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Abstract. This note aims to give an introduction on forms on inner product
spaces and their relation to linear operators. After briefly recalling some basic
concepts from the theory of linear operators on inner product spaces, we focus
on the space of forms on a real or complex finite-dimensional vector space V
and show that it is isomorphic to the space of linear operators on V . We
also describe the matrix representation of a form with respect to an ordered
basis of the space on which it is defined, giving special attention to the case
of forms on finite-dimensional complex inner product spaces and in particular
to Hermitian forms.
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Introduction

In this note we are going to introduce the concept of forms on an inner product
space and describe some of their main properties (c.f. [2, Section 9.2]). The notion
of inner product is a basic notion in linear algebra which allows to rigorously in-
troduce on any vector space intuitive geometrical notions such as the length of an
element and the orthogonality between two of them. We will just recall this notion
in Section 1 together with some basic examples (for more details on this structure
see e.g. [1, Chapter 3], [2, Chapter 8], [3]). In Section 1 we will also recall the
famous Riesz’ representation theorem for finite-dimensional inner product spaces
which describes a direct correspondence between inner products and linear func-
tionals. This will be particularly useful in the following because we are going to
analyze in details the relation between forms and linear operators on inner product
spaces. Indeed, after introducing the general definition of a form in Section 2, we
prove the main result of this note (see Theorem 2.4). This establishes an isomor-
phism between the space of all forms on a real or complex finite-dimensional vector
space V and the space of linear operators on V . In Section 3 we define the matrix
associated to a form on a finite-dimensional vector space w.r.t. an ordered basis of
its domain and study some properties occurring in the complex case in presence of
an inner product. In particular, we will see how the isomorphism mentioned above
allows to transfer fundamental properties of representing matrices of linear opera-
tors to forms. This same direction is pursued in Section 4, where we focus on the
class of Hermitian forms and derive a beautiful correspondence between Hermitian
forms and self-adjoint linear operators. On the one hand, we derive from a basic
property of Hermitian forms a characterization of self-adjoint linear operators on
finite-dimensional complex inner product spaces. On the other hand, thanks to a
fundamental property of linear self-adjoint operators, we give a quite direct proof
of the so-called principal axis theorem.

1. Preliminaries

Throughout this note we denote by K the field of real numbers or the field of
complex numbers and consider only vector spaces over K.

Let us start by recalling the definition of inner product and making some exam-
ples of inner product spaces.

Definition 1.1 (Inner product).
Let V be a vector space over K. A function 〈·, ·〉 : V × V → K is an inner product
on V if for all α, β, γ ∈ V and for all c ∈ K the following properties hold:
(a) 〈cα+ β, γ〉 = c〈α, γ〉+ 〈β, γ〉 (linearity in the first variable)
(b) 〈β, α〉 = 〈α, β〉 (conjugate symmetry)
(c) 〈α, α〉 ≥ 0 and 〈α, α〉 = 0⇔ α = 0 (positive definiteness)

Remark 1.2. Note that conditions (a), (b) imply the conjugate linearity of the inner
product in the second variable, i.e. for all α, β, γ ∈ V

〈α, cβ + γ〉 = c〈α, β〉+ 〈α, γ〉.

Definition 1.3 (Inner product space).
A vector space V over K together with an inner product 〈·, ·〉 is said to be an inner
product space and it is usually denoted by (V, 〈·, ·〉).



2 MARIA INFUSINO

A finite-dimensional inner product space over K is called euclidean space when
K = R and unitary space when K = C.

Examples 1.4.
Let n ∈ N.
1. Consider the function 〈·, ·〉 : Kn ×Kn → K defined by:

(1.1) 〈α, β〉 :=
n∑
i=1

xiyi, ∀α = (x1, . . . , xn)
t, β = (y1, . . . , yn)

t ∈ Kn,

where t denotes the transpose operator. It is easy to check that (Kn, 〈·, ·〉) is
an inner product space. The inner product defined in (1.1) is usually called
standard inner product.

2. Let M(n × n;K) be the space of all square matrices of order n with entries
in K and for any B = (Bjk)

n
j,k=1 we define the conjugate traspose B∗ of B

to be the matrix B∗ := (B∗jk)
n
j,k=1 with B∗jk = Bkj . Consider the function

〈·, ·〉 :M(n× n;K)×M(n× n;K)→ K defined by:

〈A,B〉 := tr(AB∗), ∀A,B ∈M(n× n;K),

where tr denotes the trace operator on M(n × n;K). Then for any A =
(Ajk)

n
j,k=1, B = (Bjk)

n
j,k=1 ∈M(n× n;K) we have

〈A,B〉 = tr(AB∗) =

n∑
j=1

(AB∗)jj =

n∑
j=1

n∑
k=1

AjkB
∗
kj =

n∑
j=1

n∑
k=1

AjkBjk.

