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Abstract

This note shall present an application of the spectral theorem to diagonalisable nor-
mal operators on finite-dimensional inner product spaces. After recalling the spectral
resolution of such an operator T, we will show how a function f on its spectrum can
be expanded to a new diagonalisable normal operator f(7"). We will describe some
relations between f(T') and T regarding their spectra and matrix representations and
illustrate these by means of an example.
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1 Introduction

The Spectral Theorem provides a canonical decomposition of diagonalisable normal oper-
ators into a linear combination of projections onto its eigenspaces. We will exploit this
application of the Spectral Theorem to diagonalisable normal operators mainly following
[1, Section9.5]. In Section?2 we will briefly recall some preliminary definitions. Section 3
contains the Spectral Theorem both for self-adjoint and normal operators and further re-
lated statements. In Section4 we will focus on diagonalisable normal operators. Given a
scalar-valued function f on the spectrum of a diagonalisable normal operator T, we will
explain how this can be expanded to an operator f(T). We will prove that f(T) is also
a diagonalisable normal operator and some matrix representation results. Finally, we will
illustrate these results by an example in C2.

2 Preliminaries

In this section we recall some basic terms and results which we need for the study of dia-
gonalisable normal operators. These can be found in [1, Section §].

Definition 2.1. Let V be a vector space over K, where K =R or K = C. An inner product
(.].) is a function from V x V to K satisfying for all u,v,w € V and X € K:

1. (u+v|w)=(u|w)+ (v|w),

2. (W |w)=Av|w),
3. (v | w) = (w | v), where the bar denotes complex conjugation,
4. (v|v)>0ifv #0.

If K = R, these properties describe a positive definite symmetric bilinear form; if K = C,
they describe a positive definite hermitian sesquilinear form.
The vector space V together with an inner product is called an inner product space.

We denote by L(V,V, K) the set of all linear operators on V, i.e. all endomorphisms on
V.

Definition 2.2. Let V be an inner product space over K = Ror K = C. Let T € L(V,V, K).
Suppose that there exists T* € L(V,V, K) such that for all v,w € V,

(Tv | w) = (v | T w).
Then T is called the adjoint of T.

Note that on finite-dimensional inner product spaces the adjoint of a linear operator
always exists and is unique (see [1, Chapter 8, Theorem 7]).

Definition 2.3. Let V be a finite-dimensional inner product space over K = R or K = C.
Let T € L(V,V,K). Then T is called self-adjoint if T = T*, and T is called normal if it
commutes with its adjoint, i.e. T*T = TT™.

Throughout this script, if not further specified, V' is a finite-dimensional inner product
space over either K =R or K = C.



3 Spectral Resolution

In order to introduce the notion of the spectral resolution of a linear operator with certain
properties, we need to state the Spectral Theorem. This is a consequence of the following
two theorems on self-adjoint and normal operators.

Theorem 3.1. Let T € L(V,V,K) be self-adjoint. Then there exists an orthonormal basis
for V which consists of eigenvectors of T.

Proof. See [1, Chap. 8, Theorem 18]. O

Theorem 3.2. Let T € L(V,V,C) be normal. Then there exists an orthonormal basis for
V' which consists of eigenvectors of T'.

Proof. See [1, Chap. 8, Theorem 22] or [2, §22, Korollar 2]. O

Recall that for an operator T on V with eigenvalue A the eigenspace of T' corresponding
to A is given by ker(T — AI). Moreover, recall that for some orthogonal decomposition
V = W @ W+ the orthogonal projection P : V — W of V onto W is given by P(v) = w
where v = w + w' with w € W, w' € W,

Theorem 3.3 (Spectral Theorem). Let T' € L(V,V, K) such that either K = R and T is
self-adjoint or K = C and T is normal. Let \1,...,\; be the distinct eigenvalues of T'. Let
W; be the eigenspace corresponding to A;. Let P; be the orthogonal projection of V' onto
W;. Then:

1. W; is orthogonal to W; if i # j,
2.V=W@...0W,
3. T =XMNP+...+ Py
Proof. See [1, Section 9.5, Theorem 9]. O

Definition 3.4. Let T' € L(V,V, K) satisfying the same conditions as in Theorem 3.3. The
decomposition of T given in Theorem 3.3 — 3. is called the spectral resolution of T.

4 Functions of Diagonalisable Normal Operators

In order to establish the existence of a spectral resolution of a given T € L(V,V,K), a
sufficient condition is the existence of an orthonormal basis of V' consisting of eigenvectors
of T. If T is diagonalisable and normal (not depending on whether K =R or K = C), then
such an orthonormal basis exists. This is a direct consequence of the version of the Spectral
Theorem stated in [2, §21]. Note that this also means that the conclusions of Theorem 3.2
and Theorem 3.3 hold in the case that K = R and T is diagonalisable and normal. We will
henceforth focus on diagonalisable normal operators on finite-dimensional inner product
spaces.

Recall that the spectrum of an operator T is defined as the set of its eigenvalues. We
will denote the spectrum of T by S(T).

