Universität Konstanz
Fachbereich Mathematik und Statistik
Dr. Maria Infusino
Patrick Michalski

POSITIVE POLYNOMIALS AND MOMENT PROBLEMS-SS 2019

Recap Sheet 1

This recap sheet aims to self-assess your progress and to recap some of the definitions and concepts introduced in the previous lectures. You do not need to hand in solutions, but please try to answer as many questions as you can since this is a very good training in preparation of your final exam. If you should have any problem, please do not hesitate to attend Maria's office hours on Wednesdays 2-3 pm in room F408.

Denote by $\mathbb{R}[\underline{X}]=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ the ring of polynomials in n variables with real coefficients.

1) Recall Hilbert's 1888 Theorem about the relation of $\mathcal{P}_{n, d}$ and $\Sigma_{n, d}$. Give examples of polynomials $p \in \mathcal{P}_{n, d} \backslash \Sigma_{n, d}$ for the cases $(n, d)=(3,6)$ and $(n, d)=(4,4)$.
2) State the Stengle-Krivine Positivstellensatz and recall the structure of the proof form your real algebraic geometry script. Which principle in real algebraic geometry plays a crucial role in the proof?
3) State Hilbert's 17 th problem and solve it using the Stengle-Krivine Positivstellensatz.
4) Recall the definition of saturated preordering.
5) Let $n=1$. Give an example of a compact basic closed semi-algebraic set K and two descriptions of K such that for one the corresponding preordering is saturated while for the other is not.
6) Let $n=1$. Recall the natural description of a basic closed semi-algebraic set in \mathbb{R}. Use this to give an example of a non-compact basic closed semi-algebraic set K and two descriptions of K such that for one the corresponding preordering is saturated while for the other is not.
7) Let $n=2$. Give an example of a compact basic closed semi-algebraic set K and two descriptions of K such that for one the corresponding preordering is saturated while for the other is not.
8) Let $n=2$ and $S:=\left\{X^{3}, 1-X\right\}$. Is the preordering T_{S} saturated? If not, can you give another description of K_{S} such that the corresponding preordering is saturated?
9) What can you say about saturation if $n \geq 3$?
10) Give an example of a saturated preordering in $\mathbb{R}\left[X_{1}, X_{2}, X_{3}\right]$.
