → R has a R+−representing measure if
and only if L(h2) ≥ 0 and L(Xh2) ≥ 0 for all h ∈ R[X].

• If K = [0, 1], then Snat = {X, 1 − X}. Hence, using Corollary 2.3.1
together with the observation that X(1−X) = X(1−X)2 + (1−X)X2,
we obtain

Theorem 2.3.4 (Hausdorff [19]).
A linear functional L : R[X] → R has a [0, 1]−representing measure
if and only if L(h2) ≥ 0, L(Xh2) ≥ 0 and L((1 − X)h2) ≥ 0 for all
h ∈ R[X].

These classical results were obtained without using Riesz-Haviland theorem,
but through methods involving the analysis of the so-called Hankel matrix or
moment matrix associated to the starting functional. In fact, we will see that
any condition of the form L(gh2) ≥ 0 for all h ∈ R[X] and some g ∈ R[X] can
be translated into the positive semidefiniteness of a certain matrix obtained
from the putative moment sequence (L(Xj))j∈N0 .

Let us introduce these concepts for any dimension n ∈ N.

Definition 2.3.5. A sequence m := (mα)α∈Nn0 of real numbers is called
positive semidefinite (psd) if∑

α,β∈F
cαcβmα+β ≥ 0, ∀ F ⊂ Nn0 , cα, cβ ∈ R.

Definition 2.3.6. Given a polynomial g :=
∑

γ∈Nn0
gγX

γ ∈ R[X1, . . . , Xn] and

a sequence m := (mα)α∈Nn0 of real numbers, we define g(E)m :=
(
(g(E)m)α

)
α∈Nn0

,

where

(g(E)m)α :=
∑
γ∈Nn0

gγmα+γ .

Examples 2.3.7.

1. For m := (mj)j∈N0 = (m0,m1,m2, . . .), g := X and h := X3− 1 we get:
g(E)m = (mj+1)j∈N0 = (m1,m2,m3, . . .) and
h(E)m = (mj+3 − 1)j∈N0 = (m3 − 1,m4 − 1,m5 − 1, . . .).
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2. For m :=
(
m(α1,α2)

)
(α1,α2)∈N2

0
and g := 5 − X2

1 − X2
2 , we have that

(g(E)m)(α1,α2) = 5m(α1,α2) −m(α1+2,α2) −m(α1,α2+2).
For instance, (g(E)m)(0,1) = 5m(0,1) −m(2,1) −m(0,3).

Lemma 2.3.8.
Given L : R[X1, . . . , Xn] → R linear and g :=

∑
γ∈Nn0

gγX
γ ∈ R[X1, . . . , Xn],

we have that L(gh2) ≥ 0,∀h ∈ R[X1, . . . , Xn] if and only if g(E)m is psd,
where m := (L(Xα))α∈Nn0

.

Proof.
For any α ∈ Nn0 , we have

L(gXα) = L

∑
γ∈Nn0

gγX
γ+α

 =
∑
γ∈Nn0

gγL(Xγ+α) =
∑
γ∈Nn0

gγmγ+α = (g(E)m)α .

Let h =
∑

β∈Nn0
hβX

β ∈ R[X]. Then h2 =
∑

β,γ∈Nn0
hβhγX

β+γ and so

L(gh2) = L

g ∑
β,γ∈Nn0

hβhγX
β+γ


=

∑
β,γ∈Nn0

hβhγL(gXβ+γ)

=
∑

β,γ∈Nn0

hβhγ (g(E)m)β+γ .

Hence, L(gh2) ≥ 0 for all h ∈ R[X] iff
∑

β,γ∈Nn0
hβhγ (g(E)m)β+γ ≥ 0 for all

hβ, hγ ∈ R, which is equivalent the psd-ness of g(E)m.

Definition 2.3.9. Let L : R[X] −→ R be linear and g ∈ R[X]. We define the
associated symmetric bilinear form as

〈 , 〉g : R[X]× R[X] → R
( p , q ) 7→ 〈p, q〉g := L(pqg)

The moment matrix associated to L and localized at g is defined to be the infi-
nite real symmetric matrix Mg :=

(
〈Xα, Xβ〉g

)
α,β∈Nn0

=
(
L(Xα+β g)

)
α,β∈Nn0

.

For g = 1, M1 is just said the moment matrix associated to L.
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Examples 2.3.10.
a) Let n = 1, L : R[X]→ R linear and set m := (mj)j∈N0 with mj := L(Xj).

Then the associated moment matrix is

M1 =


m0 m1 m2 . . .

m1 m2
. . . . . .

m2
. . .

. . .
. . .

...
. . .

. . .
. . .

 =


L(1) L(X) L(X2) . . .

L(X) L(X2)
. . . . . .

L(X2)
. . .

. . .
. . .

...
. . .

. . .
. . .

 .

If g := X then the corresponding localized moment matrix is given by

Mg =


m1 m2 m3 . . .

m2 m3
. . .

. . .

m3
. . .

. . .
. . .

...
. . .

. . .
. . .

 =


L(X) L(X2) L(X3) . . .

L(X2) L(X3)
. . .

. . .

L(X3)
. . .

. . .
. . .

...
. . .

. . .
. . .

 .

b) Let n = 2, L : R[X]→ R linear and set m := (mα)α∈N2
0

with

m(α1,α2) := L(Xα1
1 Xα2

2 ). Then the associated moment matrix is

M1 =


m00 m10 m01 m20 m11 . . .

m10 m20 m11 m30
. . .

. . .

m01 m11 m20
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .



=


L(1) L(X1) L(X2) L(X2

1 ) L(X1X2) . . .

L(X1) L(X2
1 ) L(X1X2) L(X3

1 )
. . .

. . .

L(X2) L(X1X2) L(X3
1 )

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .


and if g = X1X2 then the corresponding localized moment matrix is

Mg =


m11 m21 m12 m31 m22 . . .

m21 m31 m22 m41
. . .

. . .

m12 m22 m31
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

 .
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Recall that

Definition 2.3.11. A real symmetric N×N matrix A is positive semidefinite
(psd) if ytAy ≥ 0 ∀ y ∈ RN . An infinite real symmetric matrix A is psd if

ytANy ≥ 0 ∀ y ∈ RN and ∀ N ∈ N, where AN is the upper left corner
submatrix of order N of A.

Proposition 2.3.12. Let L : R[X] −→ R be linear and g ∈ R[X]. Then the
following are equivalent:
1) L(σg) ≥ 0 ∀ σ ∈

∑
R[X]2.

2) L(h2g) ≥ 0 ∀ h ∈ R[X].
3) 〈 , 〉g is psd.
4) Mg is psd.
5) g(E)m is psd where m := (L(Xα))α∈Nn0 .

Proof.
1)⇔ 2) since for any σ ∈

∑
R[X]2, there exist hi ∈ R[X] such that σ =

∑
i h

2
i

and so L(σg) =
∑

i L(h2
i g).

2)⇔ 3) as L(h2g) = 〈h, h〉g

3)⇔ 4) Indeed, for any h =
∑

γ∈F hγX
γ ∈ R[X] with F ⊂ Nn0 finite, we have

〈h, h〉g = L(
∑
β,γ∈F

hβhγX
β+γg) =

∑
β,γ∈F

hβhγL(gXβ+γ)

=
∑
β,γ∈F

hβhγM
g(β, γ) = ytMg

|F |y,

where y := (hγ)γ∈F .

4)⇔ 5)
g(E)m is psd iff

∑
β,γ∈Nn0

hβhγ (g(E)m)β+γ ≥ 0 for all hβ, hγ ∈ R, which is

equivalent to the psd-ness of Mg since (g(E)m)β+γ = Mg(β, γ).

5)⇔ 1) by Lemma 2.3.8.

We can then express the Hambuger, Stieltjes and Hausdorff solutions to
the KMP in terms of moment matrices.
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Theorem 2.3.13.
Given m := (mj)j∈N0, the following are equivalent:
a) m is a Hamburger’s moment sequence, i.e. has a R−representing measure
b) m is psd
c) M1 is psd
d) Lm(h2) ≥ 0 for all h ∈ R[X].

Theorem 2.3.14.
Given m := (mj)j∈N0, the following are equivalent:
a) m is a Stieltjes’s moment sequence, i.e. has a R+−representing measure
b) m and g(E)m are both psd
c) M1 and Mg are both psd
d) Lm(h2) ≥ 0 and Lm(gh2) ≥ 0 for all h ∈ R[X].
where g := X.

Theorem 2.3.15.
Given m := (mj)j∈N0, the following are equivalent:
a) m is a Hausdorff’s moment sequence, i.e. has a [0, 1]−representing measure
b) m, g1(E)m and g2(E)m are all psd
c) M1, Mg1 and Mg2 are all psd
d) L(h2) ≥ 0, L(g1h

2) ≥ 0 and L(g2h
2) ≥ 0 for all h ∈ R[X].

where g1 := X and g2 := 1−X.

Let us now relate to the KMP the Nichtnegativstellensätze and the closure
results introduced in the previous chapter.

Proposition 2.3.16.
Let τ be a locally convex topology on R[X]. Given a convex cone C of R[X]
and a closed subset K of Rn, the following are equivalent
a) Psd(K) ⊆ C∨∨τ
b) ∀ L ∈ C∨τ , ∃ µ K−representing measure for L,
where:
C∨τ := {` : R[X]→ R linear |` is τ − continuous and `(C) ≥ 0} and
C∨∨τ := {p ∈ R[X] |∀ ` ∈ C∨τ , `(p) ≥ 0}.

Proof.
a) ⇒ b) Let L ∈ C∨τ , i.e. L is τ − continuous and non-negative on C.

Then L
(
C
τ) ⊆ [0,+∞) and so, by Corollary 1.3.35, L (C∨∨τ ) ⊆ [0,+∞).

This implies by a) that L(Psd(K)) ⊆ [0,+∞) which is equivalenty by Riesz-
Haviland Theorem 2.2.1 to the existence of a K−representing measure for L.

b) ⇒ a) By b), we have that ∀ L ∈ C∨τ , L(Psd(K)) ⊆ [0,+∞), i.e.
L ∈ (Psd(K))∨τ . Then C∨τ ⊆ (Psd(K))∨τ and so

C∨∨τ ⊇ (Psd(K))∨∨τ ⊇ Psd(K).
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By combining the previous result with Corollary 1.3.42 (respectively 1.3.41
and 1.3.40) and recalling that every linear functional is continuous w.r.t. the
finest locally convex topology, we obtain the following results for the KMP.

