Spectral Resolution and Functions of Diagonalisable Normal Operators

Lothar Sebastian Krapp
Proseminar on Linear Algebra WS2016/2017
University of Konstanz

Abstract

This note shall present an application of the spectral theorem to diagonalisable normal operators on finite-dimensional inner product spaces. After recalling the spectral resolution of such an operator T, we will show how a function f on its spectrum can be expanded to a new diagonalisable normal operator $f(T)$. We will describe some relations between $f(T)$ and T regarding their spectra and matrix representations and illustrate these by means of an example.

Contents

1 Introduction 1
2 Preliminaries 1
3 Spectral Resolution 2
4 Functions of Diagonalisable Normal Operators 2

1 Introduction

The Spectral Theorem provides a canonical decomposition of diagonalisable normal operators into a linear combination of projections onto its eigenspaces. We will exploit this application of the Spectral Theorem to diagonalisable normal operators mainly following [1, Section 9.5]. In Section 2 we will briefly recall some preliminary definitions. Section 3 contains the Spectral Theorem both for self-adjoint and normal operators and further related statements. In Section 4 we will focus on diagonalisable normal operators. Given a scalar-valued function f on the spectrum of a diagonalisable normal operator T, we will explain how this can be expanded to an operator $f(T)$. We will prove that $f(T)$ is also a diagonalisable normal operator and some matrix representation results. Finally, we will illustrate these results by an example in \mathbb{C}^{2}.

2 Preliminaries

In this section we recall some basic terms and results which we need for the study of diagonalisable normal operators. These can be found in [1, Section 8].

Definition 2.1. Let V be a vector space over K, where $K=\mathbb{R}$ or $K=\mathbb{C}$. An inner product (. |.) is a function from $V \times V$ to K satisfying for all $u, v, w \in V$ and $\lambda \in K$:

1. $(u+v \mid w)=(u \mid w)+(v \mid w)$,
2. $(\lambda v \mid w)=\lambda(v \mid w)$,
3. $(v \mid w)=\overline{(w \mid v)}$, where the bar denotes complex conjugation,
4. $(v \mid v)>0$ if $v \neq 0$.

If $K=\mathbb{R}$, these properties describe a positive definite symmetric bilinear form; if $K=\mathbb{C}$, they describe a positive definite hermitian sesquilinear form.

The vector space V together with an inner product is called an inner product space.
We denote by $\mathcal{L}(V, V, K)$ the set of all linear operators on V, i.e. all endomorphisms on V.

Definition 2.2. Let V be an inner product space over $K=\mathbb{R}$ or $K=\mathbb{C}$. Let $T \in \mathcal{L}(V, V, K)$. Suppose that there exists $T^{*} \in \mathcal{L}(V, V, K)$ such that for all $v, w \in V$,

$$
(T v \mid w)=\left(v \mid T^{*} w\right)
$$

Then T^{*} is called the adjoint of T.
Note that on finite-dimensional inner product spaces the adjoint of a linear operator always exists and is unique (see [1, Chapter 8, Theorem 7]).

Definition 2.3. Let V be a finite-dimensional inner product space over $K=\mathbb{R}$ or $K=\mathbb{C}$. Let $T \in \mathcal{L}(V, V, K)$. Then T is called self-adjoint if $T=T^{*}$, and T is called normal if it commutes with its adjoint, i.e. $T^{*} T=T T^{*}$.

Throughout this script, if not further specified, V is a finite-dimensional inner product space over either $K=\mathbb{R}$ or $K=\mathbb{C}$.

3 Spectral Resolution

In order to introduce the notion of the spectral resolution of a linear operator with certain properties, we need to state the Spectral Theorem. This is a consequence of the following two theorems on self-adjoint and normal operators.

Theorem 3.1. Let $T \in \mathcal{L}(V, V, K)$ be self-adjoint. Then there exists an orthonormal basis for V which consists of eigenvectors of T.

Proof. See [1, Chap. 8, Theorem 18].
Theorem 3.2. Let $T \in \mathcal{L}(V, V, \mathbb{C})$ be normal. Then there exists an orthonormal basis for V which consists of eigenvectors of T.

