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Abstract

This note shall present an application of the spectral theorem to diagonalisable nor-
mal operators on finite-dimensional inner product spaces. After recalling the spectral
resolution of such an operator T , we will show how a function f on its spectrum can
be expanded to a new diagonalisable normal operator f(T ). We will describe some
relations between f(T ) and T regarding their spectra and matrix representations and
illustrate these by means of an example.
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1 Introduction

The Spectral Theorem provides a canonical decomposition of diagonalisable normal oper-
ators into a linear combination of projections onto its eigenspaces. We will exploit this
application of the Spectral Theorem to diagonalisable normal operators mainly following
[1, Section 9.5]. In Section 2 we will briefly recall some preliminary definitions. Section 3
contains the Spectral Theorem both for self-adjoint and normal operators and further re-
lated statements. In Section 4 we will focus on diagonalisable normal operators. Given a
scalar-valued function f on the spectrum of a diagonalisable normal operator T , we will
explain how this can be expanded to an operator f(T ). We will prove that f(T ) is also
a diagonalisable normal operator and some matrix representation results. Finally, we will
illustrate these results by an example in C2.

2 Preliminaries

In this section we recall some basic terms and results which we need for the study of dia-
gonalisable normal operators. These can be found in [1, Section 8].

Definition 2.1. Let V be a vector space over K, where K = R or K = C. An inner product
(. | .) is a function from V × V to K satisfying for all u, v, w ∈ V and λ ∈ K:

1. (u+ v | w) = (u | w) + (v | w),

2. (λv | w) = λ(v | w),

3. (v | w) = (w | v), where the bar denotes complex conjugation,

4. (v | v) > 0 if v 6= 0.

If K = R, these properties describe a positive definite symmetric bilinear form; if K = C,
they describe a positive definite hermitian sesquilinear form.

The vector space V together with an inner product is called an inner product space.

We denote by L(V, V,K) the set of all linear operators on V , i. e. all endomorphisms on
V .

Definition 2.2. Let V be an inner product space overK = R orK = C. Let T ∈ L(V, V,K).
Suppose that there exists T ∗ ∈ L(V, V,K) such that for all v, w ∈ V ,

(Tv | w) = (v | T ∗w).

Then T ∗ is called the adjoint of T .

Note that on finite-dimensional inner product spaces the adjoint of a linear operator
always exists and is unique (see [1, Chapter 8, Theorem 7]).

Definition 2.3. Let V be a finite-dimensional inner product space over K = R or K = C.
Let T ∈ L(V, V,K). Then T is called self-adjoint if T = T ∗, and T is called normal if it
commutes with its adjoint, i. e. T ∗T = TT ∗.

Throughout this script, if not further specified, V is a finite-dimensional inner product
space over either K = R or K = C.
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3 Spectral Resolution

In order to introduce the notion of the spectral resolution of a linear operator with certain
properties, we need to state the Spectral Theorem. This is a consequence of the following
two theorems on self-adjoint and normal operators.

Theorem 3.1. Let T ∈ L(V, V,K) be self-adjoint. Then there exists an orthonormal basis
for V which consists of eigenvectors of T .

Proof. See [1, Chap. 8, Theorem 18].

Theorem 3.2. Let T ∈ L(V, V,C) be normal. Then there exists an orthonormal basis for
V which consists of eigenvectors of T .

Proof. See [1, Chap. 8, Theorem 22] or [2, § 22, Korollar 2].

Recall that for an operator T on V with eigenvalue λ the eigenspace of T corresponding
to λ is given by ker(T − λI). Moreover, recall that for some orthogonal decomposition
V = W ⊕W⊥ the orthogonal projection P : V → W of V onto W is given by P (v) = w
where v = w + w′ with w ∈W , w′ ∈W⊥.