Corollary 2.3.17. Let L : R[X] → R linear and S := {g1, . . . , gs} ⊂ R[X]
such that the associated bcsas KS is compact. Then there exists a KS−repre-
senting measure for L if and only if L(h2ge11 · · · gess ) ≥ 0 for all h ∈ R[X],
e1, . . . , es ∈ {0, 1}.

Corollary 2.3.18. Let L : R[X] → R linear and S := {g1, . . . , gs} ⊂ R[X]
such that the quadratic module MS generated by S is Archimedean. Then
there exists a KS−representing measure for L if and only if L(h2gi) ≥ 0 for
all h ∈ R[X] and i ∈ {0, 1, . . . , s}, where g0 := 1.

Corollary 2.3.19. Let L : R[X] → R linear and M be an Archimedean
2d−power module of R[X] with d ∈ N. Then ∃ a KM−representing measure
for L if and only if L(M) ⊆ [0,+∞).

Remark 2.3.20. Corollary 2.3.17 is actually the dual facet of Corollary 1.3.42,
since we can also deduce Corollary 1.3.42 from Corollary 2.3.17. Indeed, by
Proposition 2.3.16, Corollary 2.3.17 is equivalent to Psd(KS) ⊆ (TS)∨∨τ . This
together with Corollary 1.3.35 and the fact that Psd(KS) =

⋂
x∈KS e

−1
x ([0,+∞))

(where ex(p) := p(x) for all p ∈ R[X]) yields that

Psd(KS) ⊆ (TS)∨∨ϕ = TS
ϕ ⊆ Psd(KS)

ϕ
= Psd(KS).

Hence, Psd(KS) = TS
ϕ

, i.e. Corollary 1.3.42 holds.
A similar argument shows that Corollary 1.3.41 (respectively, Corollary 1.3.40)

can be derived from Corollary 2.3.18 (respectively, Corollary 2.3.19).

Proposition 2.3.16 can be easily generalized to any unital commutative
R−algebra with the only additional assumption that

∃ p ∈ A, s.t. p̂ ≥ 0 on K and ∀ n ∈ N, {α ∈ K : p̂(α) ≤ n} is compact. (2.8)

This hypothesis is fundamental for the application of the generalized Riesz-
Haviland Theorem 2.2.2 and so to get the following.

Proposition 2.3.21. Let A be a unital commutative R−algebra and C a
convex cone of A. Given a locally convex topology τ on A and a closed subset
K of X(A) s.t. (2.8) holds, the following are equivalent
a) Psd(K) ⊆ C∨∨τ
b) ∀ L ∈ C∨τ , ∃ µ K−representing measure for L,
where:
C∨τ := {` : A→ R linear |` is τ − continuous and `(C) ≥ 0} and
C∨∨τ := {a ∈ A |∀ ` ∈ C∨τ , `(a) ≥ 0}.
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Proof.
a) ⇒ b) Let L ∈ C∨τ , i.e. L is τ − continuous and non-negative on C.

Then L
(
C
τ) ⊆ [0,+∞) and so, by Corollary 1.3.35, L (C∨∨τ ) ⊆ [0,+∞). This

implies by a) that L(Psd(K)) ⊆ [0,+∞) which is equivalent by generalized
Riesz-Haviland Theorem 2.2.2 to the existence of a K−representing measure
for L. Note that we can apply the generalized Riesz-Haviland Theorem 2.2.2
since we assumed that (2.8) holds.

b) ⇒ a) By b), we have that for any L ∈ C∨τ there exists a non-negative
Radon measure µ supported in K and such that L(a) =

∫
âdµ. Hence, for all

a ∈ Psd(K) we have L(a) ≥ 0, i.e. L ∈ (Psd(K))∨τ . Then C∨τ ⊆ (Psd(K))∨τ
and so C∨∨τ ⊇ (Psd(K))∨∨τ ⊇ Psd(K).

By combining Proposition 2.3.21 with Theorem 1.3.45 we get the following
result for Problem 2.1.6.

Theorem 2.3.22. Let (A, ρ) be a unital commutative seminormed R−algebra,
L : A → R linear, d ∈ N and M a 2d−power module of A. Then there exists
a (KM ∩ sp(ρ))−representing measure for L if and only if L is ρ−continuous
and L(M) ⊆ [0,∞).

Before proving it, let us recall that the Gelfand spectrum sp(ρ) is the
collection of all ρ−continuous characters of A and let us show the following
property.

Lemma 2.3.23. If (A, ρ) is a unital commutative seminormed R−algebra,
then the Gelfand spectrum sp(ρ) is compact.

Proof. By Lemma 2.3.8, we know that

sp(ρ) = {α ∈ X(A) : |α(a)| ≤ ρ(a), ∀ a ∈ A}

=

{
α ∈ X(A) : (â(α))a∈A ∈

∏
a∈A

[−ρ(a), ρ(a)]

}
.

Hence, using the embedding

π : X(A) → RA
α 7→ π(α) := (α(a))a∈A = (â(α))a∈A .

we have that

π(sp(ρ)) = π(X(A)) ∩
∏
a∈A

[−ρ(a), ρ(a)] (2.9)
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2. K−Moment Problem: formulation and connection to Psd(K)

Since π(X(A)) is closed in (RA, τprod) (see Sheet 5) and
∏
a∈A ([−ρ(a), ρ(a)])

is compact in (RA, τprod) by Tychonoff theorem, (2.9) ensures that π(sp(ρ)) is
a closed subset of a compact set and so it is compact itself.

Let (Ui)i∈I s.t. Ui ∈ τX(A) and sp(ρ) ⊆
⋃
i∈I Ui. Then by Remark 2.1.5

for each i ∈ I there exists Oi ∈ τprod s.t. π−1(Oi) = Ui. Hence,

sp(ρ) ⊆
⋃
i∈I

π−1(Oi) = π−1

(⋃
i∈I

Oi

)
,

which implies π(sp(ρ)) ⊆ π
(
π−1

(⋃
i∈I Oi

))
⊆
⋃
i∈I Oi. Then the compactness

of π(sp(ρ)) guarantees that there exists J ⊂ I finite and such that π(sp(ρ)) ⊆⋃
i∈J Oi, which gives

sp(ρ) ⊆ π−1 (π(sp(ρ))) ⊆ π−1

(⋃
i∈J

Oi

)
=
⋃
i∈J

π−1(Oi) =
⋃
i∈J

Ui.

Hence, sp(ρ) is compact.

Proof. of Theorem 2.3.22
Since (A, ρ) is a seminormed algebra (and so in particular a locally convex
t.v.s.) we can apply both Theorem 1.3.45 and Corollary 1.3.35, which yield

Psd(KM ∩ sp(ρ)) = M
ρ

= M∨∨ρ .

Moreover, (2.8) holds by taking p = 1. Indeed, 1̂ = 1 > 0 on X(A) and for all
n ∈ N the set {α ∈ KM ∩ sp(ρ) : 1̂(α) ≤ n} is nothing but KM ∩ sp(ρ) which
is compact by Lemma 2.3.23.

Suppose that L is ρ−continuous and L(M) ⊆ [0,∞), i.e. L ∈ M∨ρ . Then
Proposition 2.3.21 ensures that there exists a (KM ∩sp(ρ))−representing mea-
sure for L.

Conversely, suppose that there exists a (KM∩sp(ρ))−representing measure
for L. Then clearly L(M) ⊆ [0,+∞) and for any a ∈ A we have that

|L(a)| ≤
∫
KM∩sp(ρ)

|â(α)| dµ(α) ≤ ρ(a)L(1),

i.e. L is ρ−continuous.

Remark 2.3.24. Theorem 2.3.22 is actually the dual facet of Theorem 1.3.45,
since we can also deduce Theorem 1.3.45 from Theorem 2.3.22. Indeed, we
have already observed that (2.8) holds because of the compactness of KM∩sp(ρ)
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and so we can apply Proposition 2.3.21, which ensures that Theorem 2.3.22
is equivalent to Psd(KM ∩ sp(ρ)) ⊆M∨∨ρ . This together with Corollary 1.3.35
and the fact that Psd(KM ∩ sp(ρ)) =

⋂
α∈KM∩sp(ρ) α

−1([0,+∞)) yields that

Psd(KM ∩ sp(ρ)) ⊆M∨∨ρ = M
ρ ⊆ Psd(KM ∩ sp(ρ))

ρ
= Psd(KM ∩ sp(ρ)).

Hence, Psd(KM ∩ sp(ρ)) = M
ρ
, i.e. Theorem 1.3.45 holds.

Theorem 2.3.22 easily extends to the case when A is an arbitrary lmc
algebra (i.e. a topological algebra, where the the topology is generated by a
family of submultiplicative seminorms).

Theorem 2.3.25. Let (A, τ) be a unital commutative lmc R−algebra, d ∈ N,
M a 2d−power module of A and L : A→ R linear. Then L is τ−continuous
and L(M) ⊆ [0,∞) if and only if there exists a (KM ∩ sp(ρ))−representing
measure for L for some ρ ∈ F , where F is a directed family of submultiplicative
seminorms generating τ .

Proof. Since (A, τ) is an lmc algebra, there always exists a directed family F
of submultiplicative seminorms generating τ (see [21, Theorem 4.2.14]). Then
the τ−continuity of L is equivalent to the ρ−continuity of L for some ρ ∈ F
by [21, Proposition 4.6.1]. Hence, Theorem 2.3.22 guarantees that there exists
a (KM ∩ sp(ρ))−representing measure for L.

In Theorems 2.3.22 and 2.3.25 as well as in Corollaries 2.3.17, 2.3.18 and
2.3.19 the representing measure are always compactly supported. This gives
in turn the uniqueness of the representing measure in each of these results.

Theorem 2.3.26. If µ is a Radon measure on X(A) supported on a compact
subset K, then it is determinate, i.e. any other Radon measure ν on X(A)
such that

∫
âdµ =

∫
âdν for all a ∈ A coincides with µ.

To prove this result we will make use of the Stone-Weirstrass Theorem,
which we state here for the convenience of the reader.