Proof. See [1, Chap. 8, Theorem 22] or [2, § 22, Korollar 2].
Recall that for an operator T on V with eigenvalue λ the eigenspace of T corresponding to λ is given by $\operatorname{ker}(T-\lambda I)$. Moreover, recall that for some orthogonal decomposition $V=W \oplus W^{\perp}$ the orthogonal projection $P: V \rightarrow W$ of V onto W is given by $P(v)=w$ where $v=w+w^{\prime}$ with $w \in W, w^{\prime} \in W^{\perp}$.

Theorem 3.3 (Spectral Theorem). Let $T \in \mathcal{L}(V, V, K)$ such that either $K=\mathbb{R}$ and T is self-adjoint or $K=\mathbb{C}$ and T is normal. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. Let W_{j} be the eigenspace corresponding to λ_{j}. Let P_{j} be the orthogonal projection of V onto W_{j}. Then:

1. W_{i} is orthogonal to W_{j} if $i \neq j$,
2. $V=W_{1} \oplus \ldots \oplus W_{k}$,
3. $T=\lambda_{1} P_{1}+\ldots+\lambda_{k} P_{k}$.

Proof. See [1, Section 9.5, Theorem 9].
Definition 3.4. Let $T \in \mathcal{L}(V, V, K)$ satisfying the same conditions as in Theorem 3.3. The decomposition of T given in Theorem 3.3-3. is called the spectral resolution of T.

4 Functions of Diagonalisable Normal Operators

In order to establish the existence of a spectral resolution of a given $T \in \mathcal{L}(V, V, K)$, a sufficient condition is the existence of an orthonormal basis of V consisting of eigenvectors of T. If T is diagonalisable and normal (not depending on whether $K=\mathbb{R}$ or $K=\mathbb{C}$), then such an orthonormal basis exists. This is a direct consequence of the version of the Spectral Theorem stated in $[2, \S 21]$. Note that this also means that the conclusions of Theorem 3.2 and Theorem 3.3 hold in the case that $K=\mathbb{R}$ and T is diagonalisable and normal. We will henceforth focus on diagonalisable normal operators on finite-dimensional inner product spaces.

Recall that the spectrum of an operator T is defined as the set of its eigenvalues. We will denote the spectrum of T by $S(T)$.

Definition 4.1. Let $T \in \mathcal{L}(V, V, K)$ be normal and diagonalisable. Let

$$
T=\lambda_{1} P_{1}+\ldots+\lambda_{k} P_{k}
$$

be its spectral resolution. Let $f: S(T) \rightarrow K$ be a scalar-valued function on the spectrum of T. The linear operator $f(T) \in \mathcal{L}(V, V, K)$ is defined by

$$
\begin{equation*}
f(T)=f\left(\lambda_{1}\right) P_{1}+\ldots+f\left(\lambda_{k}\right) P_{k} . \tag{1}
\end{equation*}
$$

Definition 4.2. Let V and V^{\prime} be inner product spaces over the same field K. A linear transformation $U \in \mathcal{L}\left(V, V^{\prime}, K\right)$ is called a unitary transformation if it is an isomorphism and it preserves the inner product, i.e. for all $v, w \in V$,

$$
(v \mid w)=(U v \mid U w)
$$

Theorem 4.3. Let $T \in \mathcal{L}(V, V, K)$ be normal and diagonalisable, let $f: S(T) \rightarrow K$ and $f(T)$ be defined as in (1). Then:

1. $f(T)$ is normal and diagonalisable;
2. $S(f(T))=f(S(T))$;
3. if $U \in \mathcal{L}\left(V, V^{\prime}, K\right)$ is some unitary transformation and $T^{\prime}=U T U^{-1}$, then $S(T)=$ $S\left(T^{\prime}\right)$ and

$$
f\left(T^{\prime}\right)=U f(T) U^{-1}
$$

Proof. 1. Let $v, w \in V$. Note that any orthogonal projection P_{j} is self-adjoint, as

$$
\left(P_{j} v \mid w\right)=\left(P_{j} v \mid P_{j} w\right)=\left(v \mid P_{j} w\right)
$$

