Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Dr. Maria Infusino
Dr. Charu Goel

REAL ALGEBRAIC GEOMETRY-WS 2014/15

Exercise Sheet 8

This assignment is due by Tuesday the 16th of December at noon. Your solutions will be collected during Tuesday's lecture or you can drop them in the postbox 18 near $F 411$.

1) Let R be a real closed field. Show that the semi-algebraic subsets of R are exactly the finite unions of points and open intervals (bounded or unbounded).
2) Prove the following statements:
a) The infinite zig zag curve \mathcal{Z} in the figure below is not semi-algebraic in \mathbb{R}^{2}.

b) For every compact semi-algebraic subset K of \mathbb{R}^{2}, the intersection of K with the zigzag is semi-algebraic.
3) In the following exercise we will illustrate the Tarski-Seidenberg principle and its proof in a concrete case. Consider the following polynomials in $\mathbb{Z}[T, X]$

$$
\begin{aligned}
& f_{1}(T, X)=T X^{2}+(T+1) X+1 \\
& f_{2}(T, X)=X^{3}-3 T^{2} X+2 T^{3} .
\end{aligned}
$$

Prove the following statements:
a) Let $f_{2}^{\prime}(T, X)$ be the partial derivative of $f_{2}(T, X)$ with respect to X. Compute:

- the remainder $g_{1}(T, X)$ of the euclidean division of $f_{2}(T, X)$ by $f_{1}(T, X)$ in $\mathbb{Q}(T)[X]$.
- the remainder $g_{2}(T, X)$ of the euclidean division of $f_{2}(T, X)$ by $f_{2}^{\prime}(T, X)$ in $\mathbb{Q}(T)[X]$.
b) Compute the X-roots of $f_{1}(T, X), f_{2}^{\prime}(T, X), g_{1}(T, X)$ and $g_{2}(T, X)$ in terms of T.
c) As an example, consider a real closed field R and $t \in R$ with $t \gg 1$. Denote by $x_{1}<x_{2}<\ldots<x_{5}$ the corresponding roots computed in the preceding question, $x_{0}:=-\infty, x_{6}:=+\infty$, and $\left.I_{k}:=\right] x_{k}, x_{k+1}[$ for $k=0, \ldots, 5$. Then:
i) compute the sign matrix

$$
\operatorname{SIGN}_{R}\left(f_{1}(t, X), f_{2}^{\prime}(t, X), g_{1}(t, X), g_{2}(t, X)\right),
$$

where each row is given by
$\left(\operatorname{sign}\left(f\left(I_{0}\right)\right), \operatorname{sign}\left(f\left(x_{1}\right)\right), \operatorname{sign}\left(f\left(I_{1}\right)\right), \operatorname{sign}\left(f\left(x_{2}\right)\right), \ldots, \operatorname{sign}\left(f\left(x_{5}\right)\right), \operatorname{sign}\left(f\left(I_{5}\right)\right)\right)$
for f being the corresponding function.
ii) deduce form the part i) the sign matrix

$$
\operatorname{SIGN}_{R}\left(f_{1}(t, X), f_{2}(t, X)\right) .
$$

d) Let $\tilde{f}_{\tilde{1}}(T, X):=T^{2} g_{1}(T, X), \tilde{f}_{2}(T, X):=g_{2}(T, X), \tilde{f}_{3}(T, X):=f_{2}^{\prime}(T, X)$ and $\tilde{f}_{4}(T, X):=f_{1}(T, X)$. Resume the preceding method (i.e. compute $\tilde{f}_{3}^{\prime}, \tilde{g}_{1}, \ldots, \tilde{g}_{4}$ etc.) until we obtain functions $\tilde{f}_{j}^{(k)}(T, X), j=1, \ldots, s_{k}$ for some step k and number s_{k} of functions, which do not depend on X anymore.
e) Compute directly the X-roots of $f_{2}(T, X)$ in terms of T using Cardano formulas and deduce the sign matrix

$$
\operatorname{SIGN}_{R}\left(f_{1}(t, X), f_{2}(t, X)\right)
$$

in terms of t, and verify the preceding results.
NB: the case $t=0$ has to be treated separately.
f) Conclude that for any real closed field R and any $t \in R$, the resolution of the semi-algebraic system

$$
\left\{\begin{array}{llll}
f_{1}(t, X) & =t X^{2}+(t+1) X+1 & \triangleright_{1} & 0 \\
f_{2}(t, X)=X^{3}-3 t^{2} X+2 t^{3} & \triangleright_{2} & 0 .
\end{array}\right.
$$

for some $\triangleright_{1}, \triangleright_{2} \in\{>, \geq,=, \neq\}$ is equivalent to t solution of a semialgebraic system only in the variable T.

Please, justify your answers!