Theorem 2.3.27 (Stone-Weirstrass’ Theorem). Let χ be a Hausdorff compact
topological space and C a subalgebra of C(χ) containing a non-zero constant
function. Then C is dense in C(χ) if and only if C separates the points of χ,
i.e. for any x 6= y in χ there exists f ∈ C such that f(x) 6= f(y).
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Proof. of Theorem 2.3.26
Let us first show that ν is also supported in K and then that ν coincides
with µ.

Suppose that ν is not supported in K. Then there exists Z ⊆ X(A) \K
compact and such that ν(Z) > 0. Let ε > 0 such that ε < ν(Z)

µ(K)+ν(Z) . Now

{â : a ∈ A} is a subalgebra of C(X(A)) which separates the points of X(A),
since for any α1 6= α2 in X(A) there exists a ∈ A such that α1(a) 6= α2(a),
i.e. â(α1) 6= â(α2). Hence, {â : a ∈ A} in particular separates the points of
K∪Z. Since K and Z are both compact and disjoint, we can apply Urysohn’s
lemma, which ensures that there exists g ∈ C(K ∪ Z) such that g �K= 0 and
g �Z= 1. Therefore, by Stone-Weirstrass’ Theorem 2.3.27 applied to K ∪ Z,
we obtain that there exists a ∈ A such that |â(α)− g(α)| ≤ ε, ∀ α ∈ K ∪ Z,
i.e.

∃ a ∈ A : |â(α)| ≤ ε, ∀ α ∈ K and |â(α)− 1| ≤ ε, ∀ α ∈ Z.

W.l.o.g. we can assume â ≥ 0 on X(A) (otherwise replace a with a2). Then
we have

(1− ε)ν(Z) ≤
∫
|â|dν ≤

∫
âdν =

∫
âdµ ≤

∫
|â|dµ ≤ εµ(K),

which yields ν(Z) ≤ ε (µ(Z) + ν(Z)) < ν(Z) and so a contradiction. Hence, ν
is also supported in K and so we have that

∫
K b̂dµ =

∫
K b̂dν, ∀ b ∈ A. Hence,

by Stone-Weierstrass’ Theorem 2.3.27, we get
∫
K ϕdµ =

∫
K ϕdν, ∀ ϕ ∈ C(K).

Then µ = ν by the uniqueness in Riesz-Markov-Kakutani Representation
Theorem 2.2.5.
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Chapter 3

K−Moment Problem:
the operator theoretical approach

3.1 Basics from spectral theory

Let (H, 〈·, ·〉) be a Hilbert space (i.e. a complete inner product space). We
denote by ‖ · ‖ the norm induced on H by the inner product 〈·, ·〉.

Definition 3.1.1. An operator T on H is a linear map from a linear subspace
D(T ) of H (called the domain of T ) into H. We say that

• T is bounded if its operator norm ‖T‖op := supx∈D(T )\{o}
‖Tx‖
‖x‖ is finite.

• T is symmetric if 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ D(T ).

3.1.1 Bounded operators

In this subsection we are going to focus on bounded operators defined every-
where in H.

Definition 3.1.2. Let T be a bounded operator with D(T ) = H. Then

• the unique bounded operator T ∗ : H → H such that 〈Tx, y〉 = 〈x, T ∗y〉
for all x, y ∈ H is called the adjoint of T .

• T is called self-adjoint if T = T ∗.

Note that a bounded operator defined everywhere in H is self-adjoint if
and only if it is symmetric.

Definition 3.1.3. Two operators T1, T2 defined on the same Hilbert space H
commute if T1T2x = T2T1x for all x ∈ H.

Theorem 3.1.4 (Spectral Theorem for bounded operators). Let T1, . . . , Tn
be n pairwise commuting bounded self-adjoint operators having as domain the
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same separable Hilbert space H and let v ∈ H. Then there exists a unique
non-negative Radon measure µv on Rn such that

〈v, Tα1
1 · · ·T

αn
n v〉 =

∫
Rn
Xαdµv <∞, ∀ α = (α1, . . . , αn) ∈ Nn0

and µv is supported in B‖T1‖op(0)× · · · ×B‖Tn‖op(0) where BR(0) denotes the
closed ball of radius R and center 0 in R.

(for a proof see e.g. [44, Chapter VII] and [49, Theorem 5.23]).

Let us also recall a fundamental theorem about linear transformations
on normed spaces (see e.g. [44, Theorem I.7]), which will be useful in the
following.

Theorem 3.1.5 (Bounded Linear Transformation Theorem). Let Y be a Ba-
nach space, Z be a normed space, and U a dense subset of Z. If ϕ : U → Y
is a bounded linear map, then ϕ can be uniquely extended to a bounded linear
map ϕ : Z → Y and ‖ϕ‖op = ‖ϕ‖op

3.1.2 Unbounded operators

By the Hellinger-Toeplitz theorem, a symmetric operator T with D(T ) = H
is always bounded (see e.g. [44, Section III.5]). Hence, unbounded symmetric
operators cannot be defined everywhere in H. For this reason, we need a more
general definition of adjoint than the one given for bounded operators.

Definition 3.1.6. Let T : D(T )→ H be linear with D(T ) dense1 in H. Then

• the adjoint of T is the linear operator T ∗ with domain

D(T ∗) := {w ∈ H : ∃zw ∈ H s.t. 〈Tv,w〉 = 〈v, zw〉, ∀v ∈ D(T )}

defined by T ∗v = zw for all v ∈ D(T ∗).

• T is called self-adjoint if T = T ∗.

Definition 3.1.7.
Let T1 and T2 be two self-adjoint operators with domain in the same Hilbert
space H. We say that T1 and T2 are strongly commuting if eir1T1eir2T2 =
eir2T2eir1T1 for all r1, r2 ∈ R.

Theorem 3.1.8 (Spectral Theorem for unbounded operators).
Let (T1, . . . , Tn) be a tuple of self-adjoint operators with domain dense in the
same separable Hilbert space (H, 〈·, ·〉) which are pairwise strongly commuting

1The density of D(T ) in H ensures that zw is uniquely determined by the equation
〈Tv,w〉 = 〈v, zw〉, ∀v ∈ D(T ).
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3.2. Solving the KMP for K compact semialgebraic sets

and let v ∈ H be such that ∀d ∈ N0, ∀ i1, . . . , id+1 ∈ {1, . . . , n} we have
Tid ·Tid−1

· · ·Ti1v ∈ D(Tid+1
) (for d = 0 we set Ti0 to be the identity operator).

Then there exists a unique non-negative Radon measure µv such that

〈v, Tid · Tid−1
· · ·Ti1v〉 =

∫
Rn
Xi1 · · ·Xiddµv, ∀ d ∈ N0, i1, . . . , id ∈ {1, . . . , n}

(for a proof see e.g. [44, Section VIII.3] and [49, Theorem 5.23]).

Let us also recall a fundamental result due to Nussbaum dealing with
strongly commuting self-adjoint extensions of unbounded symmetric opera-
tors. For this we need to defined the notion of quasi-analytic vector for a
given linear operator.

Definition 3.1.9.

Let T be a linear operator with D(T ) ⊂ H. A vector v ∈ D∞(T ) :=
∞⋂
k=1

D(T k).

is said to be quasi-analytic for T if

∞∑
k=1

‖|T kv‖|−
1
k =∞.

Theorem 3.1.10.
Let T1 and T2 be two unbounded symmetric operators with D(T1) and D(T2)
subsets of the same Hilbert space H. Let D be a set of vectors in H which
are quasi-analytic for both T1 and T2 and such that T1D ⊂ D, T2D ⊂ D,
T1T2x = T2T1x for all x ∈ D. If the set D is total in H, i.e. span(D) = H,
then there exist unique self-adjoint extensions T1 and T2 of T1 and T2 in H
such that T1 and T2 are strongly commuting.

(for a proof see e.g. [41, Theorem 6] and [49, Theorem 7.18]).

3.2 Solving the KMP for K compact semialgebraic sets

In Section 2.3 we proved the celebrated solution to the KMP for K compact
due to Schmüdgen, see Corollary 2.3.17, by combining Schmüdgen Nichtneg-
ativstellensatz and Riesz’-Haviland Theorem. In this section we are going to
provide the original proof given by Schmüdgen in [48], which is based on an
operator theoretical approach to the moment problem.

Theorem 3.2.1. Let L : R[X] → R linear and S := {g1, . . . , gs} ⊂ R[X]
such that the associated bcsas KS is compact. Then there exists a unique
KS−representing measure for L if and only if L(h2ge11 · · · gess ) ≥ 0 for all
h ∈ R[X], e1, . . . , es ∈ {0, 1}.
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3. K−Moment Problem: the operator theoretical approach

Proof.
Suppose there exists a KS−representing measure µ for L, then for any h ∈
R[X] and any e1, . . . , es ∈ {0, 1} we have

L(h2ge11 · · · g
es
s ) =

∫
KS

h2ge11 · · · g
es
s dµ,

which is non-negative as integral of a non-negative function w.r.t. a non-
negative measure.

Conversely, suppose that L(h2ge11 · · · gess ) ≥ 0 for all h ∈ R[X], e1, . . . , es ∈
{0, 1}, i.e. L(TS) ⊆ [0,+∞) where TS is the preordering generated by S.
We want to show the existence of a KS−representing measure by using the
Spectral Theorem 3.1.4.

First of all, let us observe that the compactness of KS implies that there
exists σ > 0 such that for any x ∈ KS we have |x|2 := x2

1 + · · ·+ x2
n < σ2, i.e.

σ2 − |x|2 > 0,∀ x ∈ KS . Hence, by Stengle Striktpositivstellensatz 1.3.1, we
have that

∃ p, q ∈ TS s.t. (σ2 − |x|2)p = 1 + q. (3.1)

Consider now the symmetric bilinear form

〈 , 〉 : R[X]× R[X] → R
( p , q ) 7→ 〈p, q〉 := L(pq)

(note that 〈·, ·〉 coincides with 〈·, ·〉1 as in Definition 2.3.9).

This is a quasi-inner product, since for any f ∈ R[X] we have by assump-
tion that 〈f, f〉 = L(f2) ≥ 0 but 〈f, f〉 = 0 does not necessarily imply that
f ≡ 0 (e.g. if L : R[X]→ R is linear s.t. L(Xn) = 1 for n = 0 and L(Xn) = 0
for n ∈ N, then 〈X,X〉 = L(X2) = 0 but X is not the zero polynomial.)