Hence,

$$
(f(T) v \mid w)=\sum_{j=1}^{k} f\left(\lambda_{j}\right)\left(P_{j} v \mid w\right)=\left(v \mid \sum_{j=1}^{k} \overline{f\left(\lambda_{j}\right)} P_{j} w\right)
$$

Hence, $f(T)^{*}=\sum_{j=1}^{k} \overline{f\left(\lambda_{j}\right)} P_{j}$. Note that

$$
P_{i} P_{j}= \begin{cases}0 & \text { if } i \neq j \\ P_{i} & \text { if } i=j\end{cases}
$$

Hence, $f(T)$ and $f(T)^{*}$ commute, i. e. $f(T)$ is normal.
If v is an eigenvector of T with eigenvalue λ, then $f(T) v=f(\lambda) v$. Hence, the basis for V consisting of eigenvectors of T already consists of eigenvectors of $f(T)$. This means that $f(T)$ is diagonalisable.
2. From the last step in the proof of 1., we obtain $f(S(T)) \subseteq S(f(T))$. Conversely, let $v \neq 0$ be an eigenvector of $f(T)$ with eigenvalue μ, i. e.

$$
f(T) v=\mu v
$$

Then

$$
f(T) v=\sum_{j=1}^{k} \mu P_{j} v
$$

and

$$
f(T) v=f(T) \sum_{j=1}^{k} P_{j} v=\sum_{j=1}^{k} f\left(\lambda_{j}\right) P_{j} v
$$

Hence,

$$
0=\left\|\sum_{j=1}^{k}\left(f\left(\lambda_{j}\right)-\mu\right) P_{j} v\right\|^{2}=\sum_{j=1}^{k}\left|f\left(\lambda_{j}\right)-\mu\right|^{2}\left\|P_{j} v\right\|^{2} .
$$

Since $v \neq 0$, there must be some index i such that $P_{i} v \neq 0$ and thus $f\left(\lambda_{i}\right)=\mu$. Hence, $S(f(T)) \subseteq f(S(T))$.
3. Since $T^{\prime}=U T U^{-1}$, the equation $T v=\lambda v$ holds if and only if $T^{\prime} U v=\lambda U v$. Hence, $S\left(T^{\prime}\right)=S(T)$ and U maps each eigenspace of T to the corresponding eigenspace of T^{\prime}. Let $T^{\prime}=\sum_{j=1}^{k} \lambda_{j} P_{j}^{\prime}$ be the spectral resolution of T^{\prime}. Then $P_{j}^{\prime}=U P_{j} U^{-1}$. Hence,

$$
f\left(T^{\prime}\right)=\sum_{j=1}^{k} f\left(\lambda_{j}\right) U P_{j} U^{-1}=U\left(\sum_{j=1}^{k} f\left(\lambda_{j}\right) P_{j}\right) U^{-1}=U f(T) U^{-1}
$$

Remark 4.4. From the previous theorem we can also construct the spectral resolution of $f(T)$. Suppose that $f(S(T))=\left\{\mu_{1}, \ldots, \mu_{\ell}\right\}$. Note that $\ell \leq k$. For each $1 \leq m \leq \ell$ let J_{m} be the set of indices j such that $f\left(\lambda_{j}\right)=\mu_{m}$, and set

$$
Q_{m}:=\sum_{i \in J_{m}} P_{i} .
$$

Then the spectral resolution of $f(T)$ is given by

$$
f(T)=\sum_{m=1}^{\ell} \mu_{m} Q_{m}
$$

In the following corollary we slightly change the notation, as we are going to talk about not necessarily distinct eigenvalues of T. We denote these by μ_{i}.