Theorem 3.3 (Spectral Theorem). Let T ∈ L(V, V,K) such that either K = R and T is
self-adjoint or K = C and T is normal. Let λ1, . . . , λk be the distinct eigenvalues of T . Let
Wj be the eigenspace corresponding to λj. Let Pj be the orthogonal projection of V onto
Wj. Then:

1. Wi is orthogonal to Wj if i 6= j,

2. V = W1 ⊕ . . .⊕Wk,

3. T = λ1P1 + . . .+ λkPk.

Proof. See [1, Section 9.5, Theorem 9].

Definition 3.4. Let T ∈ L(V, V,K) satisfying the same conditions as in Theorem 3.3. The
decomposition of T given in Theorem 3.3 – 3. is called the spectral resolution of T .

4 Functions of Diagonalisable Normal Operators

In order to establish the existence of a spectral resolution of a given T ∈ L(V, V,K), a
sufficient condition is the existence of an orthonormal basis of V consisting of eigenvectors
of T . If T is diagonalisable and normal (not depending on whether K = R or K = C), then
such an orthonormal basis exists. This is a direct consequence of the version of the Spectral
Theorem stated in [2, §21]. Note that this also means that the conclusions of Theorem 3.2
and Theorem 3.3 hold in the case that K = R and T is diagonalisable and normal. We will
henceforth focus on diagonalisable normal operators on finite-dimensional inner product
spaces.

Recall that the spectrum of an operator T is defined as the set of its eigenvalues. We
will denote the spectrum of T by S(T ).

Definition 4.1. Let T ∈ L(V, V,K) be normal and diagonalisable. Let

T = λ1P1 + . . .+ λkPk

be its spectral resolution. Let f : S(T )→ K be a scalar-valued function on the spectrum of
T . The linear operator f(T ) ∈ L(V, V,K) is defined by

f(T ) = f(λ1)P1 + . . .+ f(λk)Pk. (1)
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Definition 4.2. Let V and V ′ be inner product spaces over the same field K. A linear
transformation U ∈ L(V, V ′,K) is called a unitary transformation if it is an isomorphism
and it preserves the inner product, i. e. for all v, w ∈ V ,

(v | w) = (Uv | Uw).

Theorem 4.3. Let T ∈ L(V, V,K) be normal and diagonalisable, let f : S(T ) → K and
f(T ) be defined as in (1). Then:

1. f(T ) is normal and diagonalisable;

2. S(f(T )) = f(S(T ));

3. if U ∈ L(V, V ′,K) is some unitary transformation and T ′ = UTU−1, then S(T ) =
S(T ′) and

f(T ′) = Uf(T )U−1.

Proof. 1. Let v, w ∈ V . Note that any orthogonal projection Pj is self-adjoint, as

(Pjv | w) = (Pjv | Pjw) = (v | Pjw).

Hence,

(f(T )v | w) =

k∑
j=1

f(λj)(Pjv | w) =

v
∣∣∣∣∣∣

k∑
j=1

f(λj)Pjw

 .

Hence, f(T )∗ =
∑k

j=1 f(λj)Pj . Note that

PiPj =

{
0 if i 6= j

Pi if i = j.

Hence, f(T ) and f(T )∗ commute, i. e. f(T ) is normal.
If v is an eigenvector of T with eigenvalue λ, then f(T )v = f(λ)v. Hence, the basis for

V consisting of eigenvectors of T already consists of eigenvectors of f(T ). This means that
f(T ) is diagonalisable.

2. From the last step in the proof of 1., we obtain f(S(T )) ⊆ S(f(T )). Conversely, let
v 6= 0 be an eigenvector of f(T ) with eigenvalue µ, i. e.

f(T )v = µv.

Then

f(T )v =

k∑
j=1

µPjv

and

f(T )v = f(T )

k∑
j=1

Pjv =

k∑
j=1

f(λj)Pjv.

Hence,

0 =

∥∥∥∥∥∥
k∑

j=1

(f(λj)− µ)Pjv

∥∥∥∥∥∥
2

=

k∑
j=1

|f(λj)− µ|2 ‖Pjv‖2 .