Let us consider the ideal N := {f ∈ R[X] : L(f2) = 0}. Hence, there exists
a well-defined inner product on the quotient vector space R[X]/N which, by
abuse of notation, we denote again by 〈·, ·〉 and that is defined by

〈f +N, r +N〉 := L(fr), ∀f, r ∈ R[X]. (3.2)

Let us denote by HL the Hilbert space obtained by taking the completion of
R[X]/N w.r.t. the inner product 〈·, ·〉 in (3.2)2 and by ‖ · ‖ the norm on HL
induced by 〈·, ·〉.

Claim: ∀ h ∈ R[X], j ∈ {1, . . . , n}, ‖Xjh+N‖ ≤ σ‖h+N‖.
2This construction is actually part of a very classical tool in operator theory named

GNS-construction for Israel Gel’fand, Mark Naimark, and Irving Segal.
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3.2. Solving the KMP for K compact semialgebraic sets

Proof. of Claim
Let us fix h ∈ R[X] and d ∈ N. Take p and q as in (3.1) and define |X|2 :=
X2

1 + · · ·+X2
n. Since (1+q)|X|2d−2h2 ∈ TS and L is non-negative on elements

of TS , we have that:

L(|X|2dh2p) ≤ L(|X|2dh2p) + L
(

(1 + q)|X|2d−2h2
)

= L
(
|X|2d−2h2(|X|2p+ 1 + q)

)
(3.1)
= L

(
|X|2d−2h2σ2p

)
= σ2L

(
|X|2(d−1)h2p

)
.

Iterating, we get that

∀ d ∈ N, L(|X|2dh2p) ≤ σ2dL(h2p). (3.3)

Fix j ∈ {1, . . . , n} and consider `j : R[Xj ] → R defined by `j(r) := L(rh2),
for all r ∈ R[Xj ]. Then `j is linear and `j(r

2) = L(r2h2) = L((rh)2) ≥ 0,
since by assumption L is non-negative on squares. Then, by Hamburger’s
Theorem 2.3.2 we have that there exists an R−representing measure νh,j for
`j . Therefore, for any λ > 0 and any d ∈ N we have∫

(−∞,−λ)∪(λ,+∞)
λ2ddνh,j ≤

∫
(−∞,−λ)∪(λ,+∞)

X2d
j dνh,j

≤
∫
R
X2d
j dνh,j = `j(X

2d
j ) = L(X2d

j h
2)

≤ L
(
X2d
j h

2(|X|2p+ 1 + q)
)

(3.1)
= L(X2d

j h
2σ2p) = σ2L(X2d

j h
2p)

≤ σ2L(|X|2dh2p)
(3.10)

≤ σ2+2dL(h2p).

Hence, we proved that for any λ > 0 and any d ∈ N we have∫
(−∞,−λ)∪(λ,+∞)

dνh,j ≤
(σ
λ

)2d
σ2L(h2p).

In particular, if we take λ > σ and d → ∞, then
∫

(−∞,−λ)∪(λ,+∞) dνh,j = 0

and so that νh,j is supported in [−σ, σ]. Then

‖Xjh+N‖2 = L(X2
j h

2) = `j(X
2
j ) =

∫
R
X2
j dνh,j =

∫
[−σ,σ]

X2
j dνh,j

≤ σ2

∫
[−σ,σ]

dνh,j = σ2`j(1) = σ2L(h2) = σ2‖h+N‖2.

�(Claim)
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3. K−Moment Problem: the operator theoretical approach

For any j ∈ {1, . . . , n}, let us define the multiplication operator as follows

Wj : R[X]/N → R[X]/N

h+N 7→ Xjh+N

This is a well-defined operator with s.t. D(Wj) = R[X]/N is dense in HL and
(a) Wj is bounded, since

‖Wj‖op := sup
r∈D(Wj)

r 6=o

‖Wjr‖
‖r‖

= sup
h∈R[X]

h/∈N

‖Xjh+N‖
‖h+N‖

Claim
≤ σ sup

h∈R[X]

h/∈N

‖h+N‖
‖h+N‖

= σ.

As (R[X]/N, ‖ · ‖) is a normed space, this means that Wj is continuous.
(b) Wj is symmetric, since for any h, r ∈ R[X]/N we have

〈Wjh, r〉 = L(Xjhr) = L(hXjr) = 〈h,Wjr〉.

(c) W1, . . . ,Wn are pairwise commuting, since for any j 6= k in {1, . . . , n} and
any h ∈ R[X] we have

WjWk(h+N) = Wj(Xkh+N) = XjXkh+N = XkXjh+N = WkWj(h+N).

By Theorem 3.1.5 (applied for Z = Y = HL, U = R[X]/N , ϕ = Wj),
there exists a unique bounded operator Wj : HL → HL extending Wj and
‖Wj‖op = ‖Wj‖op. Since each D(Wj) is dense in HL and each Wj is bounded
(so continuous), we have that properties (b) and (c) above hold also for
W1, . . . ,Wn. Hence, W1, . . . ,Wn are pairwise commuting bounded self-adjoint
operators with D(Wj) = HL for all j ∈ {1, . . . , n}. Then, by the Spectral The-
orem 3.1.4, there exists a unique non-negative Radon measure µ such that

〈(1 +N),W1
α1 · · ·Wn

αn
(1 +N)〉 =

∫
Rn
Xαdµ <∞, ∀α = (α1, . . . , αn) ∈ Nn0

(3.4)

and µ is supported in B‖W1‖op(0)× · · · ×B‖Wn‖op(0)
(a)

⊆ [−σ, σ]n =: Q.
Since

〈(1 +N),W1
α1 · · ·Wn

αn
(1 +N)〉 = 〈(1 +N),W1

α1 · · ·Wn
αn(1 +N)〉

= 〈(1 +N), X1
α1 · · ·Xn

αn +N〉
= L(X1

α1 · · ·Xn
αn) = L(Xα),

(3.4) becomes

L(Xα) =

∫
Rn
Xαdµ, ∀α ∈ Nn0 .
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3.2. Solving the KMP for K compact semialgebraic sets

Hence, the spectral measure µ is a Q−representing measure for L. It remains
to show that µ is actually supported on KS .

For each i ∈ {1, . . . , n} we have

0 ≤ L(gih
2) =

∫
Q
gih

2dµ, ∀ h ∈ R[X].

As Q is compact, we can apply the Stone-Weierstrass Theorem 2.3.27, we get

0 ≤
∫
Q
gif

2dµ, ∀ f ∈ C(Q).

Then

0 ≤
∫
Q
gifdµ, ∀ f ∈ C(Q) s.t. f ≥ 0 on Q

and so the linear functional

L̃ : C(Q) → R
f 7→

∫
Q gifdµ

is such that L̃(f) ≥ 0 for all f ≥ 0 on Q. Hence, by Riesz-Markov-Kakutani
Theorem 2.2.5, there exists a unique non-negative Radon measure ν such that
L̃(f) =

∫
fdν for all f ∈ C(Q). But L̃(f) =

∫
fgidµ for all f ∈ C(Q), so

the signed measure giµ must coincide with ν. Hence, giµ is a non-negative
measure, which implies that the support of µ must be contained in the set of
non-negativity of each gi, i.e. µ is supported in KS .

The uniqueness of theKS−representing measure follows from Theorem 2.3.26
for A = R[X] and K = KS .

The operator theoretical approach used in the proof of Theorem 3.2.1
can be also employed to provide an alternative proof to Corollary 2.3.18.
This proof is indeed much closer to the original proof of this result due to
Putinar [43].

Theorem 3.2.2. Let L : R[X]→ R linear and S := {g1, . . . , gs} ⊂ R[X] such
that the quadratic module MS generated by S is Archimedean. Then there
exists a unique KS−representing measure for L if and only if L(h2gi) ≥ 0 for
all h ∈ R[X] and i ∈ {0, 1, . . . , s}, where g0 := 1.

Proof. Suppose there exists a KS−representing measure µ for L, then for any
h ∈ R[X] and any i ∈ {0, 1, . . . , s} we have

L(h2gi) =

∫
KS

h2gidµ,
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3. K−Moment Problem: the operator theoretical approach

which is non-negative as integral of a non-negative function w.r.t. a non-
negative measure.

Conversely, suppose that L(h2gi) for all h ∈ R[X] and all i ∈ {0, 1, . . . , s},
i.e. L(MS) ≥ 0. Since g0 := 1, we have that L(h2) ≥ 0 for all h ∈ R[X].
Then we can run the GNS-construction as in the proof of Theorem 3.2.1 and
construct the Hilbert space HL associated to L by taking the completion of
R[X]/N w.r.t. the inner product 〈·, ·〉 defined in (3.2), where N := {f ∈
R[X] : L(f2) = 0}. Denote by ‖ · ‖ the norm on HL induced by 〈·, ·〉.

In the proof of Theorem 3.2.1 the compactness ofKS and the non-negativity
of L on TS implied the following bound

∀ h ∈ R[X], j ∈ {1, . . . , n}, ‖Xjh+N‖ ≤ σ‖h+N‖ for some σ > 0, (3.5)

which was fundamental in the rest of the proof. Here we still have com-
pactness of KS as MS is Archimedean by Remark 1.3.32-c), but we have
the non-negativity of L only on MS which is contained in TS . However,
we can still derive (3.5) exploiting the Archimedeanity of MS . Indeed, as
MS is Archimedean, for any j ∈ {1, . . . , n} there exists λj ∈ N such that
λj ± X2

j ∈ MS . This together with the non-negativity of L on MS gives

in particular that L(h2(λj − X2
j )) ≥ 0 for all h ∈ R[X]. Hence, for each

j ∈ {1, . . . , n} and for each h ∈ R[X], we obtain

‖Xjh+N‖2 = L(X2
j h

2) ≤ L(λjh
2) = λjL(h2) ≤ σ2‖h+N‖,

where σ2 := maxj=1,...,n λj . This proves that (3.5) holds and so we can con-
tinue the proof exactly as in the proof of Theorem 3.2.1 and show that there
exists a KS−representing measure. As for the uniqueness, we can apply also
here Theorem 2.3.26 for A = R[X] and K = KS since the Archimedeanity of
MS ensures that KS is compact.

