Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Maria Infusino
Dr. Charu Goel


## REAL ALGEBRAIC GEOMETRY-WS 2014/15

## Exercise Sheet 11

This assignment is due by Tuesday the 27th of January at noon. Your solutions will be collected during Tuesday's lecture or you can drop them in the postbox 18 near $F 411$.

1) a) Let $f$ be a homogeneous polynomial in $\mathbb{R}[\underline{x}]$. Show that if $f$ is sum of squares then every sum of square representation of $f$ consists of homogeneous polynomials, namely:
$f$ is homogeneous, $f=f_{1}^{2}+\cdots+f_{s}^{2} \Rightarrow f_{i}$ is homogeneous $\forall i=1, \ldots, s$.
b) Show that

$$
f \in \mathcal{P}_{n, 2 d}, \quad f=f_{1}^{2}+\cdots+f_{s}^{2} \Rightarrow \exists \text { such an } s \text { with } s \leq\binom{ n+d}{d}
$$

2) a) Let $F(\mathrm{x}, \mathrm{y}):=\mathrm{x}^{6}+\mathrm{x}^{4} \mathrm{y}^{2}+3 \mathrm{x}^{2} \mathrm{y}^{4}+3 \mathrm{y}^{6}$. Write $F(\mathrm{x}, \mathrm{y})$ as a sum of two squares.
b) Let $G(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}):=2 \mathrm{x}^{2}+2 \mathrm{xy}+2 \mathrm{y}^{2}+3 \mathrm{z}^{2}+2 \mathrm{zt}+3 \mathrm{t}^{2}$. Write $G(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ as a sum of four squares.
3) Let $R$ be a real closed field. We denote by $\mathcal{P}_{n, m}(R)$ the set of psd forms with coefficients in $R$ of degree $m$ in $n$ variables, and with $\Sigma_{n, m}(R)$ the set of forms with coefficients in $R$ of degree $m$ in $n$ variables which are sums of squares. Show that :
a) for every $d \in \mathbb{N}, \mathcal{P}_{2,2 d}(R)=\Sigma_{2,2 d}(R)$.
b) for every $n \in \mathbb{N}, \mathcal{P}_{n, 2}(R)=\Sigma_{n, 2}(R)$.
c) $\mathcal{P}_{3,4}(R)=\Sigma_{3,4}(R)$.

Use that Hilbert proved that:
$(*) \quad f \in \mathcal{P}_{3,4}(\mathbb{R}) \Rightarrow \exists f_{1}, f_{2}, f_{3} \in \mathcal{F}_{3,2}(\mathbb{R})$ such that $f=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}$.
4) Show that $\forall n \in \mathbb{N}$ and $\forall \alpha_{1}, \ldots, \alpha_{n}, x_{1}, \ldots, x_{n} \in \mathbb{R}^{\geq 0}=\{y \in \mathbb{R}: y \geq 0\}$

$$
\sum_{i=1}^{n} \alpha_{i}=1 \Rightarrow \alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}-x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \geq 0
$$

Please, justify your answers!