Corollary 4.5. Let $T \in \mathcal{L}(V, V, K)$ be normal and diagonalisable and $f: S(T) \rightarrow K$. Let $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V such that T is represented in \mathcal{B} by a diagonal matrix D with diagonal entries μ_{i}, where μ_{i} is the eigenvalue of T corresponding to v_{j}. Then $f(T)$ is represented in \mathcal{B} by the diagonal matrix $f(D)$ with entries $f\left(\mu_{i}\right)$. If $\mathcal{B}^{\prime}=\left\{w_{1}, \ldots, w_{n}\right\}$ is another basis for V and R is the base change matrix from \mathcal{B} to \mathcal{B}^{\prime}, i. e. $w_{j}=\sum_{i=1}^{n} R_{i j} v_{i}$, then $R^{-1} f(D) R$ is the matrix of $f(T)$ represented in \mathcal{B}^{\prime}.

Proof. The first part, that $f(T)$ is represented in \mathcal{B} by the diagonal matrix $f(D)$ with entries $f\left(\mu_{j}\right)$, directly follows from Theorem 4.3.

For each index i denote by j_{i} the unique index such that $v_{i} \in P_{j_{i}}(V)$ and $\mu_{i}=\lambda_{j_{i}}$. Then

$$
\begin{aligned}
f(T) w_{j_{i}} & =\sum_{i=1}^{n} P_{i j_{i}} f(T) v_{i} \\
& =\sum_{i=1}^{n} \mu_{i} P_{i j_{i}} v_{i} \\
& =\sum_{i=1}^{n}(D P)_{i j_{i}} v_{i} \\
& =\sum_{i=1}^{n}(D P)_{i j_{i}} \sum_{m=1}^{n} P_{m i}^{-1} w_{m} \\
& =\sum_{m=1}^{n}\left(P^{-1} D P\right)_{m j_{i}} w_{m} .
\end{aligned}
$$

Example 4.6. Let \mathbb{C}^{2} be equipped with its standard inner product. We consider the operator

$$
T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2},\binom{a}{b} \mapsto\binom{-\mathrm{i} b}{\mathrm{i} a}
$$

Its representation in the canonical basis \mathcal{E} is

$$
[T]_{\mathcal{E}}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right)
$$

We immediately see that T is self-adjoint and thus normal. Let

$$
\mathcal{B}=\left\{\binom{\mathrm{i}}{1},\binom{-\mathrm{i}}{1}\right\} .
$$

With respect to \mathcal{B}, the linear operator T is represented by the diagonal matrix

$$
[T]_{\mathcal{B}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

The projections onto the eigenspaces are given by

$$
\begin{aligned}
& P_{1}\binom{1}{0}=-\frac{1}{2} \mathrm{i}\binom{\mathrm{i}}{1}, P_{1}\binom{0}{1}=\frac{1}{2}\binom{\mathrm{i}}{1} \\
& P_{2}\binom{1}{0}=\frac{1}{2} \mathrm{i}\binom{-\mathrm{i}}{1}, P_{2}\binom{0}{1}=\frac{1}{2}\binom{-\mathrm{i}}{1} .
\end{aligned}
$$

We obtain the spectral resolution $T=-P_{1}+P_{2}$.
Now let $f:\{-1,1\} \rightarrow \mathbb{C}$ be defined by $f(-1)=1$ and $f(1)=\mathrm{i}$. Then $f(T)=P_{1}+\mathrm{i} P_{2}$. This linear operator is represented with respect to \mathcal{E} by

$$
[f(T)]_{\mathcal{E}}=\frac{1}{2}\left(\begin{array}{cc}
1+\mathrm{i} & 1+\mathrm{i} \\
-1-\mathrm{i} & 1+\mathrm{i}
\end{array}\right) .
$$

One can by direct calculation verify that $f(T)$ is normal. Note that it is not self-adjoint! Finally, we obtain the diagonalisation of $f(T)$ by respresenting it with respect to \mathcal{B} :

$$
[f(T)]_{\mathcal{B}}=\left(\begin{array}{ll}
1 & 0 \\
0 & \mathrm{i}
\end{array}\right)
$$

References

[1] K. Hoffmann and R. Kunze, Linear algebra, second edition, Prentice-Hall, Englewood Cliffs, N. J., 1971.
[2] S. Kuhlmann, Lineare Algebra II, Gesamtskript zur Vorlesung, Universität Konstanz, Sommersemester 2016.