3.3 Solving the KMP for K non-compact semialgebraic sets

Having in mind Theorem 3.2.1 and Theorem 3.2.2, it is natural to ask if the
non-negativity of a linear functional on TS or MS is still sufficient to get the
existence of a KS−representing measure when KS is not compact (and so MS

is not Archimedean). We already know that this is true for KS ⊆ R with
S ⊇ Snat by Corollary 2.3.1 (see also Theorems 2.3.2 and 2.3.3). But what
about higher dimensions? In this section, we are going to see how the operator
theoretical approach to the KMP sheds some light on this question.

A crucial role will be played by the following condition which will be further
discussed in the next chapter.
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Definition 3.3.1. Given a sequence m := (mα)α∈Nn0 of non-negative real
numbers, we say that m fulfills the Carleman condition if

∞∑
k=1

m(0,...0, 2k︸︷︷︸
j-th

,0,...,0)
− 1

2k =∞, ∀j ∈ {1, . . . , n}. (3.6)

Let us start by a result due to Nussbaum, who obtained in [41, Theo-
rem 10] a solution to the KMP for K = Rn as a consequence of an important
result concerning the theory of unbounded operators, namely Theorem 3.1.10.
Indeed, in this case the multiplication operators defined in the previous section
are not anymore guaranteed to be bounded, because we do not have either
compactness or Archimedianity to ensure that the bound (3.5) holds. Hence,
we need to deal with unbounded operators and use the results in Section 3.1.2.

Theorem 3.3.2.
Let n ≥ 2 be an integer and L : R[X1, . . . , Xn] → R linear. If L(h2) ≥ 0 for
all h ∈ R[X1, . . . , Xn] and fulfills the Carleman condition, i.e.

∞∑
k=1

1

2k

√
L(X2k

j )
=∞, ∀j ∈ {1, . . . , n}, (3.7)

then there exists a unique Rn−representing measure for L. Conversely, if
there exists a unique Rn−representing measure for L then L(h2) ≥ 0 for all
h ∈ R[X1, . . . , Xn].

The existence part of this theorem is a higher dimensional version of Ham-
burger’s theorem 2.3.2. We provide a proof just for the case n = 2, since the
proof structure for n ≥ 3 is exactly the same. Afterwards, we will see how
this proof can be adapted to the case n = 1, giving an alternative proof to
Hamburger’s theorem 2.3.2.

Proof. of Existence in Theorem 3.3.2 for n = 2.
Suppose there exists a R2−representing measure µ for L, then for any polyno-
mial h ∈ R[X1, X2] =: R[X] we have L(h2) =

∫
R2 h

2dµ, which is non-negative
as integral of a non-negative function w.r.t. a non-negative measure.

Conversely, suppose that L(h2) ≥ 0 for all h ∈ R[X] and that the Carle-
man condition (3.7) holds. Then we can run the GNS-construction as in the
previous section and construct the Hilbert space HL associated to L by tak-
ing the completion of R[X]/N w.r.t. the inner product 〈·, ·〉 defined in (3.2),
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where N := {f ∈ R[X] : L(f2) = 0}. Denote by ‖ · ‖ the norm on HL induced
by 〈·, ·〉. For any j ∈ {1, 2}, let us define the multiplication operator as follows

Wj : R[X]/N → R[X]/N

h+N 7→ Xjh+N

This is a well-defined operator which is densely defined in HL and symmetric,
since D(Wj) = R[X]/N and

〈Wjh, r〉 = L(Xjhr) = L(hXjr) = 〈h,Wjr〉, ∀ h, r ∈ R[X]/N.

Since the multiplication operators are unbounded, we aim to use the Spec-
tral Theorem 3.1.8 and so we need to find pairwise strongly commuting self-
adjoint extensions of the multiplication operators in HL. To this purpose, let
us consider the set

D := {Xs
1X

t
2 +N |s, t ∈ N0}

and show that W1,W2 and D fulfill all the assumptions of Theorem 3.1.10.

a) W1D ⊂ D and W2D ⊂ D directly follow from the definitions of W1,W2

and D.

b) For all h ∈ D, say h = Xs
1X

t
2 +N for some s, t ∈ N0, we have

W1W2(h+N) = Xs+1
1 Xt+1

2 +N = Xt+1
2 Xs+1

1 +N = W2W1(h+N).

c) D is total in HL since span(D) = R[X]/N which is dense in HL by con-
struction.

d) Claim: Any h ∈ D is a quasi-analytic vector for both W1 and W2.

Then Theorem 3.1.10 guarantees that there exist unique self-adjoint extensions
W1 and W2 of W1 and W2 in HL s.t. W1 and W2 are strongly commuting.
Moreover, 1 + N ∈ D(W1) = D(W2) = R[X]/N ⊂ HL is s.t. ∀d ∈ N0,
∀ i1, . . . , id+1 ∈ {1, 2} we have

Wid ·Wid−1
· · ·Wi1(1 +N) = Xid · · ·Xi1 +N ∈ D(Wid+1

) = R[X]/N.

Then we can apply the Spectral Theorem 3.1.8 to W1 and W2 and get that
there exists a unique non-negative Radon measure µ on R2 such that

〈(1+N),W1 · · ·W1︸ ︷︷ ︸
α1 times

W2 · · ·W2︸ ︷︷ ︸
α2 times

·(1+N)〉 =

∫
R2

Xα1
1 Xα2

2 dµ(X1, X2), ∀ α1, α2 ∈ N0.

(3.8)
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Since

〈(1 +N),W1
α1W2

α2(1 +N)〉 = 〈(1 +N),W1
α1W2

α2(1 +N)〉
= 〈(1 +N), X1

α1X2
α2 +N〉

= L(X1
α1X2

α2) = L(Xα),

(3.8) becomes L(Xα) =
∫
R2 X

αdµ,∀α ∈ N2
0. Hence, the spectral measure µ is

an R2−representing measure for L.

Note that the fact that µ is the unique spectral measure coming from
the unique self-adjoint extensions of the multiplication operators to HL does
not guarantee that µ is the unique Rn−representing measure for L. Indeed,
there could exist self-adjoint extension (resp. pairwise strongly commuting
extensions) of the multiplication operators in another Hilbert space larger than
HL such that the corresponding spectral measure ν is also an Rn−representing
for L but clearly does not coincide with µ. Hence, we need an extra argument
to show the uniqueness of the representing measure.

Before passing to the determinacy part, let us complete the existence part
by showing that the Claim d) holds. To do that we will need the notion of
log-convex sequences and some of their properties.

Definition 3.3.3.
A sequence (sk)k∈N0 of non-negative real numbers is said to be log-convex if
for all k ∈ N we have that s2

k ≤ sk−1sk+1.

Lemma 3.3.4. A sequence (sk)k∈N0 of positive real numbers is log-convex if

and only if
(
k

√
sk
s0

)
k∈N

is monotone increasing.

Proof.

The log-convexity of (sk)k∈N0 is equivalent to the sequence
(

sk
sk−1

)
k∈N

being

increasing, since for any k ∈ N we have that

s2
k ≤ sk−1sk+1 ⇔

sk
sk−1

≤ sk+1

sk
.

Hence, for any k ∈ N we get

sk
s0

=

k∏
j=1

sj
sj−1

≤
(

sk
sk−1

)k
,

i.e. skk−1 ≤ s0s
k−1
k . By multiplying the latter on both sides by 1

sk0
we get(

sk−1

s0

)k
≤
(
sk
s0

)k−1
, which is equivalent to

(
sk−1

s0

) 1
k−1 ≤

(
sk
s0

) 1
k
.
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Lemma 3.3.5. Let (sk)k∈N0 be a sequence of non-negative real numbers s.t.
s2k > 0 for all k ∈ N0 and (s2k)k∈N0 is log-convex. Then

∞∑
k=1

1
2k
√
s2k

=∞⇐⇒
∞∑
k=1

1
4k
√
s4k

=∞.

Proof. (see Bonus Sheet)

Lemma 3.3.6.
Let o 6= q, f ∈ R[X] and L : R[X]→ R linear s.t. L(h2) ≥ 0 for all h ∈ R[X].
Define L̃f : R[X]→ R as L̃f (p) := L(fp) for all p ∈ R[X]. Then(
L̃f (h2) ≥ 0, ∀h ∈ R[X] and

∞∑
k=1

1
2k
√
L(q2k)

=∞

)
=⇒

∞∑
k=1

1

2k

√
L̃f (q2k)

=∞.

Proof.
For any k ∈ N0, set tk := L(qk) and rk := L̃f (qk). Since L(h2) ≥ 0 and
L̃f (h2) ≥ 0 for all h ∈ R[X], we have that t2k ≥ 0, r2k ≥ 0 for all k ∈ N0 and
we can apply the Cauchy-Schwarz inequality to both L and L̃f . Hence, we
obtain that the following hold for all k ∈ N0

t22k+2 =
(
L(q2k+2)

)2
=
(
L(qkqk+2)

)2
≤ L(q2k)L(q2k+4) = t2kt2k+4 (3.9)

r2
2k =

(
L(fq2k)

)2
≤ L(q4k)L(f2) = t4kL(f2) (3.10)

Now w.l.o.g. we can assume that t2k > 0 for all k ∈ N0 and L(f2) > 0. Indeed,
• If t2j = 0 for some j ∈ N0, then by (3.9) we have that t2k = 0 for all
k ≥ j in N0 and so by (3.10) also r2k = 0 for all k ≥ j in N0. Hence,∑∞

k=1
1

2k
√
r2k

=∞ and we have already our desired conclusion.

• If L(f2) = 0, then r2k = 0 for all k ∈ N0 and so again our desired
conclusion holds.

Hence, (t2k)k∈N0 is a sequence of positive real numbers, which is log-convex
by (3.9). Since by assumption

∑∞
k=1

1
2k√t2k

= ∞, we can apply Lemma 3.3.5

and obtain that
∞∑
k=1

1
4k
√
t4k

=∞ (3.11)

Therefore, we get

r
− 1

2k
2k

(3.10)

≥ t
− 1

4k
4k

(
L(f2)

)− 1
4k ≥ cf t

− 1
4k

4k , ∀ k ∈ N, (3.12)
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where cf :=
(
1 + L(f2)

)−1
is clearly a positive constant. Then

∞∑
k=1

1
2k
√
r2k

(3.12)

≥ cf

∞∑
k=1

1
4k
√
t4k

(3.11)
= ∞.

