Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Maria Infusino
Dr. Charu Goel

REAL ALGEBRAIC GEOMETRY-WS 2014/15

Exercise Sheet 3

This assignment is due by Tuesday the 11th of November at noon. Your solutions will be collected during Tuesday's lecture or you can drop them in the postbox 18 near $F 411$.

1) Let $\mathcal{T}=\left\{T_{i}: i \in I\right\}$ be a family of preorderings on a field K. Prove that:
a) the intersection $\bigcap_{i \in I} T_{i}$ is a preordering of K,
b) if $\forall i, j \in I$ there exists $k \in I$ such that $T_{i} \cup T_{j} \subseteq T_{k}$, then $\bigcup_{i \in I} T_{i}$ is a preordering of K.
2) Show that any ordering on a field K extends to an order on the field of rational functions in several variables $K\left(x_{1}, \ldots, x_{n}\right)$, using induction on n.
[Hint: Prove the statement by contradiction using the criterion for extension of orderings in the case of a field extension L / K, given in Lecture 4.]
3) We proved in Lecture 2 that each Dedekind cut of \mathbb{R} corresponds to an ordering on $\mathbb{R}[x]$, in particular on $\mathbb{R}(x)$. Describe explicitly the order on $\mathbb{R}[x]$ corresponding to each Dedekind cut of \mathbb{R}. Proceed as follows.
a) Retrieve the orders on $\mathbb{R}[x]$ corresponding to the cuts 0_{+}and 0_{-}, using the derivatives of a generic polynomial $p \in \mathbb{R}[x]$ at 0 .
b) Using the same technique as in a), describe the orders on $\mathbb{R}[x]$ corresponding to all the remaining Dedekind cuts of \mathbb{R}.
c) Conclude that there exists a function

$$
\sigma: \mathbb{R}[x] \rightarrow \mathbb{R}
$$

such that $\operatorname{sign}(p(x))=\operatorname{sign}(\sigma(p))$ for any $p \in \mathbb{R}[x]$.
4) Denote the ring of real formal power series in one variable by:

$$
\mathbb{R}[[X]]:=\left\{\sum_{i=0}^{\infty} a_{i} X^{i} \mid a_{i} \in \mathbb{R}\right\}
$$

and the set of real formal Laurent series by:

$$
\mathbb{R}((X)):=\left\{\sum_{i=m}^{\infty} a_{i} X^{i} \mid m \in \mathbb{Z}, a_{i} \in \mathbb{R}\right\}
$$

For any $0 \neq A \in \mathbb{R}((X))$, we define $v(A)$ to be the smallest integer m such that $a_{m} \neq 0$. Moreover, for any $A(X)=\sum_{i=m}^{\infty} a_{i} X^{i} \in \mathbb{R}((X))$ and $B(X)=\sum_{i=n}^{\infty} b_{i} X^{i} \in \mathbb{R}((X))$ with $m=v(A)$ and $n=v(B)$, we define:

- the coefficientwise addition:

$$
A(X)+B(X):=\sum_{i=k}^{\infty}\left(a_{i}+b_{i}\right) X^{i}, \text { where } k=\min \{v(A), v(B)\}
$$

- the convolution product:

$$
A(X) B(X):=\sum_{i=m+n}^{\infty}\left(\sum_{j+k=i} a_{j} b_{k}\right) X^{i}
$$

- the order relation:

$$
\begin{aligned}
& \text { For any } 0 \neq A(X)=\sum_{i=m}^{\infty} a_{i} X^{i} \in \mathbb{R}((X)) \\
& \qquad A(X)>0 \text { if and only if } a_{m}>0 \text { with } m=v(A)
\end{aligned}
$$

It can be shown that $\mathbb{R}((X))$ endowed with these relations is an ordered field. Note that the map $v: \mathbb{R}((X))^{\times} \rightarrow \mathbb{Z}$ is a discrete valuation on $\mathbb{R}((X))^{\times}:=\mathbb{R}((X)) \backslash\{0\}$, i.e. v is such that for any $A, B \in \mathbb{R}((X))^{\times}$the following hold:
i) $v(A+B) \geq \min \{v(A), v(B)\}$,
ii) $v(A B)=v(A)+v(B)$.

Then prove that $\mathbb{R}((X))$ is not real closed.
[Hint: Use the property ii) of the map v on $\mathbb{R}((X))^{\times}$.]