It is now clear that the latter corresponds to the standard inner product on Kn2

through the well-known isomorphism between M(n × n;K) and Kn2

. Hence,
(M(n× n;K), 〈·, ·〉) is an inner product space. (Of course one can also directly
check that 〈·, ·〉 satisfies all the properties (a), (b), (c) of Definition 1.1 to show
that 〈·, ·〉 is an inner product onM(n× n;K)).

Exercise 1.5. Consider the space C([0, 1]) of all continuous functions from [0, 1] to
C and the function 〈·, ·〉 : C([0, 1])× C([0, 1])→ C defined by:

(1.2) 〈f, g〉 :=
∫ 1

0

f(x)g(x)dx, ∀ f, g ∈ C([0, 1]).

Show that 〈·, ·〉 is a complex inner product on C([0, 1]). 1

Before introducing the concept of form on a generic inner product space, let
us recall an important result about linear functionals on finite-dimensional inner
product spaces.

Theorem 1.6 (Riesz’ representation theorem).
Let (V, 〈·, ·〉) be a finite-dimensional inner product space over K and T : V → K
linear. Then there exists a unique β ∈ V such that T (α) = 〈α, β〉 for all α ∈ V .

Proof. (see [2, Section 8.3, Theorem 6] or [3, Skript 20, Satz 3]) �

The Riesz’ representation theorem guarantees that every linear functional on a
finite-dimensional inner product space is the inner product w.r.t. a fixed vector of
its domain. This result can be used to prove the existence of the adjoint T ∗ of
a linear operator T on a finite-dimensional inner product space V over K (see [2,
Section 8.3, Theorem 7]), i.e. T ∗ : V → V linear such that 〈Tα, β〉 = 〈α, T ∗β〉,
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∀α, β ∈ V . Recall also that a linear operator T on V is said to be self-adjoint if
T = T ∗.

As a last reminder, we recall the notion of matrix associated to a linear operator
on a finite-dimensional vector space V over K. Let us denote by L(V ;V ) the space
of all linear operators from V to V .

Definition 1.7. Let n ∈ N. Given an orderded basis B := {α1, . . . , αn} of an
n−dimensional vector space V over K and T ∈ L(V ;V ), the matrix [T ]B having
as columns the vectors Tαj for j = 1, . . . , n is called the matrix associated to T
w.r.t. B. In symbols [T ]B := (Ajk)

n
j,k=1 s.t. Tαj =

∑n
k=1Akjαk, ∀ j ∈ {1, . . . , n}.

2. Sesquilinear forms on inner product spaces

Definition 2.1. A (sesquilinear) form on a vector space V over K is a function
f : V × V → K such that: for all α, β, γ ∈ V and for all c ∈ K the following hold:
(a) f(cα+ β, γ) = cf(α, γ) + f(β, γ)
(b) f(α, cβ + γ) = cf(α, β) + f(α, γ).

Thus, a sesquilinear form f on a vector space V over K is a function on V × V
which is linear as a function of the first argument but conjugate linear as a function
of the second argument. Note that if K = R then any sequilinear form f is linear as
a function of each of its arguments, i.e. f is a bilinear form. However, in the case
K = C, a sesquilinear form f is not bilinear unless f ≡ 0 on V . In the following,
for notational convenience, we will omit the adjective sesquilinear.

Example 2.2. Any inner product on a vector space V over K is a form on V .

Exercise 2.3. For all α = (x1, x2)
t, β = (y1, y2)

t ∈ C2, let
1. f(α, β) := 1
2. g(α, β) := (x1 − y1)2 + x2y2
3. h(α, β) := (x1 + y1)

2 − (x1 − y1)2.
Establish which ones of the above functions are forms on C2, motivating your
answers. 2

Let us denote by F(V, V ;K) the space of all forms on V . This is a linear subspace
of the vector space of all scalar valued functions on V × V .

The following result summarizes the beautiful relation existing between forms
and linear operators on finite-dimensional inner product spaces.

Theorem 2.4. Let (V, 〈·, ·〉) be a finite-dimensional inner product space over K.
(a) If f ∈ F(V, V ;K), then there exists a unique linear operator Tf : V → V such

that f(α, β) = 〈Tfα, β〉, ∀ α, β ∈ V .
(b) The map φ : F(V, V ;K)→ L(V ;V ) defined by φ(f) := Tf for all f ∈ F(V, V ;K)

is an isomorphism of vector spaces.