Corollary 3.3.7. Let o 6= f ∈ R[X] and L : R[X]→ R linear s.t. L(h2) ≥ 0
for all h ∈ R[X]. Suppose that L̃f (h2) ≥ 0 for all h ∈ R[X]. If L fulfills
Carleman condition (3.7), then so does L̃f .

Proof. Apply Lemma 3.3.6 for q = Xj for each j ∈ {1, . . . , n}.

Proof. of Claim d).
Let us fix s, t ∈ N0, then by using the Cauchy-Schwarz inequality we get that
for any k ∈ N∥∥∥W1

kXs
1X

t
2

∥∥∥2
=
(
L(X

2(k+s)
1 X2t

2 )
)
≤
(
L(X

4(k+s)
1 )

) 1
2 (
L(X4t

2 )
) 1

2

which gives in turn that

∞∑
k=1

1

k

√∥∥W1
kXs

1X
t
2

∥∥ ≥
∞∑
k=1

1

4k

√
L(X

4(k+s)
1 )L(X4t

2 )

. (3.13)

W.l.o.g. we can assume that c := L(X4t
2 ) > 0 and that for any k ∈ N

we have L(X
4(k+s)
1 ) > 0 (otherwise the series on the right-hand side of (3.13)

would diverge and we would have already our conclusion).
Then L(cX4s

1 h2) ≥ 0 for all h ∈ R[X]. This together with (3.7) ensures
that we can apply Lemma 3.3.6 for q := X1 and f := cX4s

1 obtaining that∑∞
k=1

1
2k
√
cL(X2k+4s

1 )
=∞.

Moreover, the sequence
(
L(cX2k+4s

1 )
)
k∈N0

is log-convex (see Definition 3.3.3),

since for any k ∈ N we have[
L(cX2k+4s

1 )
]2

=
[
L(
√
cXk−1+2s

1

√
cXk+1+2s

1 )
]2
≤ L(cX

(2k−2)+4s
1 )L(cX

(2k+2)+4s
1 ).

Then we have that
∞∑
k=1

1

4k

√
cL(X4k+4s

1 )
=∞. (3.14)

In fact, we can distinguish two cases:
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3. K−Moment Problem: the operator theoretical approach

• If there exists w ∈ N0 such that L(cX2w+4s
1 ) = 0, then by log-convexity

L(cX2k+4s
1 ) = 0 for all integers k ≥ w, which implies that (3.14) holds.

• if L(cX2k+4s
1 ) > 0 for all k ∈ N, then by Lemma 3.3.5 we have that

(3.14) holds.

Hence, (3.14) and (3.13) guarantee that
∑∞

k=1
1

k
√
‖|W1

kXs
1X

t
2‖|

=∞, i.e. Xs
1X

t
2

is a quasi-analytic vector for W1.

The same proof applies to show that Xs
1X

t
2 is a quasi-analytic vector

for W2. �(Claim d))

The proof of the existence part of Theorem 3.3.2 can be adapted to
provide an alternative proof to Hamburger’s theorem 2.3.2. Note that for
n = 1 the Carleman condition is not needed for getting the existence of an
Rn−representing measure for L, while this was essential for getting it in the
case n ≥ 2. We will see that Carleman’s condition is instead crucial in prov-
ing the determinacy of the Rn−representing measure independently of the
dimension n.

Theorem 3.3.8. Let L : R[X]→ R be linear. There exists an R−representing
measure for L if and only if L(h2) ≥ 0 for all h ∈ R[X].
If in addition, L fulfills the Carleman condition (3.7) for n = 1, i.e.

∞∑
k=1

1
2k
√
L(X2k)

=∞. (3.15)

then the representing measure is determinate.

Proof. of Existence in Theorem 3.3.8, i.e. of Hamburger’s theorem 2.3.2
Suppose there exists an R−representing measure µ for L, then for any poly-
nomial h ∈ R[X] we have L(h2) =

∫
R h

2dµ, which is non-negative as integral
of a non-negative function w.r.t. a non-negative measure.

Conversely, suppose that L(h2) ≥ 0 for all h ∈ R[X]. Then we can run
the GNS-construction and construct the Hilbert space HL associated to L.
Consider the multiplication operator

W : R[X]/N → R[X]/N

h+N 7→ Xjh+N

where N := {f ∈ R[X] : L(f2) = 0}. Since W is a symmetric unbounded
operator densely defined in HL, it admits a self-adjoint extension W in HL
(see e.g. [45, p.319]). Then by the Spectral Theorem 3.1.8 for n = 1 and
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3.3. Solving the KMP for K non-compact semialgebraic sets

v = 1 + N ∈ D∞(W ) = R[X]/N ⊂ HL we get that there exists a unique
non-negative Radon measure µ on R such that

〈(1 +N),W
j
(1 +N)〉 =

∫
R
Xjdµ(X), ∀ j ∈ N0. (3.16)

Since

〈(1 +N),W
j
(1 +N)〉 = 〈(1 +N),W j(1 +N)〉 = 〈(1 +N), Xj +N〉 = L(Xj)

(3.16) becomes L(X) =
∫
RX

jdµ(X), ∀ j ∈ N0. Hence, the spectral measure µ
is an R−representing measure for L.

Let us show now the determinacy part of both Theorem 3.3.2 and Theo-
rem 3.3.8. This will be a consequence of the following important result about
the determinacy of the moment problem, which we are going to prove in the
next chapter.

Theorem 3.3.9.
Let n ∈ N. If µ is a non-negative Radon measure on Rn such that the sequence
of its moments (mµ

α)α∈Nn0 exists and fulfills the Carleman condition (3.6), then
µ is determinate, i.e. any other non-negative Radon measure having the same
moment sequence as µ must coincide with µ.

Proof. (of Uniqueness in Theorem 3.3.2 and in Theorem 3.3.8)
Let µ, ν be two Rn−representing measure for L. Then µ and ν have the
same moment sequence (L(Xα))α∈Nn0 . Since by assumption L fulfills (3.7),
the sequence (L(Xα))α∈Nn0 fulfills (3.6) and so Theorem 3.3.9 ensures that
µ = ν.

Carleman’s condition, and so Theorem 3.3.9, will also play a crucial role
to prove a version of Theorem 3.3.2 for the KMP with K (not necessarily
compact) b.c.s.a.s. of Rn due to Lasserre [33, Theorem 3.2] (see also [23,
Theorem 5.1]).

Theorem 3.3.10.
Let n, s ∈ N, S := {g1, . . . , gs} ⊂ R[X1, . . . , Xn], and L : R[X1, . . . , Xn] → R
linear s.t. L(h2) ≥ 0 for all h ∈ R[X1, . . . , Xn] and Carleman’s condition (3.7)
holds. Then there exists a unique KS−representing measure for L if and only
if L(gih

2) ≥ 0 for all h ∈ R[X1, . . . , Xn] and all i ∈ {1, . . . , s}.
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3. K−Moment Problem: the operator theoretical approach

Proof.
Since L(h2) ≥ 0 for all h ∈ R[X1, . . . , Xn] =: R[X] and L fulfills the Car-
leman condition (3.7), Theorem 3.3.2 guarantees that there exists a unique
Rn−representing measure µ for L. We want to show that µ is actually sup-
ported on KS .

Case s = 1
For notational convenience, let us first consider the case s = 1 and so S := {g}.
Define L̃g : R[X] → R as L̃g(p) := L(pg) for all p ∈ R[X]. Since L̃g(h

2) =
L(gh2) ≥ 0 for all h ∈ R[X] and L satisfies the Carleman condition (3.7),
Lemma 3.3.6 (applied for q = Xj with j = 1, . . . , n and f = g) ensures that
L̃g also fulfils Carleman’s condition. Hence, by applying again Theorem 3.3.2
we get that there exists a unique Rn−representing measure η for L̃g. Thus,
we obtained that∫

Rn
Xαdη(X) = L̃g(X

α) = L(gXα) =

∫
Rn
Xα g(X)dµ(X)︸ ︷︷ ︸

=:dν(X)

, ∀ α ∈ Nn0 . (3.17)

The measure ν is a signed Radon measure on the Borel σ−algebra B(Rn) on
Rn and can be written as ν = ν+ − ν−, where

dν+ := 11Γ+dν with Γ+ := {x ∈ Rn : g(x) ≥ 0}
dν− := −11Γ−dν with Γ− := {x ∈ Rn : g(x) < 0}

and so ν+ and ν− are both non-negative Radon measures on Rn.

Claim: ν− ≡ 0.

Proof.
Define the following two non-negative Radon measures on B(Rn)

dµ+ := 11Γ+dµ and dµ− := 11Γ−dµ.

Then µ = µ+ + µ− and so we have∫
Rn
X2k
j dµ+(X) ≤

∫
Rn
X2k
j dµ(X), ∀ k ∈ N0, ∀j = 1, . . . , n. (3.18)

Consider `µ+ : R[X]→ R defined by `µ+(p) :=
∫
Rn pdµ+. Then (3.18) can be

rewritten as

`µ+(X2k
i ) ≤ L(X2k

j ), ∀ k ∈ N0,∀j = 1, . . . , n,
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which implies that

∞∑
k=1

1

2k

√
`µ+(X2k

i )
≥
∞∑
k=1

1

2k

√
L(X2k

j )

hp
= ∞, ∀ k ∈ N0, ∀j = 1, . . . , n,

i.e. `µ+ fulfills the Carleman condition.
Consider `ν+ : R[X]→ R defined by `ν+(p) :=

∫
Rn pdν+. Then

`ν+(p) =

∫
Rn
p11Γ+gdµ =

∫
Rn
pgdµ+ = `µ+(pg), ∀p ∈ R[X]

and

`ν+(h2) =

∫
Rn
h2dν+ ≥ 0 ∀h ∈ R[X].

Hence, by Lemma 3.3.6 (applied for L = `µ+ , q = Xj ,f = g), we get that
also `ν+ fulfills the Carleman condition and so that ν+ is determinate by
Theorem 3.3.9.

