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Christmas Assignment

You do not need to hand in solutions for this assignment, but please try to solve as many questions as
you can. This assignment is a really important training in preparation to your final exam!
The solutions of this assignment will be distributed on the 8th of January during the lecture break, so
that you can check your answers and prepare yourself for discussing them on the 15th of January in the
exercise group. The solutions will also be published on the webpage of the course:
www.math.uni-konstanz.de/∼infusino/RAGWS14-15/RAGWS14-15-Exercises.html

1) Let (K,≤) be an ordered field.

a) Show that the system I of all intervals

]a, b[:= {x ∈ K | a < x < b}, a, b ∈ K

is a cover of K and is closed under finite intersection.
Therefore, I is the base of a topology on K, which is called the interval topology on K. From
now on, we consider K endowed with such a topology.

b) In Ex 3 a) of Sheet 7, we showed in particular that the field operations as mappings from K ×K

to K are continuous w.r.t. the product topology on K ×K given by the interval topology on K.
Prove that also the multiplicative inversion as mapping from K× := K \ {0} to K is continuous
w.r.t. the induced topology on K×.

c) Let n ∈ N. Assume that K is real closed, then we can define the euclidean norm on Kn:

‖ ‖ : Kn → K

(x1, . . . , xn) →
√
x2
1 + · · ·+ x2

n.

Show that the euclidean topology on Kn, i.e. the topology induced by the euclidean norm, coin-
cides with the product topology on Kn given by the interval topology on K.

2) Let us introduce the following definition:

Definition 1.
Let G := (G, ·) be a group. G is said to be an ordered group if there exists a total ordering ≤ of the
set G such that for any g1, g2, h ∈ G, we have

g1 ≥ g2 ⇒ g1 · h ≥ g2 · h and h · g1 ≥ h · g2. (1)
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Let (R,≤) be a real closed field. Consider its subset

Pos(R) := {x ∈ R | 0 < x}.

a) Show that (Pos(R), ·) is an ordered abelian subgroup of (R×, ·).

b) Show that (Pos(R), ·) is divisible, i.e. for any a ∈ Pos(R), we have aq ∈ Pos(R) for all q ∈ Q.

3) Let R be a real closed field. Recall that:

Definition 2.
Given m,n ∈ N, let A ⊂ Rm and B ⊂ Rn be two semi-algebraic sets. A mapping f : A→ B is said
to be semi-algebraic if its graph

Γf := {(x, y) ∈ Rm+n | y = f(x)}

is a semi-algebraic subset of Rm+n.

The aim of this exercise is to prove that the real exponential function exp is not semi-algebraic.

a) Consider some polynomials p0, . . . , pn ∈ R[X], and an infinite subset U ⊂ R s.t. for all x ∈ U

pn(x)(ex)n + pn−1(x)(ex)n−1 + · · ·+ p0(x) = 0.

Show that p0 ≡ · · · ≡ pn ≡ 0 in the following way:

i) if U has no bound, then use just the comparison between exponential and polynomials .

ii) if U is bounded, then use the following result.

Theorem 3 (Identity Theorem of Complex Analysis).
Consider two complex functions f(z) and g(z) holomorphic (i.e. differentiable with respect to their
complex variable z) in a domain D of the complex plane C. If the equation f(z) = g(z) holds in
an infinite subset S of D having an accumulation point in D, then it holds in the whole D.

b) Show by contradiction that exp is not semi-algebraic.

[Hint: show that Γexp would have a non-empty interior using the normal form for semi-alg. sets.]

4) We consider the Motzkin polynomial

m(X,Y ) := 1− 3X2Y 2 + X2Y 4 + X4Y 2.

a) Show that m(X,Y ) ≥ 0 on R2.

[Hint: use the following inequality which relates the arithmetic mean to the geometric mean:
∀ 0 ≤ a, b, c ∈ R, a+b+c

3 ≥ 3
√
abc.]

b) Suppose that the Motzkin polynomial m = f2
1 + · · ·+ f2

k for some k ∈ N and fi(X,Y ) ∈ R[X,Y ].
Deduce that for any i ∈ {1, . . . , k}, fi(X,Y ) is a polynomial of degree at most 3 and fi(X,Y ) can
contain none of the following monomials: X3, Y 3, X2, Y 2, X and Y .

c) Conclude by contradiction that m cannot be a sum of squares in R[X,Y ].

[Hint: for any i ∈ {1, . . . , k} write fi(X,Y ) = ai + biXY + ciX
2Y + diXY 2.]

2



5) Let n ∈ N, X := (X1, . . . , Xn) and d ∈ N0. Consider some non-zero polynomial f ∈ R[X] with
deg(f) ≤ d.

a) Show that

f(X0, X1, . . . , Xn) := Xd
0f

(
X1

X0
, . . . ,

Xn

X0

)
is a homogenous polynomial (or form) of degree = d in the variables X0, X1 . . . , Xn.

Definition 4.
The polynomial f(X0, X1, . . . , Xn) is said to be the homogenization of f(X1, . . . , Xn).

b) Denote by Vd,n the R-vector space of all polynomials in R[X1, . . . , Xn] of degree ≤ d , and by
Fd,n+1 the R-vector space of all homogenous polynomials in R[X0, X1, . . . , Xn] of degree = d.
Show that the homogenization map

h : Vd,n → Fd,n+1

f(X1, . . . , Xn) 7→ h(f) := f(X0, X1, . . . , Xn)

is a vector space isomorphism between Vd,n and Fd,n+1.

c) From now on, we suppose that d is even. Show that f ≥ 0 on Rn if and only if f ≥ 0 on Rn+1.

d) Show that f is a sum of squares of polynomials in R[X1, . . . , Xn] if and only if f is a sum of
squares of homogenous polynomials in R[X0, X1, . . . , Xn] of degree d/2. (Recall that we are
assuming deg(f) ≤ d and d even.)

e) Show that the homogenous Motzkin polynomial

m(X,Y, Z) = Z6 + X4Y 2 + X2Y 4 − 3X2Y 2Z2

is positive semi-definite on R3 but is not a sum of squares.
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