Proof.
(a) Existence: Let us fix a vector β ∈ V . Then

fβ :V → K
α 7→ fβ(α) := f(α, β)

is a linear functional on V and so by Theorem 1.6 there exists a unique β′ ∈ V
s.t. fβ(α) = 〈α, β′〉, ∀ α ∈ V .
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Define U : V → V by U(β) := β′, ∀β ∈ V . Then we have

(2.1) f(α, β) = 〈α,U(β)〉, ∀α, β ∈ V.
Since f ∈ F(V, V ;K), we know that for all α, β, γ ∈ V and for all c ∈ K:

f(α, cβ + γ) = cf(α, β) + f(α, γ)

which, by using (2.1), can be rewritten as:

〈α,U(cβ + γ)〉 = c〈α,U(β)〉+ 〈α,U(γ)〉 = 〈α, cU(β) + U(γ)〉.
The latter implies that

U(cβ + γ) = cU(β) + U(γ)β, ∀β, γ ∈ V,∀ c ∈ K
i.e. U is linear. Since V is finite-dimensional, then there exists the adjoint U∗
of the linear operator U on V . Taking Tf := U∗, we have that for all α, β ∈ V

f(α, β)
(2.1)
= 〈α,U(β)〉 = 〈U∗(α), β〉 = 〈Tf (α), β〉,

which is the desired conclusion.
Uniqueness: Suppose there exists T ∈ L(V ;V ) s.t. T 6= Tf , f(α, β) = 〈T (α), β〉
∀α, β ∈ V . Then

0 = 〈Tf (α), β〉 − 〈T (α), β〉 = 〈Tf (α)− T (α), β〉, ∀α, β ∈ V
and so Tfα = Tα, ∀α ∈ V , which is a contradiction.

(b) To show that φ is an isomorphism between F (V, V ;K) and L(V ;V ) we need to
prove that φ is a linear bijective map between these two vector spaces. Part
(a) already shows that φ is bijective so it remains to verify the linearity of φ.
Let f, g ∈ F (V, V ;K) and c ∈ K. Then for any α, β ∈ V we have

〈Tcf+gα, β〉
(a)
= (cf + g)(α, β) = cf(α, β) + g(α, β)

(a)
= c〈Tfα, β〉+ 〈Tgα, β〉 = 〈(cTf + Tg)α, β〉

which implies that Tcf+g = cTf + Tg, i.e. φ(cf + g) = cφ(f) + φ(g).
�

3. Matrix representation of a form

In this section we focus on forms on finite-dimensional inner product spaces and
study their matrix representation. Let us start with a general definition.

Definition 3.1. Let n ∈ N. Given an ordered basis B := {α1, . . . , αn} of an
n−dimensional vector space V over K and f ∈ F (V, V ;K), the matrix [f ]B :=
(Ajk)

n
j,k=1 defined by Ajk := f(αk, αj) for all j, k = 1, . . . , n is called the matrix

associated to f w.r.t. B.

Proposition 3.2. Let V be a finite-dimensional inner product space over K and
f ∈ F (V, V ;K). If B is an orthonormal basis of V , then [f ]B ≡ [Tf ]B (here Tf is
the operator given by Theorem 2.4 and [Tf ]B is defined according to Definition 1.7).

Proof. Let B := {α1, . . . , αn} be an orthonormal basis of V . Let [f ]B := (Ajk)
n
j,k=1

and [Tf ]B := (Mjk)
n
j,k=1. Then for any j, k ∈ {1, . . . , n} we have:

Ajk
Def 3.1
= f(αk, αj)

Thm 2.4
= 〈Tfαk, αj〉

Def 1.7
= 〈

n∑
l=1

Mlkαl, αj〉 =
n∑
l=1

Mlk〈αl, αj〉 =Mjk.

�
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Note that Proposition 3.2 does not hold for a general basis as it is showed by
the following example.

Example 3.3. Consider the standard inner product on R2 and f : R2 × R2 → R
defined by f(x, y) := x1y2 + x2y1 for all x = (x1, x2)

t, y = (y1, y2)
t ∈ R2. Let

B :=

{
b1 :=

(
1
0

)
, b2 :=

(
0
1

)}
and B′ :=

{
b′1 :=

(
1
2

)
, b′2 :=

(
3
4

)}
. Then

B and B′ are both bases of R2 but only B is also orthonormal. By using Definition

3.1, we obtain [f ]B =

(
0 1
1 0

)
and [f ]B′ =

(
4 10
10 24

)
. By Theorem 2.4-(a)

applied to f we have that Tf : R2 → R2 is given by Tf
(
x1
x2

)
=

(
x2
x1

)
and,

by Definition 1.7, we can compute: [Tf ]B =
(
Tf (b1) Tf (b2)

)
=

(
0 1
1 0

)
and

[Tf ]B′ =
(
Tf (b

′
1) Tf (b

′
2)
)
=

(
1
2 − 7

2
1
2

5
2

)
. Hence, [Tf ]B ≡ [f ]B but [Tf ]B′ 6≡ [f ]B′ .