Putting all together, we obtain that for all α ∈ Nn0∫
Rn
Xαdν+(X)

def
=

∫
Rn
Xαg(X)dµ+(X)

µ=µ+µ−
=

∫
Rn
Xαg(X)dµ(X)−

∫
Rn
Xαg(X)dµ−(X)

(3.17)
=

∫
Rn
Xαdη(X)−

∫
Rn
Xαg(X)dµ−(X)

def
=

∫
Rn
Xαdη(X) +

∫
Rn
Xαdν−(X)

=

∫
Rn
Xαd(η + ν−)(X),

i.e. the non-negative Radon measures ν+ and η+ ν− have the same moments.
Since ν+ is determinate, they need to coincide, i.e. ν+ ≡ η + ν−. Hence, for
any B ∈ B(Rn) we have 0 = ν+(Γ−) ≥ ν−(Γ−) ≥ 0, that is, ν−(Γ−) = 0. Since
by definition ν−(Γ+) = 0 and Rn = Γ+ ∪ Γ−, we get that ν− ≡ 0. �(Claim)

The Claim implies that µ is supported on Γ+, i.e. for any B ∈ B(Rn) such
that B ∩Γ+ = ∅ we have µ(B) = 0. In fact, suppose that this is not the case.
Then there exists ε > 0 such that Bε ∩ Γ+ = ∅ but µ

(
Bε

)
> 0, where Bε is

some closed ball in Rn of radius ε. Then for any x ∈ Bε we have that x ∈ Γ−

and so g(x) < 0, i.e. −g(x) > 0. Hence, we get

0
Claim

= ν−(Bε) =

∫
Bε

−11Γ−dν =

∫
Bε

−g(X)dµ(X) ≥
(

min
x∈Bε

−g(x)

)
µ(Bε) > 0,
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3. K−Moment Problem: the operator theoretical approach

which yields a contradiction.
Thus, we proved that µ is supported on {x ∈ Rn : g(x) ≥ 0}, which in this

case coincides with KS .
Case s ≥ 2
Suppose now that s > 1 and S := {g1, . . . , gs}. By repeating for each gi the
same proof as above, we get that µ is supported on each {x ∈ Rn : gi(x) ≥ 0}
with i ∈ {1, . . . , s}. Hence, we get that

0 ≤ µ (Rn \KS) = µ

(
s⋃
i=1

Rn \ {x ∈ Rn : gi(x) ≥ 0}

)

≤
s∑
i=1

µ (Rn \ {x ∈ Rn : gi(x) ≥ 0}) = 0,

i.e. µ is supported on KS .
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Chapter 4

Determinacy of the K−Moment Problem

In this chapter we are going to investigate the so-called determinacy question,
which is certainly one of the most investigated aspects of the K−moment
problem. The determinacy question consists in finding under which conditions
a non-negative measure with given support K is completely determined by its
moments. In particular, we will see how the concept of quasi-analyticity enters
in the study of the determinacy question and give a proof of Theorem 3.3.9
first for n = 1 and then for higher dimensions.

From now on, for K ⊆ Rn closed, we denote byM∗(K) the collection of all
the non-negative Radon measures on Rn having finite moments of all orders
and which are supported in K.

Definition 4.0.1. A measure µ ∈ M∗(K) is said to be K−determinate if
for any ν ∈M∗(K) such that

∫
xαdµ(x) =

∫
xαdν(x),∀ α ∈ Nn0 we have that

µ ≡ ν. Equivalently a sequence of real numbers m (resp. a linear functional L
on R[X]) is called K−determinate if there exists at most one K−representing
measure for m (resp. for L).

Note that if K1 and K2 are closed subsets of Rn such that K1 ⊂ K2, then
the K2−determinacy always implies the K1−determinacy but the converse
does not hold in general.

4.1 Quasi-analytic classes

Let us recall the basic definitions and state some preliminary results concern-
ing the theory of quasi-analytic functions. In the following, we denote by
C∞(X) the space of all infinitely differentiable real valued functions defined
on a topological space X.
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4. Determinacy of the K−Moment Problem

Definition 4.1.1.
Given a sequence of positive real numbers (sj)j∈N0 and an open I ⊆ R, we
define the class C{sj} as the set of all functions f ∈ C∞(I) for which there
exists γf > 0 (only depending on f) such that

∥∥Dkf
∥∥
∞ ≤ (γf )ksk, ∀ k ∈ N0,

where Dkf is the k−th derivative of f and
∥∥Dkf

∥∥
∞ := supx∈I

∣∣Dkf(x)
∣∣.

The class C{sj} of functions on I is said to be quasi-analytic if the con-
ditions

f ∈ C{sj}, ∃ t0 ∈ Is.t. (Dkf)(t0) = 0, ∀ k ∈ N0

imply that f(x) = 0 for all x ∈ I.

The problem to give necessary and sufficient conditions bearing on the
sequence (sj)j∈N0 such that the class C{sj} is quasi-analytic was proposed by
Hadamard in [17]. Denjoy was the first to provide sufficient conditions for
the quasi-analyticity of a class [10], but the problem was completely solved
by Carleman, who generalized Denjoy’s theorem and methods giving the first
characterization of quasi-analytic classes in [6].

Theorem 4.1.2 (The Denjoy-Carleman Theorem).
Let (sj)j∈N0 be a sequence of positive real numbers. The class C{sk} is quasi-
analytic if and only if

∞∑
k=1

1

infj≥k j
√
sj

=∞.

Proof. see e.g. [8] for a simple but detailed proof.

Corollary 4.1.3. If (sj)j∈N0 is a sequence of positive real numbers such that

∞∑
k=1

1
k
√
sk

=∞,

then the class C{sj} is quasi-analytic.

Proof. For any k ∈ N we have infj≥k j
√
sj ≤ k

√
sk and so

∞∑
k=1

1

infj≥k j
√
sj
≥
∞∑
k=1

1
k
√
sk
.

Since by assumption the series on right-hand side diverges, so does the series
on the left-hand side. Hence, by Theorem 4.1.2, the class C{sj} is quasi-
analytic.
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Remark 4.1.4. If (sj)j∈N0 is a log-convex sequence of positive real num-
bers such that s0 = 1, then in Corollary 4.1.3 also the converse implication
holds. Indeed, under these assumptions the sequence ( j

√
sj)j∈N is increasing

by Lemma 3.3.4 and so for each k ∈ N we have infj≥k j
√
sj = k

√
sk.Hence, the

condition
∑∞

k=1
1
k
√
sk

=∞ is equivalent to
∑∞

k=1
1

infj≥k j
√
sj

=∞ and so to the

quasi-analiticity of the class C{sj} by Theorem 4.1.2.

Using Corollary 4.1.3, we can easily produce some examples of quasi-
analytic classes.

Examples 4.1.5.

• The class C{jj} is quasi-analytic, since
∑∞

k=1
1
k√
kk

=
∑∞

k=1
1
k =∞.

• The class C{j!} is quasi-analytic, since
∑∞

k=1
1
k√
k!
≥
∑∞

k=1
1
k√
kk

= ∞.
This is in fact the class of real analytic functions. Recall that a function
f is real analytic on I ⊆ R if f ∈ C∞(I) and the Taylor series of f at
any point x0 ∈ I pointwise converges to f in a neighborhood of x0.

4.2 Determinacy in the one dimensional case

In this section we are going to exploit the theory of quasi-analytic functions on
R to prove the so-called Carleman’s Theorem, i.e. Theorem 3.3.9 for n = 1.
Carleman was indeed the first to approach the determinacy question with
methods involving quasi-analyticity theory in his famous work of 1926 (see [6,
Chapter VIII]).

Theorem 4.2.1 (Carleman’s Theorem).
If µ ∈M∗(R) is such that its moment sequence (mµ

j )j∈N0 fulfils the following

∞∑
k=1

1

2k

√
mµ

2k

=∞, (4.1)

then µ is R−determinate.

The original proof by Carleman makes use of the Cauchy transform of
the given measure. Here, we propose a slightly different proof that uses the
Fourier-Stieltjes transform but maintains the same spirit of Carleman’s proof.
Before proving Theorem 4.2.1, let us recall the definition of Fourier-Stieltjes
transform of a measure and some fundamental properties of this object.
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4. Determinacy of the K−Moment Problem

Definition 4.2.2. Let µ ∈ M∗(R). The Fourier-Stieltjes transform of µ is
the function Fµ ∈ C∞(R) defined by

Fµ(t) :=

∫
R
e−ixtdµ(x), ∀ t ∈ R.

Proposition 4.2.3. Let µ, ν ∈M∗(R).
a) If Fµ ≡ Fν on R, then µ ≡ ν.
b) For any k ∈ N0 and any t ∈ R, we have (DkFµ)(t) =

∫
R(−ix)ke−ixtdµ(x).

Proof. of Theorem 4.2.1
W.l.o.g. assume that all even moments of µ are positive. In fact, if mµ

2j = 0

for some j ∈ N0, then µ is supported in {x ∈ R : x2j = 0} = {0} and
thus, µ = mµ

0δ{0} is the unique measure having these moments, which proves
already the determinacy of µ.

Let ν ∈M∗(R) having the same moment sequence as µ and let us consider
the Fourier-Stieltjes transforms of µ and ν. Then (Fµ − Fν) ∈ C∞(R) and for
any k ∈ N0 and any t ∈ R we get

(Dk(Fµ − Fν))(t) =

∫
R

(−ix)ke−ixtµ(dx)−
∫
R

(−ix)ke−ixtν(dx) (4.2)

and so ∣∣∣(Dk(Fµ(t)− Fν))(t)
∣∣∣ ≤

∫
R
|x|kµ(dx) +

∫
R
|x|kν(dx)

Hölder
≤

√
mµ

0m
µ
2k +

√
mν

0m
ν
2k

= 2
√
mµ

0m
µ
2k ≤ (1 + γ)

√
mµ

2k,

where γ := 2
√
mµ

0 > 0. Hence, Fµ − Fν ∈ C{sk}, where sk := (1 + γ)
√
mµ

2k

for any k ∈ N0.
Since

∞∑
k=1

1
k
√
sk

=

∞∑
k=1

1

k

√
(1 + γ)

√
mµ

2k

≥ 1

(1 + γ)

∞∑
k=1

1

2k

√
mµ

2k

(4.1)
= ∞,

Corollary 4.1.3 guarantees that the class C{sk} is quasi-analytic.
Moreover, (4.2) gives in particular (Dk(Fµ − Fν))(0) = 0 for all k ∈ N0.

Then the quasi-analyticity of the class C{sk} implies that Fµ−Fν is identically
zero on R. Consequently, Proposition 4.2.3-a) ensures that µ = ν.
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Carleman’s condition (4.1) is only sufficient for the R−determinacy. In-
deed, there exist R−determinate measures whose moments do not fulfilll Car-
leman’s condition (see [53] for examples).