Since v 6= 0, there must be some index i such that Piv 6= 0 and thus f(λi) = µ. Hence,
S(f(T )) ⊆ f(S(T )).
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3. Since T ′ = UTU−1 , the equation Tv = λv holds if and only if T ′Uv = λUv. Hence,
S(T ′) = S(T ) and U maps each eigenspace of T to the corresponding eigenspace of T ′. Let

T ′ =
∑k

j=1 λjP
′
j be the spectral resolution of T ′. Then P ′j = UPjU

−1. Hence,

f(T ′) =

k∑
j=1

f(λj)UPjU
−1 = U

 k∑
j=1

f(λj)Pj

U−1 = Uf(T )U−1.

Remark 4.4. From the previous theorem we can also construct the spectral resolution of
f(T ). Suppose that f(S(T )) = {µ1, . . . , µ`}. Note that ` ≤ k. For each 1 ≤ m ≤ ` let Jm
be the set of indices j such that f(λj) = µm, and set

Qm :=
∑
i∈Jm

Pi.

Then the spectral resolution of f(T ) is given by

f(T ) =
∑̀
m=1

µmQm.

In the following corollary we slightly change the notation, as we are going to talk about
not necessarily distinct eigenvalues of T . We denote these by µi.

Corollary 4.5. Let T ∈ L(V, V,K) be normal and diagonalisable and f : S(T ) → K. Let
B = {v1, . . . , vn} be a basis for V such that T is represented in B by a diagonal matrix D
with diagonal entries µi, where µi is the eigenvalue of T corresponding to vj. Then f(T ) is
represented in B by the diagonal matrix f(D) with entries f(µi). If B′ = {w1, . . . , wn} is
another basis for V and R is the base change matrix from B to B′, i. e. wj =

∑n
i=1Rijvi,

then R−1f(D)R is the matrix of f(T ) represented in B′.

Proof. The first part, that f(T ) is represented in B by the diagonal matrix f(D) with entries
f(µj), directly follows from Theorem 4.3.

For each index i denote by ji the unique index such that vi ∈ Pji(V ) and µi = λji . Then

f(T )wji =

n∑
i=1

Pijif(T )vi

=

n∑
i=1

µiPijivi

=

n∑
i=1

(DP )ijivi

=

n∑
i=1

(DP )iji

n∑
m=1

P−1mi wm

=

n∑
m=1

(P−1DP )mjiwm.

Example 4.6. Let C2 be equipped with its standard inner product. We consider the
operator

T : C2 → C2,

(
a
b

)
7→
(
−ib
ia

)
.

4



Its representation in the canonical basis E is

[T ]E =

(
0 −i
i 0

)
.

We immediately see that T is self-adjoint and thus normal. Let

B =

{(
i
1

)
,

(
−i
1

)}
.

With respect to B, the linear operator T is represented by the diagonal matrix

[T ]B =

(
−1 0
0 1

)
.

The projections onto the eigenspaces are given by

P1

(
1
0

)
= −1

2
i

(
i
1

)
, P1

(
0
1

)
=

1

2

(
i
1

)
;

P2

(
1
0

)
=

1

2
i

(
−i
1

)
, P2

(
0
1

)
=

1

2

(
−i
1

)
.

We obtain the spectral resolution T = −P1 + P2.
Now let f : {−1, 1} → C be defined by f(−1) = 1 and f(1) = i. Then f(T ) = P1 + iP2.

This linear operator is represented with respect to E by

[f(T )]E =
1

2

(
1 + i 1 + i
−1− i 1 + i

)
.

One can by direct calculation verify that f(T ) is normal. Note that it is not self-adjoint!
Finally, we obtain the diagonalisation of f(T ) by respresenting it with respect to B:

[f(T )]B =

(
1 0
0 i

)
.
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