Definition 4.1. Let T € L(V,V, K) be normal and diagonalisable. Let
T=MP +...4+ X\ Ps

be its spectral resolution. Let f: S(T) — K be a scalar-valued function on the spectrum of
T. The linear operator f(T') € L(V,V, K) is defined by

F(T) = f)Pr+ ...+ f(Ar)Pr. (1)



Definition 4.2. Let V and V' be inner product spaces over the same field K. A linear
transformation U € L(V, V', K) is called a unitary transformation if it is an isomorphism
and it preserves the inner product, i.e. for all v,w € V,

(v|w)=(Uv|Uw).

Theorem 4.3. Let T € L(V,V,K) be normal and diagonalisable, let f : S(T) — K and
f(T) be defined as in (1). Then:

1. f(T) is normal and diagonalisable;
2. 5(f(T)) = £(S(T));
3. if U € L(V,V' K) is some unitary transformation and T' = UTU ', then S(T) =
S(T") and
(I =Uf(TmU
Proof. 1. Let v,w € V. Note that any orthogonal projection P; is self-adjoint, as
(Pjv | w) = (Pjv | Pjw) = (v | Pjw).

Hence,

k k
(f(T)v | w) = Zf()‘j)(PjU |w) = v Zf()‘j)ij -
Hence, f(T)* = Zkzl f(\j)P;. Note that

PP; = ; lfz#J
P, ifi=j.

Hence, f(T) and f(T)* commute, i.e. f(T) is normal.

If v is an eigenvector of T with eigenvalue A, then f(T)v = f(A\)v. Hence, the basis for
V' consisting of eigenvectors of T already consists of eigenvectors of f(7'). This means that
f(T) is diagonalisable.

2. From the last step in the proof of 1., we obtain f(S(T")) C S(f(T)). Conversely, let
v # 0 be an eigenvector of f(T) with eigenvalue p, i.e.

f(T)v = po.
Then
E
f(Tw = Z,tuv
j=1
and .
f(T=f(T)> Pu=>_ fA)Pu.
j=1 j=1
Hence,
k 2 E
0= > _(fO) = wPyo|l =D If) = ul?|Po]*.
Jj=1 j=1

Since v # 0, there must be some index ¢ such that P,v # 0 and thus f(\;) = p. Hence,
S(f(T)) € f(S(T)).



3. Since T' = UTU ! , the equation Twv = v holds if and only if T"Uv = AUv. Hence,
S(T") = S(T) and U maps each eigenspace of T' to the corresponding eigenspace of T”. Let
T = Zle Aj P} be the spectral resolution of T". Then P} = UP; U~'. Hence,

k
FT) = fOOURU =U Zf(/\j)Pj Ut=uf(mut.

j=1
O

Remark 4.4. From the previous theorem we can also construct the spectral resolution of
f(T). Suppose that f(S(T)) = {p1,...,ue}. Note that £ < k. For each 1 < m < £ let Jp,
be the set of indices j such that f()\;) = pm, and set

1€Jm

Then the spectral resolution of f(T) is given by

¢
f(T) = Z ,U'QO~
m=1

In the following corollary we slightly change the notation, as we are going to talk about
not necessarily distinct eigenvalues of T. We denote these by ;.

Corollary 4.5. Let T € L(V,V,K) be normal and diagonalisable and f : S(T) — K. Let
B ={v1,...,0,} be a basis for V such that T is represented in B by a diagonal matriz D
with diagonal entries p;, where ; is the eigenvalue of T corresponding to vj. Then f(T) is
represented in B by the diagonal matriz f(D) with entries f(u;). If B' = {wy,...,w,} is
another basis for V and R is the base change matriz from B to B', i.e. wj = > | Ri;v;,
then R~Yf(D)R is the matriz of f(T) represented in B'.

Proof. The first part, that f(7T') is represented in B by the diagonal matrix f(D) with entries
f (), directly follows from Theorem 4.3.
For each index i denote by j; the unique index such that v; € P;, (V) and p; = Aj,. Then

F(Tyw;, =Y Py f(T)o;
i=1

n
= E wiPij,v;
i=1

O

Example 4.6. Let C? be equipped with its standard inner product. We consider the

operator
T2 52 (4 (T
’ "\ b ia )



Its representation in the canonical basis & is

[Tle = (? 01) :

We immediately see that T is self-adjoint and thus normal. Let

s={0)- ()

With respect to B, the linear operator T is represented by the diagonal matrix

[T]p = <_01 (1)> :

The projections onto the eigenspaces are given by

A5 2030
(-5 20)-3)

We obtain the spectral resolution T'= —P; + P.
Now let f:{—1,1} — C be defined by f(—1) =1 and f(1) =i. Then f(T) = P, +iPx.
This linear operator is represented with respect to €& by

e (11

One can by direct calculation verify that f(7) is normal. Note that it is not self-adjoint!
Finally, we obtain the diagonalisation of f(T') by respresenting it with respect to B:

o= (5 )
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