As a consequence of Carleman’s Theorem, we can derive a sufficient con-
dition for the (R+)−determinacy.

Corollary 4.2.4.
Let µ ∈M∗(R+). If

∞∑
n=1

1

2k

√
mµ
k

=∞, (4.3)

then µ is (R+)−determinate realizing m.

Condition (4.3) is well-know as Stieltjes’ condition since it is sufficient for
the determinacy of the Stieltjes moment problem.

Before providing the proof of Corollary 4.2.4, recall that the image measure
of a measure µ on B(Rn) through a given Borel measurable map ϕ : Rn → Rd
(n, d ∈ N) is the measure ϕ#µ on B(Rd) defined by ϕ#µ(B) := µ(ϕ−1(B))
for all B ∈ B(Rd). Moreover, for any g : Rd → R integrable w.r.t. ϕ#µ we
have that ∫

Rd
g(y)d(ϕ#µ)(y) =

∫
Rn

(g ◦ ϕ)(x)dµ(x). (4.4)

Proof.
Let µ1, µ2 ∈ M∗(R+) having the same moment sequence fulfilling Stieltjes’
condition. For j ∈ {1, 2} we define

dνj(x) :=
1

2
(f#µj + (−f)#µj)) ,

where f : R+ → R is given by f(x) :=
√
x. Then (4.4) implies that for any

k ∈ N0 and any j ∈ {1, 2} we have

m
νj
2k =

∫
R
y2kdνj(y) =

1

2

∫
R
y2kd(f#µj)(y) +

1

2

∫
R
y2kd((−f)#µj)(y)

=
1

2

∫
R+

(
√
x)2kdµj(x) +

1

2

∫
R+

(−
√
x)2kdµj(x) =

∫
R+

(
√
x)kdµj(x) = m

µj
k .

and

m
νj
2k+1 =

∫
R
y2k+1dνj(y) =

1

2

∫
R
y2k+1d(f#µj)(y) +

1

2

∫
R
y2k+1d((−f)#µj)(y)

=
1

2

∫
R+

(
√
x)2k+1dµj(x) +

1

2

∫
R+

(−
√
x)2k+1dµj(x) = 0.
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Then ν1 and ν2 have the same moments and

∞∑
n=1

1

2k

√
m
νj
2k

=

∞∑
n=1

1

2k

√
m
µj
k

=∞.

Hence, Carleman’s Theorem 4.2.1 ensures that ν1 ≡ ν2 on R and so µ1 ≡ µ2

on R+.

Determinacy is also deeply connected to polynomial approximation. One
result in this direction is the following, which will be particularly useful in the
next section.

Lemma 4.2.5.
If µ ∈M∗(R) is R−determinate, then C[x] is dense in L2(R, µ).

Proof. (see e.g. [50, Proposition 6.10])

4.3 Determinacy in higher dimensions

In this section we are going to prove a multivariate version of Carleman’s
Theorem 4.2.1, namely we give a proof of Theorem 3.3.9 which we restate
here for the convenience of the reader.

Theorem 4.3.1. Let n ∈ N. If µ ∈ M∗(Rn) is s.t. its moment sequence
(mµ

α)α∈Nn0 fulfills

∞∑
k=1

mµ
(0,...0, 2k︸︷︷︸

j-th

,0,...,0)
− 1

2k =∞, ∀j ∈ {1, . . . , n}, (4.5)

then µ is (Rn)−determinate, i.e. the set

Mµ :=

{
ν ∈M∗(Rn) :

∫
xαdν(x) =

∫
xαdµ(x), ∀α ∈ Nn0

}
is a singleton.

Note that the setMµ is convex and we have the following characterization
of its extreme points1.

1Recall that ν is an extreme point of Mµ if the following implication holds:
(ν = λη1 + (1− λη2), for some λ ∈ [0, 1], η1, η2 ∈Mµ)⇒ (ν = η1 or ν = η2).
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Lemma 4.3.2. Let µ, ν ∈M∗(Rn). Then ν is an extreme point ofMµ if and
only if C[X1, . . . , Xn] is dense in L1(Rn, ν).

Proof. (see e.g. [50, Proposition 1.21])

To prove Theorem 4.3.1, we can proceed in the two following ways:

• We generalize the theory of quasi-analytic functions to the higher di-
mensions and prove an analogue of the Denjoy-Carleman theorem in the
multivariate case. Using such results, we adapt the proof of Carleman’s
Theorem 4.2.1 to the higher dimensional case and provide a proof of
Theorem 4.3.1 (see [26]).

• Using the connection between determinacy and polynomial approxima-
tion, we prove the so-called Petersen’s theorem [39] about partial de-
terminacy and so to reduce the (Rn)−determinacy question to several
R−determinacy questions. Combining this result with Carleman’s The-
orem 4.2.1, we show that Theorem 4.3.1 holds (see [41]).

As we have already seen the power of the theory of quasi-analytic functions
in the study of the determinacy question in the one-dimensional case, we
are going now to use the second approach for the higher dimensional case.
Therefore, let us first show Petersen’s theorem.

Theorem 4.3.3 (Petersen’s Theorem).
Let µ ∈ M∗(Rn) and for each j ∈ {1, . . . , n} define πj(x) := xj for all
x = (x1, . . . , xn) ∈ Rn. If π1#µ, . . . , πn#µ are all R−determinate, then µ
is (Rn)−determinate.

Proof.
Let ν ∈Mµ and j ∈ {1, . . . , n}. Then for any k ∈ N0 we have that∫

R
ykd(πj#ν)(y) =

∫
Rn
πj(x)kdν(x)

=

∫
Rn
x(0,...,0,k,0,...,0)dν(x)

=

∫
Rn
x(0,...,0,k,0,...,0)dµ(x)

=

∫
Rn
πj(x)kdµ(x)

=

∫
R
ykd(πj#µ)(y),

73
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i.e. (πj#ν) ∈Mπj#µ. This implies that

πj#ν = πj#µ (4.6)

as πj#µ is R−determinate. Moreover, the determinacy of πj#µ implies that
C[Xj ] is dense in L2(R, µ) by Lemma 4.2.5 and so that

∀ε > 0, ∀Bj ∈ B(R),∃ pj ∈ C[Xj ] s.t.
∥∥11Bj − pj

∥∥
L2(R,πj#µ)

≤ ε. (4.7)

Since∥∥11Bj − pj
∥∥
L2(R,πj#µ)

(4.6)
=

∥∥11Bj − pj
∥∥
L2(R,πj#ν)

=

(∫
R

(11Bj (y)− pj(y))2d(πj#ν)(y)

) 1
2

=

(∫
Rn

(11Bj (πj(x))− pj(πj(x)))2dν(x)

) 1
2

=
∥∥11Bj ◦ πj − pj ◦ πj

∥∥
L2(Rn,ν)

,

we can rewrite (4.7) as

∀ε > 0, ∀Bj ∈ B(R), ∃ pj ∈ C[Xj ] s.t.
∥∥11Bj ◦ πj − pj ◦ πj

∥∥
L2(Rn,ν)

≤ ε. (4.8)

Now the function (11B1 ◦ π1) · · · (11Bn ◦ πn) − (p1 ◦ π1) · · · (pn ◦ πn) on Rn can
be rewritten as

(11B1 ◦ π1) · · · (11Bn ◦ πn)− (p1 ◦ π1) · · · (pn ◦ πn) =

(11B1 ◦ π1 − p1 ◦ π1)(11B2 ◦ π2) · · · (11Bn ◦ πn) +

+ (p1 ◦ π1)(11B2 ◦ π2 − p2 ◦ π2)(11B3 ◦ π3) · · · (11Bn ◦ πn) +

+ · · ·+ (p1 ◦ π1) · · · (pn−1 ◦ πn−1)(11Bn ◦ πn − pn ◦ πn). (4.9)

and so

‖(11B1 ◦ π1) · · · (11Bn ◦ πn)− (p1 ◦ π1) · · · (pn ◦ πn)‖L1(Rn,ν)

(4.9)

≤ ‖(11B1 ◦ π1 − p1 ◦ π1)(11B2 ◦ π2) · · · (11Bn ◦ πn)‖L1(Rn,ν) + · · ·
· · · + ‖(p1 ◦ π1) · · · (pn−1 ◦ πn−1)(11Bn ◦ πn − pn ◦ πn)‖L1(Rn,ν)

Hölder
≤ ‖11B1 ◦ π1 − p1 ◦ π1‖L2(Rn,ν) ‖(11B2 ◦ π2) · · · (11Bn ◦ πn)‖L2(Rn,ν) + · · ·
· · · + ‖(p1 ◦ π1) · · · (pn−1 ◦ πn−1)‖L2(Rn,ν) ‖11Bn ◦ πn − pn ◦ πn‖L2(Rn,ν)

(4.8)

≤ Cε,
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where C > 0.
This shows that C[X1, . . . , Xn] is dense in the subset

S := {(11B1 ◦ π1) · · · (11Bn ◦ πn) : B1, . . . , Bn ∈ B(Rn)}

of L1(Rn, ν). Since span(S) is dense in L1(Rn, ν), we get that C[X1, . . . , Xn]
is dense in L1(Rn, ν) and so by Lemma 4.3.2 we obtain that ν is an extreme
point of Mµ.

Since ν was arbitrary in Mµ, we have showed that every point of Mµ is
extreme. In particular, η := 1

2(µ+ν) ∈Mµ is extreme and so η = µ or η = ν,
which imply ν = µ. Hence, µ is (Rn)−determinate.

Proof. of Theorem 4.3.1
For any j ∈ {1, . . . , n} and for any k ∈ N we have that

m
πj#µ
2k =

∫
R
y2kd(πj#µ)(y) =

∫
Rn

(πj(x))2kdµ(x)

=

∫
Rn
x(0,...,0,2k,0,...,0)dµ(x) = mµ

(0,...,0,2k,0,...,0).

Hence, the assumption that µ fulfils (4.5) gives that each πj#µ fulfils (4.1).
Therefore, Carleman’s Theorem 4.2.1 guarantees that each πj#µ is R−determinate
and so by Petersen’s Theorem 4.3.3 we obtain that µ is (Rn)−determinate.
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