Let n ∈ N. If B := {α1, . . . , αn} is an ordered basis of an n−dimensional vector
space V over K, f ∈ F (V, V ;K) and [f ]B = (Ajk)

n
j,k=1, then for any x, y ∈ V we

have x =
∑n
s=1 xsαs, y =

∑n
r=1 yrαr and

f(x, y) =

n∑
r,s=1

yrf(αs, αr)xs = ( y1 . . . yn )

 A11 . . . A1n

... . . .
...

An1 . . . Ann


 x1

...
xn

 ,

i.e.
f(x, y) = Y ∗[f ]BX

where X := [x]B and Y := [y]B are the coordinate matrices of x and y w.r.t. B and
Y ∗ is the conjugate transpose of Y (see Example 1.4-2).

For the remainder of this note, we want to concentrate on the complex finite-
dimensional inner product spaces. In particular, in the last part of this section we
want to show how the isomorphism described in Theorem 2.4 allows to transfer a
very important property of representing matrices of linear operators to forms.

For convenience let us rewrite here the statement of the so-called orthormal
triangularizability theorem for linear operators on complex finite-dimensional inner
product spaces (see [2, Section 8.5, Theorem 21] or [3, Skript 23, Satz I]).

Theorem 3.4. Let V be a finite-dimensional inner product space over C and let
T ∈ L(V ;V ). Then there exists an orthonormal basis B for V s.t. [T ]B is an upper
triangular matrix.

Then we can easily derive the analogous result for forms:

Theorem 3.5. Let V be a finite-dimensional inner product space over C and let
f ∈ F (V, V ;C). Then there exists an orthonormal basis B for V s.t. [f ]B is an
upper triangular matrix.

Proof. By Theorem 2.4, there exists a unique linear operator Tf such that f(α, β) =
〈Tfα, β〉 for all α, β ∈ V . Therefore, by applying Theorem 3.4 to Tf , we get that
there exists an orthonormal basis B for V s.t. [Tf ]B is an upper triangular matrix.
But Proposition 3.2 guarantees that [f ]B ≡ [Tf ]B, which completes the proof. �
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4. Hermitian forms

In this section we continue to study forms on complex finite-dimensional inner
product spaces and in particular we focus on a special class of those, namely the
Hermitian forms.

Definition 4.1 (Hermitian form). A form f on a complex vector space V is called
Hermitian if f(α, β) = f(β, α) for all α, β ∈ V .

The following is a well-known characterization of Hermitian forms.

Theorem 4.2. Let V be a complex vector space and f ∈ F (V, V ;C). Then f is
Hermitian if and only if f(α, α) ∈ R for all α ∈ V .

Proof. Suppose that f be an Hermitian form on V . Then by definition f(α, α) =
f(α, α) and so f(α, α) ∈ R.

Conversely, assume that f(α, α) ∈ R for all α ∈ V . Let α, β ∈ V . Then:

f(α+ β, α+ β)︸ ︷︷ ︸
∈R

= f(α, α)︸ ︷︷ ︸
∈R

+f(α, β) + f(β, α) + f(β, β)︸ ︷︷ ︸
∈R

and so f(α, β) + f(β, α) ∈ R i.e.

(4.1) f(α, β) + f(β, α) = f(α, β) + f(β, α).

We also have that

f(α+ iβ, α+ iβ)︸ ︷︷ ︸
∈R

= f(α, α)︸ ︷︷ ︸
∈R

−if(α, β) + if(β, α) + f(β, β)︸ ︷︷ ︸
∈R

and so if(β, α)− if(α, β) ∈ R i.e.

(4.2) − if(α, β) + if(β, α) = if(α, β)− if(β, α).

Multiplying (4.2) by i and summing it side by side to (4.1) we get f(α, β) = f(β, α),
i.e. f is Hermitian. �

Thanks to Theorem 2.4, we get an interesting connection between Hermitian
forms and self-adjoint operators on finite-dimensional inner product spaces over C.

Proposition 4.3. Let (V, 〈·, ·〉) be a complex finite-dimensional inner product space
and f ∈ F (V, V ;C). Then f is Hermitian if and only if Tf is self-adjoint (here Tf
is the one given by Theorem 2.4).

Proof. By Theorem 2.4, we know that f(α, β) = 〈Tfα, β〉 for all α, β ∈ V and so

f(β, α) = 〈Tfβ, α〉 = 〈α, Tfβ〉 = 〈T ∗f α, β〉.
Hence, we have that f is Hermitian if and only if Tf = T ∗f . �

Combining the previous two results, we directly obtain the following charac-
terization of self-adjoint operators on a complex finite-dimensional inner product
space.

Corollary 4.4. Let (V, 〈·, ·〉) be a complex finite-dimensional inner product space
and T ∈ L(V ;V ). Then T is self-adjoint if and only if 〈Tα, α〉 ∈ R, ∀α ∈ V .

Example 4.5. The form f defined in Example 1.4-2 for K = C is Hermitian.
Indeed, ∀A ∈ M(n × n,C), f(A,A) =

∑n
j,k=1A

∗
jkAkj =

∑n
j,k=1AkjAkj ∈ R and

so f is Hermitian by Theorem 4.2.
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In the end, let us point out some properties of the matrix associated to an
Hermitian form on a finite-dimensional vector space. First of all, if B is an ordered
basis of a finite-dimensional complex vector space V and f ∈ F(V, V ;C) then f
is Hermitian if and only if A := [f ]B is Hermitian. Indeed, we have seen in the
previous section that for any x, y ∈ V we have f(x, y) = Y ∗AX where X = [x]B

and Y = [y]B and so f(y, x) = X∗AY = XtAY = (XtAY )t = Y
t
A
t
X = Y ∗A∗X.

Hence, f is Hermitian if and only if A = A∗, i.e. [f ]B is Hermitian.
A nice property of self-adjoint operators which reflects in the theory of repre-

senting matrix of Hermitian forms is the following one.

Theorem 4.6. Let V be a finite-dimensional complex vector space and T ∈ L(V ;V )
self-adjoint. Then there exists an orthonormal basis B for V consisting of eigen-
vectors for T .

Proof. (see [2, Sec 8.5, Theorem 18] or [3, Skript 23, Kor 2]) �

This provides the following result for Hermitian forms which is often known as
Principle Axis Theorem.

Theorem 4.7. Let f be an Hermitian form on a finite-dimensional complex inner
product space V . Then there exists an orthonormal basis B for V such that [f ]B is
a diagonal matrix with real entries.

Proof. Let n ∈ N be the dimension of V and 〈·, ·〉 the inner product on V . By
Theorem 2.4, there exists a unique linear operator Tf on V such that f(α, β) =
〈Tfα, β〉 for all α, β ∈ V . Since f is Hermitian, by Proposition 4.3, we have that
Tf is self-adjoint. Hence, by Theorem 4.6 there exists an orthonormal basis B :=
{α1, . . . , αn} for V consisting of eigenvectors for Tf , i.e. Tfαj = cjαj for j =
1, . . . , n with cj ∈ C. Now for any j, k ∈ {1, . . . , n} we have

f(αk, αj) = 〈Tfαk, αj〉 = 〈ckαk, αj〉 = ckδkj ,

where δjk is the Korenecker delta. Hence, [f ]B = diag(c1, . . . , cn) and for any
j ∈ {1, . . . , n} we get cj = f(αj , αj), which is a real number by Theorem 4.2 as f
is Hermitian. �

Notes

1. Solution to Ex 1.5: For any f, g, h ∈ C([0, 1]) and c ∈ C we have:

(a) 〈cf + g, h〉 =
∫ 1
0 (cf(x) + g(x))h(x)dx = c

∫ 1
0 f(x)h(x)dt+

∫ 1
0 g(x)h(x)dx = c〈f, h〉+ 〈g, h〉

(b) 〈g, f〉 =
∫ 1
0 g(x)f(x)dx =

∫ 1
0 f(x)g(x)dx =

∫ 1
0 f(x)g(x)dx = 〈f, g〉

(c) 〈f, f〉 =
∫ 1
0 f(x)f(x)dx ≥ 0 since f(x)f(x) ≥ 0 for all x ∈ [0, 1] and 〈f, f〉 =

∫ 1
0 f(x)f(x)dx =

0 iff f ≡ 0 on [0, 1].

Hence, 〈·, ·〉 defined in (1.2) is a complex inner product on C([0, 1]).

2. Solution to Ex 2.3: h is the only sesequilinear form on C2 among the given ones. In fact, it is
easy to verify that f and g are both not linear in the first argument, while one can rewrite h as
h(α, β) = 4x1y1 for all α = (x1, x2)t, β = (y1, y2)t ∈ C2 which clearly fulfills all the properties in
Definition 2.1.
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